Asymptotic performance of metacyclic codes - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics Année : 2020

Asymptotic performance of metacyclic codes

Résumé

A finite group with a cyclic normal subgroup N such that G/N is cyclic is said to be metacyclic. A code over a finite field F is a metacyclic code if it is a left ideal in the group algebra FG for G a metacyclic group. Metacyclic codes are generalizations of dihedral codes, and can be constructed as quasi-cyclic codes with an extra automorphism. In this paper, we prove that metacyclic codes form an asymptotically good family of codes. Our proof relies on a version of Artin's conjecture for primitive roots in arithmetic progression being true under the Generalized Riemann Hypothesis (GRH).
Fichier principal
Vignette du fichier
metacyclic-codes-revised.pdf (240.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02523289 , version 1 (28-03-2020)

Identifiants

  • HAL Id : hal-02523289 , version 1

Citer

Martino Borello, Pieter Moree, Patrick Solé. Asymptotic performance of metacyclic codes. Discrete Mathematics, 2020, 343 (7), pp.111885. ⟨hal-02523289⟩
75 Consultations
66 Téléchargements

Partager

More