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Paris 8, F-93526, Saint-Denis, France

Pieter Moree

Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany

Patrick Solé
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Abstract

A finite group with a cyclic normal subgroup N such that G/N is cyclic is
said to be metacyclic. A code over a finite field F is a metacyclic code if it is a
left ideal in the group algebra FG for G a metacyclic group. Metacyclic codes
are generalizations of dihedral codes, and can be constructed as quasi-cyclic
codes with an extra automorphism. In this paper, we prove that metacyclic
codes form an asymptotically good family of codes. Our proof relies on a
version of Artin’s conjecture for primitive roots in arithmetic progression
being true under the Generalized Riemann Hypothesis (GRH).
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1. Introduction

Metacyclic codes were studied intensively by Sabin in the 1990’s [16, 17].
They are (left) ideals in the group ring FG(m, s, r), where F is a finite field
and G(m, s, r) is the finite group of order ms defined as

G(m, s, r) = 〈x, y | xm = 1, ys = 1, yx = xry〉,

with rs ≡ 1 (mod m). More recently, their concatenated structure was ex-
plored in [5].
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In the present paper, we show that for some values of the parameters
m, s, r (in particular s > 1 fixed, m a prime and r 6= 1 (mod m) depending
on m), these codes are asymptotically good. This extends results of Bazzi-
Mitter, who dealt with F = F2 and G(m, 2,m−1), a dihedral group [2], and,
partially, Borello-Willems, who considered the case F = Fs, with both m and
s prime. As observed in [3, §4], applying field extensions as in [7, Proposition
12], the result of Bazzi-Mitter can be extended to any field of characteristic
2 and that of Borello-Willems to any field of characteristic s. In our case, we
have more freedom in the choice of the alphabet and the proof is conceptually
simpler. On the other hand, our results rely on a variant of Artin’s primitive
conjecture (Conjecture 2.1) being true, where the primes are supposed to lie
in a progression of the form 1 (mod s). This is currently only guaranteed on
assuming the GRH.

The main idea is to realize metacyclic codes as quasi-cyclic codes with
some extra automorphism. Such codes can be enumerated by the Chinese
Remainder Theorem (CRT) approach of [12]. This technique regards a quasi-
cyclic code of index ` as a code of length ` over an auxiliary ring. Decom-
posing the said ring into a direct sum of extension fields by the CRT for
polynomials yields a decomposition into codes of length ` over these fields.
These codes are called constituent codes. The favorable case where there are
only two constituents requires, to be realized infinitely many times, to invoke
Artin’s conjecture. An expurgated random coding argument, similar to the
one that proves that double circulant codes are asymptotically good [1], can
then be applied.

The material is arranged as follows. The next section collects the basic
notions and notations needed in the rest of the paper. Section 3 derives the
main result. Section 4 concludes the article.

2. Definitions and Notation

2.1. Quasi-cyclic Codes

A linear code C over the finite field F is said to be quasi-cyclic of index
`, or `-QC for short, if it is left wholly invariant under the `’th power of the
shift. Assume, for convenience, that the length n of C is n = `m, for some
integer m called the co-index. It is well-known [12] that such a code is an
Rm-submodule of R`

m, where Rm denotes the ring Rm = F[x]/(xm − 1). A
related class of codes is that of `-circulant codes, consisting of linear codes of
length n = `m and dimension m, whose generator matrix is made of circulant
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blocks of size m. Such codes are coordinate permutation equivalent to `-QC
codes. Recall that there is ring isomorphism between circulant matrices of
order m and Rm given by A 7→ A11 +A12x+ · · ·A1mx

m−1. Thus, for example,
the binary matrix 1 0 0 0 1 1

0 1 0 1 0 1
0 0 1 1 1 0


is encoded by that isomorphism as (1, x+ x2) (here ` = 2).

2.2. Metacyclic groups

Let G(m, s, r) denote the group of order ms defined by generators and
relations as

G(m, s, r) = 〈x, y | xm = 1, ys = 1, yx = xry〉,

where r satisfies rs ≡ 1 (mod m). Such a group is called metacyclic, since
it has a cyclic normal subgroup N = 〈x〉 such that the quotient group G/N
is also cyclic. When r = m − 1 and s = 2, we obtain the dihedral group
Dm of order 2m,

Dm = 〈x, y | xm = 1, y2 = 1, yx = x−1y〉,

while the case r = 1 reduces to the abelian group

Cm × Cs = 〈x, y | xm = 1, ys = 1, yx = xy〉.

Here Ci denotes the cyclic group of order i.

2.3. Group codes

Let G be a finite group of order n. A G-code (or a group code) C over
a finite field F is a left ideal in the group algebra FG. Let us recall that

FG =

{∑
g∈G

agg

∣∣∣∣∣ ag ∈ F

}

is the set of formal sums of elements of G with coefficients in F, which is
clearly a vector space over F of dimension n, but also an F-algebra via the
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multiplication in G. More precisely, if a =
∑

g∈G agg and b =
∑

g∈G bgg are
given, then

ab =
∑
g∈G

(∑
h∈G

ahbh−1g

)
g.

Once we choose an ordering of G, we have an F-linear isomorphism ϕ :∑
g∈G agg 7→ (ag)g∈G between FG and Fn, and the image of C is a linear

code in Fn. Changing the ordering gives coordinate permutation equivalent
codes. The group of permutation automorphism of ϕ(C) contains a transitive
subgroup isomorphic to G. It is common practice to identify C and ϕ(C). A
metacyclic code is a G-code for G = G(m, s, r) or equivalently a linear code
of length ms whose permutation automorphism group contains a transitive
subgroup isomorphic to G(m, s, r).

2.4. The Artin primitive root conjecture for primes in arithmetic progression

Emil Artin conjectured in 1927 that given a non-zero integer a that is
not a perfect square nor −1, there are infinitely many primes m such that
a is primitive modulo m. Recall that the Generalized Riemann Hypothesis
(GRH) states that the analogue of Riemann hypothesis for zeta functions
of number fields [6], the so called Dedekind zeta functions, holds true. A
quantitative version of Artin’s primitive root conjecture is proved under GRH
by Hooley [9], and unconditionally for all but two unspecified prime roots
a by Heath-Brown [8]. The following is a refinement of Artin’s primitive
root conjecture where in addition the prime m is required to be in a fixed
arithmetic progression 1 (mod s).

Conjecture 2.1. Let a be a non-zero integer that is not a perfect square nor
−1. Let h be the largest integer such that a is an h-th power. Let ∆ denote
the discriminant of Q(

√
a). Given s ≥ 1, let S(a, s) be the set of primes

m ≡ 1 (mod s) such that a is a primitive root modulo m. If both (s, h) = 1
and ∆ - s, then the set S(a, s) is infinite.

If (s, h) > 1, then the set S(a, s) is finite. Suppose there exists an ele-
ment m of that set not dividing a. Writing a = ah0 , we have a(m−1)/(s,h) =

a
h(m−1)/(s,h)
0 ≡ am−10 ≡ 1 (mod m) and so a is not primitive modulo m. Con-

tradiction.
Likewise, if ∆ | s, the set S(a, s) is finite. By elementary algebraic number

theory the smallest m for which Q(
√
g) ⊆ Q(ζk) equals k = |∆|. The primes
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m ≡ 1 (mod s) split completely in Q(ζk) and so certainly in the subfield
Q(
√
a). If m - a, it then follows that the Legendre symbol (a/m) = 1 and so

the order of a modulo m is at most (m− 1)/2, and so S(a, s) is finite.
The conjecture thus claims that if there is no trivial reason for S(a, s) to

be finite, it is actually infinite.
Under GRH Lenstra [11, Theorem 8.3] established a far reaching gener-

alization of Artin’s original conjecture. In particular, his work implies the
truth of Conjecture 2.1. Indeed, under GRH the set S(a, s) has a natural
density that can be explicitly given, which was done by Moree [14, Theorem
4]. Combination of the two results yields the following theorem.

Theorem 2.2. Under GRH Conjecture 2.1 holds true and, moreover, the
set S(m, s) has an explicitly determinable density that is a rational number
times the Artin constant.

The reader interested in more information regarding the Artin primitive
root conjecture and its many generalizations and applications is referred to
the survey [15].

2.5. Asymptotics

If C(n) is a family of codes with parameters [n, kn, dn] over Fq, the rate
R and relative distance δ are defined as

R = lim sup
n→∞

kn
n

and δ = lim inf
n→∞

dn
n
,

respectively. When examining a family of codes, it is natural to ask if this
family is asymptotically good or bad in the following sense. A family of code
is asymptotically good if Rδ 6= 0.

Recall that the q-ary entropy function is defined, for 0 ≤ t ≤ q−1
q

, by

Hq(t) =

{
0, if t = 0,

tlogq(q − 1)− tlogq(t)− (1− t)logq(1− t), if 0 < t ≤ q−1
q
.

This quantity turns out to be crucial in the estimation of the volume of
high-dimensional Hamming balls when the base field is Fq. The result we
are using in this paper is that the volume of the Hamming ball of radius tn
is asymptotically equivalent, up to subexponential terms, to qnHq(t), when
0 < t < 1, and n goes to infinity [10, Lemma 2.10.3].
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3. Main result

Let s be an integer greater than 1 and let Ta1,...,as−1 denote the s-circulant
code over Fq with generator matrix (1, a1(x), . . . , as−1(x)) where ai(x) ∈
Rm = Fq[x]/(xm − 1). Denote by µr the multiplier by r in Rm, defined
for all f(x) ∈ Rm by µr(f(x)) = f(xr) (cf. [10, §4.3]). Note that

FqG(m, s, r) ' Fq[x, y]/(xm − 1, ys − 1, xry − yx)

as a ring (we are just choosing a special ordering of the elements ofG(m, s, r)),
and the right-hand side is isomorphic to Rs

m as an Rm-module via

f1(x) + f2(x)y + . . .+ fs(x)ys−1 7→ (f1(x), f2(x), . . . , fs(x)).

A construction of metacyclic codes from quasi-cyclic codes similar to the next
lemma can be found in [16, Theorem 1].

Lemma 3.1. Let a1 ∈ Rm. If a1µr(a1) . . . µ
s−1
r (a1) = 1 and aj = a1µr(a1)...

µj−1r (a1) for all j ∈ {2, . . . , s− 1}, then Ta1,...,as−1 is metacyclic for the group
G(m, s, r).

Proof. Writing an arbitrary codeword as

f1(x) + f2(x)y + . . .+ fs(x)ys−1 ∈ Fq[x, y]/(xm − 1, ys − 1, xry − yx),

we see that left multiplication by y in that ring corresponds to the map

(f1(x), . . . , fs(x)) 7→ (µr(fs(x)), µr(f1(x)), . . . , µr(fs−1(x)))

in Rs
m. For Ta1,...,as−1 to be a G(m, s, r)-code, it is sufficient to check that it

is stable under left multiplication by y (every s-circulant code being clearly
stable under left multiplication by x). Reasoning on the generator of Ta1,...,as
the above relation shows that (µr(as−1(x)), 1, . . . , µr(as−2(x))) is propor-
tional to (1, a1(x), . . . , as−1(x)) by an element of Rm. Getting rid of that
element between two equations yields the said relations on the elements
a1(x), . . . , as−1(x).

Remark 3.2. A natural question is under which conditions Ta1,...,as−1 is two-
sided, since in this case the code would be equivalent to an abelian code [17].
Reasoning in the same way as above on the right multiplication by y and by x
we obtain that Ta1,...,as−1 is a right ideal in Fq[x, y]/(xm−1, ys−1, xry−yx) if
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and only if ass−1 = 1, aj = as−js−1 for all j ∈ {1, . . . , s−2}, and aj = aj ·xjr−1 for
all j ∈ {1, . . . , s−1}. The last condition is equivalent to aj being constant on
the orbits of the (jr−1)-th power of the shift, and in the case m is prime and
r 6= 1 (mod m), it is easy to see that the set of Ta1,...,as−1 satisfying all above
conditions is empty: actually a1 = a1·xr−1 implies that a1 = λ(1+. . .+xm−1),
with λ ∈ Fq. But then

a1µr(a1) . . . µ
s−1
r (a1) = λs(1 + . . .+ xm−1)s = λsms−1(1 + . . .+ xm−1)

(the last equality can be proven by induction on m ≥ 2) cannot be equal to
1.

We now assume that m is a prime, such that q is primitive modulo m.
Thus, by the theory of cyclotomic cosets [10, §4.1], we know that xm − 1 =
(x− 1)h(x), with h irreducible over Fq[x].

Lemma 3.3. Assume that s divides m − 1 and that the order of r modulo
m is s. The number Ωm,s of s-circulant codes with the properties in Lemma
3.1 is

Ωm,s = s′ · q
m−1 − 1

q
m−1

s − 1
, with s′ = (s, q − 1).

Proof. The CRT for polynomials yields the ring decomposition

Rm ' Fq ⊕ FQ,

with Q = qm−1.
Write a1 = a′1 ⊕ α1, . . . , as−1 = a′s−1 ⊕ αs−1, in this decomposition. We

study the conditions on a1, . . . , as−1 given in Lemma 3.1, in the light of this
CRT decomposition.

• The conditions on a′1, . . . , a
′
s−1 are a′s1 = 1, and a′j = a′j−11 for j ∈

{2, . . . , s− 1}. The first equation has s′ solutions, with s′ = (s, q − 1)
and the rest of aj is uniquely determined.

• The order of µr is s, by hypothesis. So, from the characterization of the
Galois group of FQ we have that the action of µr on FQ is exponentiation

by t = q
m−1

s . The condition on a1 implies that

α1 ∈ {z ∈ FQ | z1+t+...+t
s−1

= 1} = {At−1 | A ∈ F×Q},

which is a set of size ts−1
t−1 . The rest of the αj’s is uniquely determined.
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The result follows by multiplying these two independent counts together.

The next lemma shows that the codes of Lemma 3.1 have “small” common
intersection.

Lemma 3.4. If (f1(x), . . . , fs(x)) ∈ Rs
m, with a Hamming weight < m, then

there are at most q codes Ta1,...,as−1 with the properties in Lemma 3.1 such
that (f1(x), . . . , fs(x)) ∈ Ta1,...,as−1 .

Proof. Keep the notation of the proof of Lemma 3.3. Since a2, . . . , as−1 are
uniquely determined by a1, we focus on a1. The Hamming weight condition
implies that f1(x) 6= 0 (mod h(x)) (otherwise f1 would be a nonzero codeword
of the repetion code of length m over Fq). Then a1(x) is uniquely determined
modulo h(x) by the equation f2(x) ≡ f1(x)a1(x) (mod h(x)). But modulo
x− 1 it can take q values. The result follows.

The following results are true under Artin’s primitive root conjecture Con-
jecture 2.1 for the progression 1 (mod s), which by Theorem 2.2 is guaranteed
if GRH holds true.

Theorem 3.5. Assume Conjecture 2.1 holds true. Let q be a prime and s > 1
be an integer such that q - s if q ≡ 1 (mod 4) and 4q - s if q ≡ 3 (mod 4) or
q = 2. For every 0 < δ < H−1q ( s−1

s2
), there is a sequence of metacyclic codes

over Fq that are group codes for G(m, s, r) of rate 1/s and relative Hamming
distance δ.

Proof. Under these hypotheses on q and s, the existence of infinitely many
primes m such that q is primitive modulo m and that s divides m − 1 is
ensured by Artin’s primitive root conjecture in arithmetic progression, as
shown in §2.4 (for the discriminant of quadratic fields see [18, p.89]). If the
number Ωm,s is strictly larger than q times the size of a Hamming ball of
radius bδmsc, then, by Lemma 3.4, there is a code constructed by Lemma
3.1 of minimum distance > bδmsc. This inequality will hold if, using the
standard entropic estimates of §2.5, for m→∞, we have

s′ · q
m−1 − 1

q
m−1

s − 1
> q · qmsHq(δ),

and in particular if (s− 1)/s2 > Hq(δ).
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We relax the condition that q is prime as follows.

Corollary 3.6. Assume Conjecture 2.1 holds true. The metacyclic codes
over Fw with w = qa, q a prime and a ≥ 2, form an asymptotically good
family of codes.

Proof. By the preceding theorem the metacyclic codes over Fq are asymp-
totically good. By extension of scalars from Fq to Fw (as in [7, Proposition
12]) the result follows.

The following result was proved for q even by similar techniques, under
Artin’s conjecture, in [1], and unconditionally in [2] using more advanced
probabilistic techniques.

Corollary 3.7. Assume Conjecture 2.1 holds true. Dihedral codes are asymp-
totically good in any characteristic.

Proof. This is a consequence of Theorem 3.5 and Corollary 3.6 in the case
r = m − 1 and s = 2, for which G(m, s, r) is the dihedral group of order
2m.

The following result was proved unconditionally and for all characteristics
in [4] using the Bazzi-Mitter approach of [2].

Corollary 3.8. Assume Conjecture 2.1 holds true. If p ≡ 3 (mod 4), then
G(m, p, r)-codes over finite fields of characteristic p are asymptotically good.

Proof. This is a consequence of Theorem 3.5 with s = q = p and of Corollary
3.6 for prime powers.

4. Conclusion and Open Problem

In this note, we have shown that left ideals in the group ring of a meta-
cyclic group form, for certain values of the parameters, an asymptotically
good family of codes under GRH. The main open problem would be to extend
this result to two-sided ideals. This would allow to show, by the combinato-
rial equivalence derived in [17], that abelian group codes are asymptotically
good. Unfortunately, the conditions obtained in Remark 3.2 seem to suggest
that s-circulant metacyclic codes are not the right ones to be considered in
this case.
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[12] S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes I:
finite fields, IEEE Trans. Inform. Theory, 47 (7), (2001), 2751–2760.

[13] F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting
codes, North-Holland (1977).

10

https://arxiv.org/pdf/1901.10979.pdf
https://arxiv.org/pdf/1904.10885.pdf


[14] P. Moree, Uniform distribution of primes having a prescribed primitive
root, Acta Arith. 89 (1999), 9–21.

[15] P. Moree, Artin’s primitive root conjecture – a survey, Integers 12A
(2012), No. 6, 1305–1416.

[16] R.E. Sabin, On row-cyclic codes with algebraic structure, Designs, Codes
and Cryptogr. 4, (1994), 144–155.

[17] R.E. Sabin and S. Lomonaco, Metacyclic error-correcting codes, AAECC
6, (1995), 191–210.
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