Mixed boundary valued problem for linear and nonlinear wave equations in domains with fractal boundaries - Archive ouverte HAL
Article Dans Une Revue Calculus of Variations and Partial Differential Equations Année : 2022

Mixed boundary valued problem for linear and nonlinear wave equations in domains with fractal boundaries

Résumé

The weak well-posedness, with the mixed boundary conditions, of the strongly damped linear wave equation and of the non linear Westervelt equation is proved in the largest natural class of Sobolev admissible non-smooth domains. In the framework of uniform domains in R^2 or R^3 we also validate the approximation of the solution of the Wester-velt equation on a fractal domain by the solutions on the prefractals using the Mosco convergence of the corresponding variational forms.
Fichier principal
Vignette du fichier
Preprint.pdf (615.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02514311 , version 1 (21-03-2020)

Identifiants

Citer

Adrien Dekkers, Anna Rozanova-Pierrat, Alexander Teplyaev. Mixed boundary valued problem for linear and nonlinear wave equations in domains with fractal boundaries. Calculus of Variations and Partial Differential Equations, 2022, 61 (2), pp.75. ⟨10.1007/s00526-021-02159-3⟩. ⟨hal-02514311⟩
324 Consultations
298 Téléchargements

Altmetric

Partager

More