An Efficient Human Activity Recognition Technique Based on Deep Learning - Archive ouverte HAL
Article Dans Une Revue Распознавание образов и анализ изображен / Pattern Recognition and Image Analysis: Advances in Mathematical Theory and Applications Année : 2019

An Efficient Human Activity Recognition Technique Based on Deep Learning

Résumé

In this paper, we present a new deep learning-based human activity recognition technique. First, we track and extract human body from each frame of the video stream. Next, we abstract human silhouettes and use them to create binary space-time maps (BSTMs) which summarize human activity within a defined time interval. Finally, we use convolutional neural network (CNN) to extract features from BSTMs and classify the activities. To evaluate our approach, we carried out several tests using three public datasets: Weizmann, Keck Gesture and KTH Database. Experimental results show that our technique outperforms conventional state-of-the-art methods in term of recognition accuracy and provides comparable performance against recent deep learning techniques. It’s simple to implement, requires less computing power, and can be used for multi-subject activity recognition.
Fichier principal
Vignette du fichier
LISPEN_PRIA_ABABSA_2019.pdf (1.95 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02519700 , version 1 (26-03-2020)

Identifiants

Citer

Aziz Khelalef, Fakhreddine Ababsa, Nabil Benoudjit. An Efficient Human Activity Recognition Technique Based on Deep Learning. Распознавание образов и анализ изображен / Pattern Recognition and Image Analysis: Advances in Mathematical Theory and Applications, 2019, 29 (4), pp.702-715. ⟨10.1134/s1054661819040084⟩. ⟨hal-02519700⟩
48 Consultations
305 Téléchargements

Altmetric

Partager

More