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Mixed boundary valued problem for linear and

nonlinear wave equations in domains with fractal

boundaries

Adrien Dekkers∗ Anna Rozanova-Pierrat† Alexander Teplyaev‡

Abstract

The weak well-posedness, with the mixed boundary conditions, of the strongly damped

linear wave equation and of the non linear Westervelt equation is proved in the largest

natural class of Sobolev admissible non-smooth domains. In the framework of uniform

domains in R2 or R3 we also validate the approximation of the solution of the Wester-

velt equation on a fractal domain by the solutions on the prefractals using the Mosco

convergence of the corresponding variational forms.

Keywords: Fractals; Wave equation; Westervelt equation; Quasilinear second-order
hyperbolic equations; Mosco convergence.

1 Introduction

We study the question of weak well-posedness of wave equations, such as the strongly
damped wave equation and the non-linear Westervelt equation, in the largest possible class of
bounded domains with the mixed boundary conditions. This class of domains contains irreg-
ular case of boundaries including fractals. The regularity of the solutions of these equations
on regular domains, typically with a C2 boundary, is well known. In addition, the solutions
become more regular up to the boundary if the initial data are more regular. We can cite
Evans [17] for the linear wave equation and Refs. [32–35,44] and the references therein for the
strongly damped wave equation and the Westervelt equation with the Dirichlet boundary
conditions. The question is whether on less regular domains we can have a weak solution
which is continuous or C1 up to the boundary. The examples of Arendt and Elst [3] show
that problems appear in the definition of the trace as soon as the boundary is not C1. More-
over, if on a domain with a C1 or Lipschitz boundary we define an incoming normal vector
almost everywhere, even more complicated question about the Neumann or Robin boundary
conditions can be raised. When equations similar to the Westervelt equation are considered
on regular domains with C2 boundary, Refs. [32–35,44], as a consequence of the fact that the
spatial derivative are at most of order 2, these derivatives can be defined naturally on the
boundary. The same approach is obviously impossible for any less regular boundary case. In
the past, mathematics has been concerned largely with regular domains. Initially, domains
with fractal boundaries, such as for example the von Koch snowflake, were mainly been con-
sidered as "pathological" and used only to produce counterexamples. However, there has
been a change of attitude as mathematicians and physicists have discovered that such von
Koch-like structures appear in nature as in the famous example [42] of the coast of Britain.
There are many other appearances of fractal domains in mathematics and physics, including
the following papers most relevant to our work: [6, 10, 11, 18, 20, 22, 25, 26, 39, 51, 52, 56]. To
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be able to solve mixed boundary valued problems of partial differential equations (here the
strongly damped wave equation and the non-linear Westervelt equation) in domains with
non smooth or fractal boundaries it is important to describe a functional framework in which
it is possible to consider the weak-well posedness of elliptic equations, in particular of the
simplest one, the Poisson equation:















−∆u = f in Ω,
u = 0 on ΓD,Ω,
∂u
∂n = 0 on ΓN,Ω,
∂u
∂n + au = 0 on ΓR,Ω,

(1)

with ∂Ω = ΓD,Ω ∪ ΓN,Ω ∪ ΓR,Ω. The results of Jones [27] on d−sets and domains admitting
W k,p extensions allow to say that, in dimension 2, (ǫ, δ)-domains are the most general
domains on which we can define traces and extensions of the Sobolev spaces and then solve
the Poisson problem. But it is not the case in R3 and in higher dimensions. By this reason,
thanks to optimal Sobolev extension results in Rn for p > 1 found by Hajłas, Koskela and
Tuominen [23], Arfi and Rozanova-Pierrat introduced in Ref. [4] a new type of domains with
a possibly non-smooth boundary described by a d-set called the admissible domains. The
idea is to work in the class of domains, optimal by the Sobolev extension, and for which the
it is possible to define a surjective and continuous trace operator on the boundary, especially
from W 1,p(Ω) with p > 1.

Here we improve this concept (see Ref. [50] for more detailed discussion) modifying the
definition of the image of the trace operator following [28]. It allows us to consider not only
d-set boundaries as in Ref. [4], but also boundaries consisting of different dimensional parts
and which do not have a fixed dimension [29]. As in review [50] we call this class of domains
the Sobolev admissible domains.

The most common examples of Sobolev admissible domains are domains with regular or
Lipschitz boundaries, with a d-set boundaries such as von Koch fractals or with a “mixed”
boundary presented for instance by a three-dimensional cylindrical domain constructed on a
base of a two-dimensional domain with a d-set boundary as considered for the Koch snowflake
base in [13, 38].

These types of domains include the (ǫ, δ)-domains and are more general, as they are
the largest class of domains on which we can define traces and extensions to the Sobolev
spaces for Ω ⊂ Rn with n ≥ 2, and then find a weak solution to the Poisson problem
depending uniquely and continuously of the initial data. As a consequence we will work
mainly on Sobolev admissible domains and summarize in Section 2 the known results for
these domains.

Another important question is whether the solutions of the Poisson problem (1) belong
to C(Ω) ∩ L∞(Ω) with an estimate of the form:

‖u‖L∞(Ω) ≤ C‖f‖Lp(Ω).

We show this result for (ε, δ)-domain and the Sobolev admissible domains generalizing [14].
This estimates are a key point to show that the solutions of our wave type models are in
C(Ω) ∩ L∞(Ω) but also to treat the nonlinear term in the Westervelt equation. We make
attention on the fact that even for a Lipschitz boundary, if the domain is not convex, the
weak solution of the Poisson equation never belongs to H2(Ω), but only to H1(Ω), what
restricts a lot the study of the Westervelt equation. To handle this problem we start to
study its linear part, the strongly damping wave equation. Thus Section 4 is dedicated to
the strongly damped wave equation and to the well-posedness of this equation in a weak
sense for mixed boundary conditions using the Galerkin method as in Evans [17]. A key point
is the Poincaré inequality which we update for our case in Subsection 2.4. To obtain more
regular solutions, we work in a subspace of H1(Ω) defined by the domain of the Laplacian in
the sense of L2 or Lp. In particular, it means that in the absence of H2-regularity of a weak
solution u from H1 it is possible to ensure that ∆u ∈ L2 or Lp. This additional information
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is crucial to be able to treat in Section 5 the weak well-posedness of the Westervelt equation
with mixed boundary conditions on Sobolev admissible domains of R2 or R3. The control
of the nonlinearity of a quadratic type does not allow to consider dimensions with n ≥ 4.
The method of the proof consists in the application of an abstract theorem of Sukhinin [54]
as soon as it is possible to define an isomorphism between the space of the source term and
the space of weak solutions of the linear problem. See also Ref. [16] for a similar application
of Ref. [54], but in the framework of the strong well-posedness of the Cauchy problem for
the Kuznetsov equation.

In Section 6 we consider the question of the approximation of the weak solution of the
Westervelt equation on a domain Ω with a fractal boundary by a sequence of weak solutions
on the domains Ωm with polyhedral boundaries converging to the fractal boundary in the
limit.

Working in the class of (ε,∞) or uniform domains in Rn, we start in sub-Section 6.1
by defining the conditions on Ω and Ωm so that they are all (ε,∞)-domains with a fixed ε
independent on m. In particular it is the case of Ω with a self-similar fractal boundary and
a polyhedral approximation Ωm satisfying a strong open set condition (see Assumption 2
and Theorem 20). This property to be (ε,∞) domain with the same ε is crucial to have
the extension operators from Ωm to Rn with norms independent on m (see sub-Section 6.2
and also [10, Thm 3.4]), what is important to be able to pass to the limit for m → +∞
in the Mosco convergence of the functionals corresponding to the weak formulations of
the Westervelt mixed problem (see Subsection 6.3). In this way Theorem 20 ensures for
a fixed self-similar boundary of a domain in Rn the existence of a polyhedral boundary
sequence of domains with the same ε as Ω itself. This generalize the known two dimensional
approximation results for von Koch mixtures (for the definition see Appendix B) of Refs. [10,
11]. Thus, we introduce the trace and extension properties for the fixed Ω and (Ωm)m∈N∗

defined in Subsection 6.1. In Subsection 6.3 we establish the Mosco convergence for the
functionals coming from the variational formulation for the Westervelt equation, which once
again due to the nonlinear terms holds only in R2 or R3. But the Mosco convergence of the
linear part holds in Rn for all n ≥ 2. Finally we finish by prove that the weak solutions um
on the prefractal approximate domains Ωm converge weakly to the weak solution u on the
fractal domain (see Theorem 25), a method often use in the case of shape optimization [41].
We notice that since our proof does not require any monotone assumption on Ωm our
approximation result works in particular for so called Minkowski fractal domain [18,51,52],
and their 3-dimensional analog.

To summarize, the rest of the paper is organized as follows. Section 2 introduces the gen-
eral functional framework of Sobolev admissible domains on which we update the Poincaré
inequality (see sub-Section 2.4). In Section 3, noticing the well-posedness of the Poisson
mixed problem and the properties of its spectral problem on the Sobolev admissible do-
mains, we introduce the domain of the Laplacian in the sense of L2 and of Lp and generalize
Daners’ estimate for the Sobolev admissible domains (the proof is given for the completeness
in Appendix A). In Section 4 we consider the weak well-posedness firstly of the mixed initial
boundary valued problem for the strongly damped linear wave equation (sub-Section 4.1)
and then of the Westervelt equation (sub-Section 5) both in the L2 and Lp frameworks on
the Sobolev admissible domains. In Section 6 we consider the approximation of the fractal
problem for the Westervelt equation by prefractal problems with Lipschitz boundaries. In
sub-Section 6.1 we define the conditions on Ω and Ωm in Rn such that they are all (ε,∞)-
domains with a fixed ε independing on m. In sub-Section 6.2 we give the main trace and
extension theorems with uniform on m estimates allowing to pass to the limit. In sub-
Section 6.3 we give the Mosco convergence result (Theorem 24) and the weak convergence
of the prefractal weak solutions of the Westervelt equation to the fractal one for domains
in R2 or R3 (Theorem 25). The example of a fractal boundary given by Koch mixtures is
detailed in Appendix B.
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2 Functional analysis framework and notations

2.1 Sobolev extension domains

Let us start to define the Sobolev extension domains:

Definition 1 (W k,p-extension domains). A domain Ω ⊂ Rn is called a W k,p-extension do-
main (k ∈ N∗) if there exists a bounded linear extension operator E : W k,p(Ω) →W k,p(Rn).
This means that for all u ∈ W k,p(Ω) there exists a v = Eu ∈ W k,p(Rn) with v|Ω = u and it
holds

‖v‖Wk,p(Rn) ≤ C‖u‖Wk,p(Ω) with a constant C > 0.

It is known [27] that the results of Calderon and Stein [9, 53] about Sobolev extension
domains for domains with Lipschitz boundaries can be improved by the class of (ε, δ)-
domains, or locally uniform domains, which in the bounded case are simply called uniform
domains [24].

Definition 2 ((ε, δ)-domain [27]). An open connected subset Ω of Rn is an (ε, δ)-domain,
ε > 0, 0 < δ ≤ ∞, if whenever (x, y) ∈ Ω2 and |x − y| < δ, there is a rectifiable arc γ ⊂ Ω
with length ℓ(γ) joining x to y and satisfying

1. ℓ(γ) ≤ |x−y|
ε and

2. d(z, ∂Ω) ≥ ε|x− z| |y−z||x−y| for z ∈ γ.

The (ε, δ)-domains give the optimal class of Sobolev extension domains in R2 (see [27]
Theorem 3), but not in R3, where there exist Sobolev extension domains which are not (ε, δ)-
domains. Recently, this question was solved in terms of n-sets by [23] for W k,p-extension
domains with 1 < p < ∞ and k ∈ N for domains in Rn. To be able to use it as in [4] we
need to introduce the notion of d-sets:

Definition 3 (Ahlfors d-regular set or d-set [30, 31, 55, 57]). Let F be a Borel non-empty
subset of Rn. The set F is is called a d-set (0 < d ≤ n) if there exists a d-measure µ on F ,
i.e. a positive Borel measure with support F (suppµ = F ) such that there exist constants
c1, c2 > 0,

c1r
d ≤ µ(F ∩Br(x)) ≤ c2r

d, for ∀ x ∈ F, 0 < r ≤ 1,

where Br(x) ⊂ Rn denotes the Euclidean ball centered at x and of radius r.

As [30, Prop. 1, p 30] all d-measures on a fixed d-set F are equivalent, it is also possible
to define a d-set by the d-dimensional Hausdorff measure md, which in particular implies
that F has Hausdorff dimension d in the neighborhood of each point of F [30, p.33]. The
definition (3) includes the case d = n, i.e. n-sets. In Rn Lipschitz domains and domains with
more regular boundaries are n−sets and their boundaries are (n − 1)−sets. Using [30, 57],
the (ε, δ) domains in Rn are n−sets:

∃c > 0 ∀x ∈ Ω, ∀r ∈]0, δ[∩]0, 1] λ(Br(x) ∩ Ω) ≥ Cλ(Br(x)) = crn,

where λ(A) denotes the n-dimensional Lebesgue measure of a set A. This property is also
called the measure density condition [23]. Let us notice that an n-set Ω cannot be “thin”
close to its boundary ∂Ω. At the same time [57], if Ω is an (ε, δ)-domain and ∂Ω is a d-set
(d < n), then Ω = Ω ∪ ∂Ω is an n-set. A typical example of a d-set boundary it is the
self-similar fractals as the von Koch fractals.

In what follows we will use one of main results of [23]:

Theorem 1 (Sobolev extension [23]). For 1 < p < ∞, k = 1, 2, ... a domain Ω ⊂ Rn is a
W k
p -extension domain if and only if Ω is an n-set and W k,p(Ω) = Ckp (Ω) (in the sense of

equivalent norms).
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In Theorem 1 the spaces Ckp (Ω), 1 < p < +∞, k = 1, 2, ... are the spaces of fractional
sharp maximal functions,

Ckp (Ω) = {f ∈ Lp(Ω)|

f ♯k,Ω(x) = sup
r>0

r−k inf
P∈Pk−1

1

λ(Br(x))

∫

Br(x)∩Ω

|f − P |dy ∈ Lp(Ω)}

with the norm ‖f‖Ck
p(Ω) = ‖f‖Lp(Ω)+ ‖f ♯k,Ω‖Lp(Ω) and with the notation Pk−1 for the space

of polynomials on Rn of degree less or equal k − 1.
From [27] and [23] we directly have [4]

Corollary 1. Let Ω be a bounded finitely connected domain in R2 and 1 < p <∞, k ∈ N∗.
The domain Ω is a 2-set with W k

p (Ω) = Ckp (Ω) (with norms’ equivalence) if and only if Ω is
an (ε, δ)-domain and its boundary ∂Ω consists of a finite number of points and quasi-circles.

2.2 Trace operator

Once we know the optimal class of the Sobolev extension domains, we need to define the
trace operator on the boundaries of these domains:

Definition 4 (Trace [30]). For an arbitrary open set Ω of Rn the trace operator Tr is defined
for u ∈ L1

loc(Ω) by

Tru(x) = lim
r→0

1

λ(Ω ∩Br(x))

∫

Ω∩Br(x)

u(y) dλ.

The trace operator Tr is considered for all x ∈ Ω for which the limit exists.

By [30, 57] it is known (see also [4, 50]) that, if ∂Ω is a d-set with a positive Borel d-
measure µ with suppµ = ∂Ω, the limit in Definition 4 exists µ-a.e. for x ∈ ∂Ω. In addition it
is possible to define the trace operator as a linear continuous operator from a Sobolev space
on Ω to a Besov space on ∂Ω which is its image, i.e. there exists the right inverse extension
E∂Ω→Ω operator and Tr(E∂Ω→Ωu) = u ∈ Im(Tr). We don’t give more details for the trace
on a d-set, since we are interesting here in a generalization of these results for measures µ
with a support on ∂Ω which are not necessary d-dimensional.

More precisely, in what follows we consider a Borel measure µ on Rn with suppµ = F
and say as in [28, Section 1] that µ satisfies the Ds-condition for an exponent 0 < s ≤ n if
there is a constant cs > 0 such that

µ(Bkr(x)) ≤ csk
sµ(Br(x)), x ∈ F, r > 0, k ≥ 1, 0 < kr ≤ 1. (2)

In addition, we say that µ satisfies the Ld-condition for an exponent 0 ≤ d ≤ n if for some
constant c > 0 it holds

µ(Bkr(x)) ≥ cdk
dµ(Br(x)), x ∈ F, r > 0, k ≥ 1, 0 < kr ≤ 1. (3)

We also introduce so called the normalization condition

c1 ≤ µ(B1(x)) ≤ c2, x ∈ F, (4)

where c1 > 0 and c2 > 0 are constants independent of x.
Combining (2) and (4) one can find a constant c > 0 such that

µ(Br(x)) ≥ c rs, x ∈ F, 0 < r ≤ 1, (5)

what implies dimH F ≤ s, where dimH F denotes the Hausdorff dimension of F . Similarly
(3) and (4) yield a constant c′ > 0 such that

µ(Br(x)) ≤ c′ rd, x ∈ F, 0 < r ≤ 1, (6)
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hence dimH F ≥ d. Moreover, (2) implies the doubling condition

µ(B2r(x)) ≤ c µ(Br(x)), x ∈ F, 0 < r ≤ 1/2,

where c > 0 is a situable constant, [28, Section 1].
If a Borel measure µ with support F satisfies (5) and (6) with s = d for some 0 < d ≤ n,

then, according to Definition 3, µ is a d-measure and F is a d-set. The same fact follows for
a measure µ satisfying (2), (3) and (4) with d = s. Otherwise, we consider measures, which
by (5) and (6) satisfy for some constants c > 0 and c′ > 0

c rs ≤ µ(Br(x)) ≤ c′ rd, x ∈ F, 0 < r ≤ 1. (7)

For this general measure µ supported on a closed subset F ⊂ Rn it is possible thanks
to [28] to define the corresponding Lebesgue spaces Lp(F, µ) and Besov spaces Bp,pβ (F, µ)
on closed subsets F ⊂ Rn in a such way that we have the following theorem [50]

Theorem 2. Let 0 ≤ d ≤ n, d ≤ s ≤ n, s > 0, 1 ≤ p ≤ +∞,

n− d

p
< β < 1 +

n− s

p
, (8)

and let F ⊂ Rn be a closed set which is the support of a Borel measure µ satisfying (2), (3)
and (4).

Then, considering the Besov space Bp,pβ (F, µ) on F , defined as the space of µ-classes of
real-valued functions f on F such that the norm

‖f‖Bp,p

β
(F,µ) :=

‖f‖Lp(F,µ)
+

(

∞
∑

ν=0

2ν(β−
n
p
)

∫ ∫

|x−y|<2−ν

|f(x)− f(y)|p
µ(B(x, 2−ν))µ(B(y, 2−ν))

µ(dy)µ(dx)

)1/p

is finite, the following statements hold:

(i) TrF is a continuous linear operator from W β,p(Rn) onto Bp,pβ (F ), and

‖TrF f‖Bp,p

β
(F ) ≤ cβ ‖f‖Wβ,p(Rn) , f ∈W β,p(Rn), (9)

with a constant cβ > 0 depending only on β, s, d, n, cs, cd c1 and c2.

(ii) There is a continuous linear extension operator EF : Bp,pβ (F ) → W β,p(Rn) such that

TrF (EF f) = f for f ∈ Bp,pβ (F ).

Theorem 2 is a particular case of [28, Theorem 1].
The spaces Bp,pβ (F, µ) are Banach spaces, while B2,2

β (F, µ) are Hilbert spaces, and their
corresponding scalar product is denoted by 〈·, ·〉B2,2

β
(F,µ).

A priori the definition of Bp,pβ (F, µ) depends on both F and µ. However, it was shown in
[28, Section 3.5] that for two different measures µ1 and µ2 satisfying hypotheses of Theorem 2
and with common support F , if f ∈ Bp,pβ (F, µ2), then f can be altered on a set with µ2-

measure zero, in such a way that f becomes a function in Bp,pβ (F, µ1). In other words, also

by Theorem 2, the spaces B2,2
β (F, µ1) and Bp,pβ (F, µ2) are equivalent. Thus, we simplify the

notations and instead of Bp,pβ (F, µ) simply write Bp,pβ (F ).

Example 3. Let us notice [28] that if F is a d-set with 0 < d ≤ n as defined in Definition 3,
then µ = md satisfies (2), (3) and (4) and hence it is possible to apply Theorem 2. The
restriction on β in Theorem 2 becomes 0 < α < 1 with α = β − n−d

p . Consequently, the

space Bp,pβ (F ) is equivalent to the Besov space Bp,pα (F ) with 0 < α < 1 (see [30] and [50]).
The definition of the Besov space Bp,pα (F ) on a closed d-set F can be found, for instance, in
Ref. [30] p.135.
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Example 4. For d = n − 1, the trace space of H1, as it also mentioned in [6], is given by

the Besov space with α = 1
2 and also β = 1 by Theorem 2 which coincide with H

1
2 :

B2,2
1 (F ) = B2,2

1
2

(F ) = H
1
2 (F )

as usual in the case of the classical results [40,43] for Lipschitz boundaries ∂Ω = F .

Example 5. If we apply Theorem 2 for H1(Rn) we obtain the image of the trace equal to
the Hilbert space B2,2

1 (F ) with the restrictions

n ≥ s ≥ d > n− 2 ≥ 0.

By the last example we see that in the case of W 1,p (i.e. the Sobolev space with k = 1)
and thus in particular in the case of H1, it is formally possible to consider d sets with
n − 2 < d < n, but there are no sense or simply impossible to consider a boundary of a
bounded domain of dimension n− 2 < d < n− 1. Hence, in what follows in the case when
F is a boundary of a domain we consider only the non degenerate case with d ≥ n− 1 > 0.

2.3 Sobolev admissible domains

Using the framework of [4] we follow [50] for taking in the consideration more general bound-
aries and define

Definition 5 (Sobolev admissible domain). Let 1 < p <∞ and k ∈ N∗ be fixed. A domain
Ω ⊂ Rn is called a Sobolev admissible domain if it is an n-set, such that W k

p (Ω) = Ckp (Ω)

as sets with equivalent norms (hence, Ω is a W k
p -extension domain), with a closed boundary

∂Ω which is the support of a Borel measure µ satisfying the conditions of Theorem 2 with
0 < n− 1 ≤ d ≤ s < n.

Example 6. An example of a Sobolev admissible domain could be a bounded domain of Rn

with a boundary ∂Ω equal to a finite disjoint union of parts Γj which are dj-sets respectively
for n − 1 ≤ dj < n (j = 1, . . . ,m). For instance it is the case of a three-dimensional
cylindrical domain constructed on a base of two-dimensional domain with a d-set boundary
as considered for the Koch snowflake base in [13,38].

We summarize now useful in what follows results (initially developed in the framework
of d-set boundaries in [4]) on Sobolev admissible domains starting by the following trace
theorem

Theorem 7 (Traces and extensions). Let Ω be a Sobolev admissible domain in Rn, 1 <
p < +∞, k ∈ N∗ be fixed and β defined in (8). Then the following trace operators (see
Definition 4)

1. Tr : W β,p(Rn) → Bp,pβ (∂Ω),

2. TrΩ :W k,p(Rn) →W k,p(Ω),

3. Tr∂Ω :W 1,p(Ω) → Bp,p1 (∂Ω)

are linear continuous and surjective with linear bounded right inverse, i.e. extension, oper-
ators E : Bp,pβ (∂Ω) →W β,p(Rn), EΩ :W k,p(Ω) →W k,p(Rn), E∂Ω : Bp,p1 (∂Ω) →W 1,p(Ω).

Proof. It is a direct corollary of Theorems 1 and 2, noticing that, since d ≥ n − 1, the
interval of suitable β, given by ]n−dp , 1 + n−s

p [, includes as a subset ] 1p , 1] for all p > 1, and
in addition the limit regularity for β can be estimated by

1 < 1 +
n− s

p
≤ 1 +

1

p
< 2.
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It is also important to be able to integrate by parts:

Proposition 1 (Green formula). [4, 37, 50] Let Ω be a Sobolev admissible domain in Rn

(n ≥ 2). Then for all u, v ∈ H1(Ω) with ∆u ∈ L2(Ω) it holds the Green formula

〈∂u
∂n

, T rv〉((B2,2
1 (∂Ω))′,B2,2

1 (∂Ω)) :=

∫

Ω

v∆u dx+

∫

Ω

∇u∇v dx,

where (B2,2
1 (∂Ω))′ is the dual space of B2,2

1 (∂Ω).

In what follows we also use the generalization of Rellich-Kondrachov theorem on Sobolev
extension domains [4]:

Theorem 8 (Sobolev’s embeddings). Let Ω ⊂ Rn be an n−set with W k,p(Ω) = Ckp (Ω),
1 < p < +∞, k, l ∈ N∗. Then there hold the following compact embeddings

1. W k+l,p(Ω) ⊂⊂W l,p(Ω),

2. W k,p(Ω) ⊂⊂ Lqloc(Ω), or W k,p(Ω) ⊂⊂ Lq(Ω) if Ω is bounded,

with q ∈ [1,+∞[ if kp = n, q ∈ [1,+∞] if kp > n, and with q ∈
[

1, pn
n−kp

[

if kp < n.

Moreover if kp < n we have the continuous embedding

W k,p(Ω) →֒ L
pn

n−kp (Ω).

In particular it holds [4, 50]

Proposition 2. Let Ω be a bounded Sobolev admissible domain in Rn with a compact bound-
ary ∂Ω. Then

1. H1(Ω) ⊂⊂ L2(Ω);

2. Tr : H1(Ω) → L2(∂Ω) is compact;

3. ‖u‖H1(Ω) is equivalent to ‖u‖Tr =
(∫

Ω
|∇u|2dx+

∫

∂Ω
|Tru|2dµ

)
1
2 .

2.4 Poincaré inequality

As it is known that the boundary regularity does not important to have the Poincaré in-
equality in W 1,p

0 (Ω) spaces, it also holds on bounded (at least in one direction) Sobolev
admissible domains:

Theorem 9 (Poincaré inequality). Let Ω ⊂ Rn with n ≥ 2 be a bounded (at least in one
direction) Sobolev admissible domain. For all u ∈ W 1,p

0 (Ω) with 1 ≤ p < +∞, there exists
C > 0 depending only on Ω, p and n such that

‖u‖Lp(Ω) ≤ C‖∇u‖Lp(Ω).

Therefore the semi-norm ‖.‖W 1,p
0 (Ω), defined by ‖u‖W 1,p

0 (Ω) := ‖∇u‖Lp(Ω), is a norm which

is equivalent to ‖.‖W 1,p(Ω) on W 1,p
0 (Ω).

Moreover, if Ω is bounded, for all u ∈ W 1,p(Ω) there exists C > 0 depending only on Ω,
p and n such that

∥

∥

∥

∥

u− 1

λ(Ω)

∫

Ω

u dλ

∥

∥

∥

∥

Lp(Ω)

≤ C‖∇u‖Lp(Ω).

Proof. The result for u ∈ W 1,p
0 (Ω) comes from the boundness of Ω. The result for u ∈

W 1,p(Ω) comes from the compactness of the embedding W 1,p(Ω) ⊂⊂ Lp(Ω) from Theorem 8
and following for instance the proof in Ref. [17] (see section 5.8.1 Theorem 1).
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a) b)

Γ

Γ Γ∗

Ω

Ω

Ω∗

Ω∗

V

Figure 1: Illustration for two possible cases treated in Theorem 10. The case a) corresponds
to the case Γ = Γ∗ ⊂ ∂Ω∩ ∂Ω∗ and the case b) to the case when Γ and Γ∗ are the same the
starting and the ending points. Each time Ω is the dots-filled area.

We introduce the space VΓ(Ω) for a domain Ω with a non trivial part of boundary Γ ⊂ ∂Ω
(i.e. λn−1(Γ) > 0):

VΓ(Ω) := {u ∈ H1(Ω)| TrΓu = 0}. (10)

Let us give two results on the Poincaré’s inequality on (ε, δ)-domain which we use in
Section 6.

Theorem 10. Let Ω ⊂ Ω∗ ⊂ Rn be two bounded (ε, δ)-domains (uniform domains) such
that either

Γ = Γ∗ ⊂ ∂Ω ∩ ∂Ω∗ with λn−1(Γ) > 0,

or
Γ ⊂ ∂Ω, Γ∗ ⊂ ∂Ω∗ with ∂Γ = ∂Γ∗

and Γ∪Γ∗ defines the boundary of an open bounded set V (∂V = Γ∪Γ∗) which V ⊂ Ω∗ \Ω
(see Fig. 1). Then it holds the Poincaré inequality for all u ∈ VΓ(Ω)

‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω)

with C depending only on ε, δ and the constant of the Poincaré inequality on VΓ∗(Ω∗).

Proof. By Theorem 9 the Poincaré inequality holds on VΓ(Ω). Let us consider the following
space

u ∈W (Ω) := {u ∈ D′(Ω)| ‖∇u‖L2(Ω) < +∞}.
If u ∈ VΓ(Ω) then obviously u ∈ W (Ω). In addition, according to Ref. [27] (see also
Refs. [5, 49]) W (Ω) admits a linear continuous extension to W (Rn), denoted by Λ, whose
norm only depends of ε, δ and of n:

‖∇Λu‖L2(Rn) ≤ C(ε, δ, n)|‖∇u‖L2(Ω)

and, as a consequence,

‖∇Λu|Ω∗‖L2(Ω∗) ≤ C(ε, δ, n)|‖∇u‖L2(Ω).

Let us start to consider the first case corresponding to the point a) on Figure 1. By the
definition of the extension Λu = u on Ω, so

TrΓΛu|Ω∗ = TrΓu = 0.

Thus we can consider Λu|Ω∗ ∈ VΓ(Ω
∗) and by the Poincaré inequality on VΓ(Ω

∗) we have

‖Λu|Ω∗‖L2(Ω∗) ≤ C(Ω∗)‖∇Λu|Ω∗‖L2(Ω∗).

9



To conclude we just notice that, as Ω and Ω∗ are bounded, it holds

‖u‖L2(Ω) ≤ ‖Λu|Ω∗‖L2(Ω∗).

In the case b) of Figure 1 we take v defined on Ω∗ such that

v|Ω∗\V = Λu|Ω∗\V and v|V ∪Γ = 0.

Then v ∈ VΓ∗(Ω∗) and
‖∇v‖L2(Ω∗) ≤ C(ε, δ, n)|‖∇u‖L2(Ω).

By the Poincaré inequality on VΓ∗(Ω∗) we have

‖v‖L2(Ω∗) ≤ C(Ω∗)‖∇v‖L2(Ω∗)

and as
‖u‖L2(Ω) ≤ ‖v‖L2(Ω∗),

this finishes the proof.

3 Remarks on the Poisson equation with the mixed bound-

ary conditions

We start now to apply the introduced framework of Sobolev admissible domains for the
mixed boundary valued problem for the Poisson equation. These preliminary discussion is
crucial for the properties of the waves problems constructed on it.

Let Ω be a bounded Sobolev admissible domain in Rn. In all the sequel of this article
we suppose that its boundary ∂Ω = ΓD ∪ ΓN ∪ ΓR is a disjoint union of three types of
boundaries (corresponding to the Dirichlet, the Neumann and the Robin boundary condi-
tions respectively) with the non degenerate part ΓD: mn−1(ΓD) > 0, where mn−1 is the
n− 1 dimensional Hausdorff mesure. We denote by V (Ω) the Hilbert subspace of H1(Ω) (in
Subsection 2.4 it corresponds to VΓD

(Ω), but here we simplify the notation)

V (Ω) = {u ∈ H1(Ω)| Tru|ΓD
= 0} (11)

endowed with the following norm

‖u‖2V (Ω) =

∫

Ω

|∇u|2 dx+ a

∫

ΓR

|Tr∂Ωu|2dµ, (12)

associated to the inner product

(u, v)V (Ω) =

∫

Ω

∇u ∇v dx+ a

∫

ΓR

Tr∂Ωu Tr∂Ωvdµ.

Thanks to Proposition 2 the norm ‖.‖V (Ω) is equivalent to the usual norm ‖.‖H1(Ω) on V (Ω).
On Ω we consider the mixed boundary problem for the Poisson equation with a fixed

a > 0














−∆u = f in Ω,
u = 0 on ΓD,
∂
∂nu = 0 on ΓN ,
∂
∂nu+ au = 0 on ΓR

(13)

in the following weak sense:

∀v ∈ V (Ω) (u, v)V (Ω) = (f, v)L2(Ω). (14)
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Then (see for more details [4]) for all f ∈ L2(Ω) and a > 0 the Poisson problem (13) has
a unique weak solution u ∈ V (Ω). Furthermore, the mapping f 7→ u is a compact linear
operator from L2(Ω) to V (Ω) with the estimate

‖u‖V (Ω) ≤ C(Ω)‖f‖L2(Ω).

Thanks to the compactness by Proposition 2 of the trace Tr : V (Ω) → L2(∂Ω) and of the
inclusion V (Ω) → L2(Ω) and by the assumption that a > 0 is real (thus −∆ is auto-adjoint
positive operator), we have the usual properties of the spectral problem associated with (13):

Theorem 11 (Spectral Poisson mixed problem). Let Ω be a bounded Sobolev admissible
domain in Rn (n ≥ 2) and a > 0. Let λ ∈ C be an eigenvalue of the Poisson problem (13)
associated to the eigenfunction u, which is a weak solution of the following variational for-
mulation

∀v ∈ V (Ω)

∫

Ω

∇u∇v + a

∫

ΓR

Tr∂Ωu Tr∂Ωvdµ =

∫

Ω

λuv. (15)

Then there exists a countable number of strictly positive eigenvalues of finite multiplicity,
which can be ordered in a sequence

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · ·λk ≤ . . . , λk → +∞ when k → +∞

and the corresponding eigenfunctions (wk)k∈N∗ ⊂ V (Ω) form an orthonormal basis of L2(Ω).

Remark 1. It is important to work in the class of Sobolev admissible domains to ensure
the compactness of the embedding of V (Ω) into L2(Ω). But in the case ∂Ω = ΓD it is
possible to consider arbitrary domains, since H1

0 (Ω) → L2(Ω) is compact independently on
the regularity of ∂Ω.

As Ω is a bounded domain, we have Lp(Ω) →֒ L2(Ω) if p ≥ 2, and consequently it is also
possible to take f ∈ Lp(Ω) and consider the weak solutions in V (Ω) in the sense of (14).
Therefore, there is the following generalization of the domain of the Laplacian in the Lp

framework:

Definition 6 (Laplacian domain in Lp). Let Ω be a Sobolev admissible domain and p ≥ 2.
We define

−∆ : D(−∆) ⊂ V (Ω) → Lp(Ω)

u 7→ −∆u

with the domain

D(−∆) = {u ∈ V (Ω)| −∆u ∈ Lp(Ω), i.e. ∃f ∈ Lp(Ω) such that it holds (14)}.

Then the operator −∆ is linear self-adjoint and coercive in the sense that

∀u ∈ D(−∆) (−∆u, u)L2(Ω) = (u, u)V (Ω),

and we use the notation ‖u‖D(−∆) = ‖∆u‖Lp(Ω) for u ∈ D(−∆).

The Lp-framework for the Poisson problem (13) is in particular important for the study
of the continuity of its solution [14]. We directly update the result from Ref. [14] for the
Sobolev admissible domains with an (n− 1)−set boundary:

Theorem 12. Let p > n, a > 0 and Ω be a Sobolev admissible domain in Rn (n = 2 or 3)
with an (n− 1)−set boundary ∂Ω. Let u be the unique solution of the Poisson problem (13)
for f ∈ Lp(Ω). Then

‖u‖L∞(Ω) ≤ Cmax

(

1,
1

a

)

‖f‖Lp(Ω).
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Moreover, for all Sobolev admissible domains we improve Theorem 12 using the following
result:

Proposition 3. Let Ω be a Sobolev admissible domain in Rn (n = 2 or 3), then for all
u ∈ V (Ω) the following estimate holds

‖u‖L6(Ω) ≤ C‖∇u‖L2(Ω), (16)

where C > 0 is a constant depending only on Ω. In addition, if Ω is an (ε, δ)−domain, then
C > 0 depends only on ε, δ, n and the constant in the Poincaré inequality on V (Ω).

Proof. If Ω is a Sobolev admissible domain, then by Theorem 8, as n = 2 or 3, we have by
the Sobolev embedding for u ∈ V (Ω)

‖u‖L6(Ω) ≤ C‖u‖H1(Ω)

and by the Poincaré inequality on V (Ω)

‖u‖H1(Ω) ≤ C(Ω)‖∇u‖L2(Ω).

Now let us now treat the case when Ω is a (ε, δ)−domain. According to Ref. [27], as
Ω is an (ε, δ)-domain, we have a continuous extension operator EΩ : H1(Ω) → H1(Rn),
whose norm depends only on ε, δ and on n. As n = 2 or 3 we have the continuous Sobolev
embedding H1(Rn) →֒ L6(Rn), whose norm only depends on n. Considering the continuous
restriction (of norm equal to 1) L6(Rn) →֒ L6(Ω), we finally have the estimate

‖u‖L6(Ω) ≤ C‖u‖H1(Ω)

where C depends only on ε, δ and on n. But u ∈ V (Ω), so the application of the Poincaré
inequality allows to conclude.

Thus we prove the general case

Theorem 13. Let Ω be a Sobolev admissible domain in Rn (n = 2 or 3), a > 0, f ∈ L2(Ω)
and u ∈ V (Ω) be the weak solution of (13) in the sense of the variational formulation 14.
Then it holds the estimate

‖u‖L∞(Ω) ≤ C‖f‖L2(Ω),

where the constant C > 0 depends only on Ω. If in addition Ω is an (ε, δ)−domain, then
the constant C depends only on ε, δ, n and on the constant from the Poincaré inequality on
V (Ω), but not on a.

The proof is a simplified variant of the proof of Theorem 4.1 of Ref. [14]. It is given for
the completeness of the article in Appendix A.

4 Well posedness of the damped linear wave equation

4.1 Well posedness and L
2 regularity

In this subsection we suppose that Ω is a Sobolev admissible domain in Rn on which we
consider the following linear strongly damped wave equation in the previous framework of
mixed boundary conditions:























utt − c2∆u− ν∆ut = f on ]0,+∞[×Ω,
u = 0 on ΓD × [0,+∞[,
∂
∂nu = 0 on ΓN × [0,+∞[,
∂
∂nu+ au = 0 on ΓR × [0,+∞[,
u(0) = u0, ut(0) = u1 in Ω.

(17)

We are looking for weak solutions of system (17) in the following sense:
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Definition 7. For f ∈ L2([0,+∞[;L2(Ω)), u0 ∈ V (Ω), and u1 ∈ L2(Ω), where V (Ω) defined
in (10), we say that a function u ∈ L2([0,+∞[;V (Ω)) with ∂tu ∈ L2([0,+∞[;V (Ω)) and
∂2t u ∈ L2([0,+∞[;H−1(Ω) is a weak solution of problem (17) if for all v ∈ L2([0,+∞[;V (Ω))

∫ +∞

0

〈utt, v〉(H−1(Ω),V (Ω)) + c2(u, v)V (Ω) + ν(ut, v)V (Ω)ds =

∫ +∞

0

(f, v)L2(Ω)ds, (18)

with u(0) = u0 and ut(0) = u1.

To prove the existence and uniqueness of a such weak solution we use the Galerkin
method and follow [17, p. 379–387] using the fact that the Poincaré inequality stay true
on V (Ω). To perform the Galerkin method we select functions wk = wk(x), k ∈ N∗ as the
normalized eigenfunctions of the operator −∆ on Ω with the mixed boundary conditions,
defined in Theorem 11:

−∆wk = λkwk in a weak sense as ∀w ∈ V (Ω) (wk, w)V (Ω) = λk(wk, w)L2(Ω)

and define then for a fixed m ∈ N∗ the finite approximation of u by

um(t) :=

m
∑

i=1

dkm(t)wk, (19)

where the coefficients dkm(t) ∈ H2(]0,+∞[), t ≥ 0, k = 1, ...,m satisfy

dkm(0) = (u0, wk)L2(Ω) ∈ R k = 1, ...,m, (20)

∂td
k
m(0) = (u1, wk)L2(Ω) ∈ R k = 1, ...,m (21)

and um for t ≥ 0, k = 1, ...,m solves

(∂2t um, wk)L2(Ω) + c2(um, wk)V (Ω) + ν(∂tum, wk)V (Ω) = (f, wk)L2(Ω). (22)

As the rest of the proof is standard and repeat a lot [17] it is omitted, but can be found
in [15]. Let us focus now on the regularity of such solution. For the weak solution of the
damped wave equation problem (17), satisfying Definition 7, we have the following regularity
results (for the proof see [15]):

Theorem 14. Let Ω be a Sobolev admissible bounded domain in Rn (n ≥ 2). Then there
exists the unique weak solution u of the strongly damped wave equation problem (17) in the
sense of Definition 7. Moreover,
(i). in addition u has the following regularity

u ∈ L∞([0,+∞[;V (Ω)), ∂tu ∈ L∞([0,+∞[;L2(Ω))

and satisfies the estimate

ess sup
t≥0

(‖u(t)‖V (Ω) +‖∂tu(t)‖L2(Ω)) +

∫ +∞

0

‖∂tu(s)‖V (Ω) ds+ ‖∂2t u‖L2([0,+∞[;H−1(Ω))

≤ C(‖f‖L2([0,+∞[;L2(Ω)) + ‖u0‖H1
0 (Ω) + ‖u1‖L2(Ω)).

(ii). If the initial data are taken more regular

u0 ∈ D(−∆), u1 ∈ V (Ω),

where D(−∆) comes from Definition 6, then in addition to the previous point the weak
solution satisfies

∂tu ∈ L∞([0,+∞[;V (Ω)), ∂2t u ∈ L2([0,+∞[;L2(Ω)),

∆u ∈ L∞([0,+∞[;L2(Ω)) ∩ L2([0,+∞[;L2(Ω)),

∆∂tu ∈ L2([0,+∞[;L2(Ω))
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with the estimates

ess sup
t≥0

(‖∆u(t)‖2L2(Ω) +‖∂tu(t)‖2V (Ω)) +

∫ ∞

0

‖∆∂tu(s)‖2L2(Ω) ds

≤ C(‖f‖2L2([0,+∞[;L2(Ω)) + ‖∆u0‖2L2(Ω) + ‖u1‖2V (Ω)) (23)

and
∫ +∞

0

‖∆u(s)‖2L2(Ω) ds ≤ C(‖f‖2L2([0,+∞[;L2(Ω)) + ‖∆u0‖2L2(Ω) + ‖u1‖2V (Ω)), (24)

where the constants C > 0 depend only on Ω and more precisely of the constant in the
Poincaré inequality on V (Ω).

An important corollary of this theorem is that it is possible to define a functional
space of solutions of (18) for the homogeneous initial data which is isomorph to the space
L2([0,+∞[;L2(Ω)) of the source terms.

Theorem 15. For Ω a Sobolev admissible bounded domain in Rn let

X := H1([0,+∞[;D(−∆)) ∩H2([0,+∞[;L2(Ω)) (25)

and X0 = {u ∈ X |u(0) = 0, ∂tu(0) = 0}, where D(−∆) comes from Definition 6 with
p = 2. Then there exists a unique weak solution u ∈ X0 in the sense of formulation (18) of
the boundary-valued problem (17) with u0 = u1 = 0 if and only if f ∈ L2([0,+∞[;L2(Ω)).
Moreover the following estimate holds

‖u‖X ≤ C‖f‖L2([0,+∞[;L2(Ω)),

where C > 0 depends only on Ω.

Proof. Theorem 14 gives us directly one side of the equivalence. If f ∈ L2([0,+∞[;L2(Ω)),
u0 = 0 and u1 = 0 there exists a unique u weak solution of (18) with ∂2t u, ∆u and ∆∂tu in
L2([0,+∞[;L2(Ω)), along with the estimates (23) and (24) which implies u ∈ X0 with the
desired estimate.

Now let us consider a weak solution u ∈ X0 satisfying Definition 7. By linearity u is
unique and, by regularity of u, from (18) we have f ∈ L2([0,+∞[;L2(Ω)).

4.2 L
p regularity

For p ≥ 2 we have Lp(Ω) ⊂ L2(Ω) and by Theorem 11 the spectrum of −∆ in Lp(Ω)
is contained in R∗

+ as it is contained in the spectrum of −∆ in L2(Ω). We give a result
on maximal Lp regularity which is a direct application of Theorem 4.1 in Ref. [12] to the
linear system for the strongly damped wave equation with mixed boundary conditions and
homogeneous initial data (17):

Theorem 16. For p ≥ 2 and T > 0, there exits a unique weak solution u ∈ Xp
0 with

Xp :=W 1,p([0, T ];D(−∆)) ∩W 2,p([0, T ];Lp(Ω)) (26)

and
Xp

0 := {u ∈ Xp|u(0) = 0, ∂tu(0) = 0}
of the mixed boundary-valued problem (17) with u0 = u1 = 0 if and only if f ∈ Lp([0, T ];Lp(Ω)).
Moreover we have the estimate

‖u‖Xp ≤ C‖f‖Lp([0,T ];Lp(Ω)).

It is a weak solution in the sense that the operator −∆ is defined in accordance with Defini-
tion 6, which defines the weak solution of the Poisson problem with mixed boundary condi-
tions.
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Proof. This is a result of maximal Lp regularity. By Theorem 4.1 in Ref. [12] as −∆ is a
sectorial operator on Lp(Ω) which admits a bounded RH∞ functional calculus of angle β
with 0 < β < π

2 then system (17) considered with u0 = u1 = 0 has Lp-maximal regularity. It
is an application of a general theorem using UMD spaces. UMD spaces have been introduced
in Ref. [8]. By Ref. [36], if A is a sectorial operator on an UMD space X with property (α)
and admits a bounded H∞ calculus of angle β, then A already admits a RH∞ calculus of
angle β. For the definition of Banach spaces having property (α) see Ref. [48]. For p > 1,
Lp(Ω) is an UMD space having property (α) according to Ref. [12, p. 752].

Thanks to [2, Thm. 5.6], the operator −∆ is a sectorial operator on Lp(Ω) which admits
a bounded H∞ calculus of angle β with β < π

2 . The key point according to Theorem 11,
holding on Sobolev admissible domains, is that we have for z ∈ C such that |arg(z)| < π

2

‖ez∆‖L2→L2 ≤ e−λ1|z|

with λ1 > 0. The estimate in Theorem 16 is a consequence of the closed graph theorem.

Now we consider the non-homogeneous damped wave problem (17):

Theorem 17. For p ≥ 2 and T > 0, let Xp be defined by (26) and moreover let

(Lp(Ω),D(−∆))p = {(u0, u1) ∈ Lp(Ω)×Lp(Ω)| ∃u ∈ Xp with u(0) = u0, ut(0) = u1}. (27)

There exits a unique weak solution u ∈ Xp of the damped wave equation problem (17) if
and only if f ∈ Lp([0, T ];Lp(Ω)) and (u0, u1) ∈ (Lp(Ω),D(−∆))p. Moreover we have the
estimate

‖u‖Xp ≤ C(‖f‖Lp([0,T ];Lp(Ω)) + ‖(u0, u1)‖(Lp(Ω),D(−∆))p).

Proof. For (u0, u1) ∈ (Lp(Ω),D(−∆))p, we have by definition w ∈ Xp such that

w(0) = u0 and wt(0) = u1.

In particular,
∂2tw − c2∆w − ν∆∂tw ∈ Lp([0, T ];Lp(Ω)).

So in the sense of Theorem 16 if we take w̃ the unique weak solution in Xp of







∂2t w̃ − c2∆w̃ − ν∆∂tw̃ = f − (∂2tw − c2∆w − ν∆∂tw) on [0, T ]× Ω,
∂
∂n w̃ + aw̃ = 0 on [0, T ]× ∂Ω,
w̃(0) = ∂tw̃(0) = 0 in Ω,

we have by the linearity u = w+ w̃ which is the weak solution of the damped wave equation
problem (17). The unicity comes from the unicity of the solution when u0 = u1 = 0 by
Theorem 16. The other side of the equivalence comes directly from the definition of Xp and
(Lp(Ω),D(−∆))p.

The estimate is a consequence of the closed graph theorem.

Remark 2. Since
D(−∆)×D(−∆) →֒ (Lp(Ω),D(−∆))p

we have a similar estimate in Theorem 17 for the solutions of the damped wave equa-
tion problem (17), when (u0, u1) ∈ D(−∆) × D(−∆) replacing ‖(u0, u1)‖(Lp(Ω),D(−∆))p)
by ‖u0‖D(−∆) + ‖u1‖D(−∆).
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5 Well-posedness of the Westervelt equation

In this section Ω is a bounded admissible domain in R2 or R3.
To be able to give a sharp estimate of the smallness of the initial data and in the same

time to estimate the bound of the corresponding solution of the Kuznetsov equation, we use
the following theorem from Ref. [54]:

Theorem 18. (Sukhinin) Let X be a Banach space, let Y be a separable topological vector
space, let L : X → Y be a linear continuous operator, let U be the open unit ball in X, let
PLU : LX → [0,∞[ be the Minkowski functional of the set LU , and let Φ : X → LX be a
mapping satisfying the condition

PLU
(

Φ(x) − Φ(x̄)
)

≤ Θ(r) ‖x− x̄‖ for ‖x− x0‖ 6 r, ‖x̄− x0‖ ≤ r

for some x0 ∈ X, where Θ : [0,∞[→ [0,∞[ is a monotone non-decreasing function. Set
b(r) = max

(

1−Θ(r), 0
)

for r ≥ 0.
Suppose that

w =

∞
∫

0

b(r) dr ∈]0,∞], r∗ = sup{r ≥ 0| b(r) > 0},

w(r) =

r
∫

0

b(t)dt (r ≥ 0) and g(x) = Lx+Φ(x) for x ∈ X.

Then for any r ∈ [0, r∗[ and y ∈ g(x0) + w(r)LU , there exists an x ∈ x0 + rU such that
g(x) = y.

Remark 3. If either L is injective or KerL has a topological complement E in X such that
L(E ∩ U) = LU , then the assertion of Theorem 18 follows from the contraction mapping
principle [54]. In particular, if L is injective, then the solution is unique.

With the help of Theorem 18 we prove the following global well-posedness result.

Theorem 19. Let Ω be a bounded Sobolev admissible domain in R2 or R3. Assume ν > 0,
R+ = [0,+∞[ and p ≥ 2. Let Xp be the space defined in (26) with T > 0 if p > 2 and
T = +∞ if p = 2. Suppose

u0 ∈ D(−∆) in Lp, u1 ∈ D(−∆) in Lp if p > 2, or u1 ∈ V (Ω) if p = 2

and f ∈ Lp(R+;Lp(Ω)),

and in addition, let C1 be the minimal constant for which the weak solution, in the sense
of (18), u∗ ∈ Xp of the corresponding non homogeneous linear boundary-valued problem (17)
satisfies if p > 2

‖u∗‖Xp ≤ C1(‖f‖Lp(R+;Lp(Ω)) + ‖u0‖D(−∆) + ‖u1‖D(−∆))

and if p = 2 satisfies (in this case C1 = C2

ν where C2 only depends on Ω by the constant in
the Poincaré inequality on V (Ω))

‖u∗‖X2 ≤ C1

ν
(‖f‖L2(R+;L2(Ω)) + ‖u0‖D(−∆) + ‖u1‖V (Ω)).

Then there exists r∗ > 0 such that for all r ∈ [0, r∗[ and all data satisfying if p > 2

‖f‖Lp(R+;Lp(Ω)) + ‖u0‖D(−∆) + ‖u1‖D(−∆)) ≤
1

C1
r
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and if p = 2

‖f‖L2(R+;L2(Ω)) + ‖u0‖D(−∆) + ‖u1‖V (Ω) ≤
ν

C2
r,

there exists the unique weak solution u ∈ Xp of the mixed boundary valued problem for the
Westervelt equation























∂2t u− c2∆u− ν∆∂tu = αu∂2t u+ α(∂tu)
2 + f on [0, T ]× Ω,

u = 0 on ΓD × [0, T ],
∂
∂nu = 0 on ΓN × [0, T ],
∂
∂nu+ au = 0 on ΓR × [0, T ],
u(0) = u0, ∂tu(0) = u1.

(28)

in the following sense: for all φ ∈ L2([0, T ];V (Ω))

∫ T

0

(∂2t u, φ)L2(Ω) + c2(u, φ)V (Ω) + ν(∂tu, φ)V (Ω)ds

=

∫ T

0

α(u∂2t u+ (∂tu)
2 + f, φ)L2(Ω)ds, (29)

with u(0) = u0 and ∂tu(0) = u1. Moreover

‖u‖Xp ≤ 2r.

Proof. For p = 2, T = +∞ u0 ∈ D(−∆) and u1 ∈ V (Ω) and f ∈ L2(R+;L2(Ω)) let us denote
by u∗ ∈ X2 the unique weak solution, existing by Theorem 14, of the linear problem (17) in
the sense of the variational formulation (18).

According to Theorem 15 , X2 = X defined in (25), hence we denote X2
0 := X0 and in

addition take Y = L2[0,+∞[;L2(Ω)). Then by Theorem 15, the linear operator

L : X2
0 → Y, u ∈ X2

0 7→ L(u) := utt − c2∆u− ν∆ut ∈ Y,

is a bi-continuous isomorphism.
Let us now notice that if v is the unique weak solution of the non-linear mixed boundary

valued problem



















vtt − c2∆v − ν∆vt − α(v + u∗)(v + u∗)tt − α[(v + u∗)t]
2 = 0 on [0,+∞[×Ω,

v = 0 on ΓD × [0,+∞[, ∂
∂nv = 0 on ΓN × [0,+∞[,

∂
∂nv + av = 0 on ΓR × [0,+∞[,

v(0) = 0, vt(0) = 0,

(30)

then u = v+u∗ is the unique weak solution of the boundary valued problem for the Westervelt
equation (28). Let us prove using Theorem 18 the existence of a such v ∈ X2

0 , which is the
unique weak solution of (30) in the following sense: for all φ ∈ L2([0,+∞[;V (Ω))

∫ +∞

0

(∂2t v, φ)L2(Ω) + c2(v, φ)V (Ω) + ν(∂tv, φ)V (Ω)ds

=

∫ +∞

0

α((v + u∗)(v + u∗)tt + [(v + u∗)t]
2, φ)L2(Ω)ds

with v(0) = 0 and ∂tv(0) = 0.
We suppose that ‖u∗‖X2 ≤ r and define for v ∈ X2

0

Φ(v) := α(v + u∗)(v + u∗)tt + α[(v + u∗)t]
2.

For w and z in X2
0 satisfying

‖w‖X2 ≤ r and ‖z‖X2 ≤ r,
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we estimate ‖Φ(w)−Φ(z)‖Y by applying the triangular inequality. The key point is that it
appears terms of the form ‖gbtt‖Y and ‖gtbt‖Y with g and b in X2 and we have the estimate

‖gbtt‖Y ≤‖g‖L∞(R+×Ω)‖btt‖Y .

By Theorem 13 which ensures for elements of D(−∆) the inequality ‖g‖L∞(Ω) ≤ C‖∆g‖Lp(Ω),
we have

‖gbtt‖Y ≤C‖g‖L∞(R+;D(−∆))‖b‖X2

and the Sobolev embedding implies

‖gbtt‖Y ≤C‖g‖H1(R+;D(−∆))‖b‖X2

≤B1‖g‖X2‖b‖X2,

with B1 depending only on Ω. Moreover, we have

‖gtbt‖Y ≤
√

∫ +∞

0

‖gt‖L∞(Ω)‖bt‖L2(Ω)ds.

Therefore, again by Theorem 13 we find

‖gtbt‖Y ≤C
√

∫ +∞

0

‖gt‖D(−∆)‖bt‖L2(Ω)ds

≤C‖gt‖L2(R+;D(−∆))‖bt‖L∞(R+;L2(Ω))

≤C‖g‖X2‖bt‖H1(R+;L2(Ω))

also using Sobolev’s embeddings. Finally it holds

‖gtbt‖Y ≤ B2‖g‖X2‖b‖X2

with B2 depending only on Ω. Taking g and b equal to u∗, w, z or w − z, and supposing
that ‖u∗‖X2 ≤ r, ‖w‖X2 ≤ r and ‖z‖X ≤ r, we obtain

‖Φ(w)− Φ(z)‖Y ≤ 8αBr‖w − z‖X2

with B = max(B1, B2) > 0 depending only on Ω.
By the fact that L is a bi-continuous isomorphism, there exists a minimal constant

Cν = C
(

1
ν

)

> 0 (coming from the inequality ‖u‖X ≤ C‖f‖Y for u, a solution of the linear
problem (17) with homogeneous initial data) such that

∀u ∈ X2
0 ‖u‖X2 ≤ Cν‖Lu‖Y .

Hence, for all g ∈ Y
PLU

X2
0

(g) ≤ CνPUY
(g) = Cν‖g‖Y .

Then we find for w and z in X2
0 , such that ‖w‖X2 ≤ r, ‖z‖X2 ≤ r, and also with ‖u∗‖X2 ≤ r,

that
PLU

X2
0

(Φ(w) − Φ(z)) ≤ Θ(r)‖w − z‖X ,

where Θ(r) := 8BCναr. Thus we apply Theorem 18 for
g(x) = L(x) − Φ(x) and x0 = 0. Therefore, knowing that Cν = C0

ν , we have, that for all
r ∈ [0, r∗[ with

r∗ =
1

8BCνα
, (31)
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for all y ∈ Φ(0) + w(r)LUX2
0
⊂ Y with

w(r) = r − 4BCναr
2,

there exists a unique v ∈ 0+ rUX2
0

such that L(v)−Φ(v) = y. But, if we want that v be the
solution of the non-linear Cauchy problem (30), then we need to impose y = 0, and thus to
ensure that 0 ∈ Φ(0)+w(r)LUX2

0
. Since − 1

w(r)Φ(0) is an element of Y and LX2
0 = Y , there

exists a unique z ∈ X0 such that

Lz = − 1

w(r)
Φ(0). (32)

Let us show that ‖z‖2X ≤ 1, what will implies that 0 ∈ Φ(0) + w(r)LUX0 . Noticing that

‖Φ(0)‖Y ≤ α‖u∗tu∗tt‖Y + α‖u∗tu∗t ‖Y
≤ 2αB‖u∗‖2X2 ≤ 2αBr2

and using (32), we find

‖z‖X2 ≤ Cν‖Lz‖Y = Cν
‖Φ(0)‖Y
w(r)

≤ Cν2Bαr

(1− 4CνBαr)
<

1

2
,

as soon as r < r∗.
Consequently, z ∈ UX2

0
and Φ(0) + w(r)Lz = 0.

Then we conclude that for all r ∈ [0, r∗[, if ‖u∗‖2 ≤ r, there exists a unique v ∈ rUX0

such that L(v)−Φ(v) = 0, i.e. the solution of the non-linear Cauchy problem (30). Thanks
to the maximal regularity and a priori estimate following from Theorem 15, there exists a
constant C1 = C1(Ω), such that

‖u∗‖X2 ≤ C1

ν
(‖f‖Y + ‖u0‖D(−∆) + ‖u1‖V (Ω)).

Thus, for all r ∈ [0, r∗[ and ‖f‖Y + ‖u0‖D(−∆) + ‖u1‖V (Ω) ≤ ν
C1
r, the function u =

u∗ + v ∈ X is the unique solution of the Cauchy problem for the Kuznetsov equation and
‖u‖X2 ≤ 2r.

Let us notice that when f = 0 we have

‖u∗‖X2 ≤ C′
1√
ν
(‖u0‖D(−∆) + ‖u1‖V (Ω)).

The case p > 2 and 0 < T < +∞ is essentially the same and thus is omitted. We just replace
L2([0,+∞[;L2(Ω)) by Lp([0, T ];Lp(Ω)). We also use the Theorems 17 and 13 to have the
required estimates following from the fact that for p > 2

W 1,p([0,+∞[) →֒ L∞([0,+∞[).

6 Approximation of the fractal problem for the West-

ervelt equation by prefractal problems with Lipschitz

boundaries

6.1 Uniform domains in Rn with self-similar boundaries and their

polyhedral approximations

In this section we give conditions under which a domain Ω in Rn with piece-wise self-similar
boundary is a uniform domain. Moreover, under our conditions, these domains have natu-
ral polyhedral approximations Ωm which are uniformly (ǫ,∞)-domains, that is, ǫ does not
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depend on m. Our conditions cover the examples of scale-irregular Koch curves [10,11], the
square Koch curve, also called the Minkowski fractal [18, 51, 52], and their n-dimensional
analogs. We do not give the most general assumptions but rather concentrate on the situa-
tions with potential practical applications, such as [41].

Suppose Ω0 is a polyhedron in Rn and K0 is one of its faces. We denote the (n − 2)-
dimensional hypersurface boundary of K0 by ∂(n−2)K0, which is just the union of n − 2-
dimensional faces of K0. A typical example is Ω0 = [0, 1]n is the unite hypercube in Rn

and K0 = [0, 1]n−1 × {0}. In this case ∂(n−2)K0 is the (n − 2)-dimensional hypersurface
boundary of the (n− 1)-dimensional hypercube K0 = [0, 1]n−1 × {0}.

We suppose that polyhedral hypersurfaces Km are defined inductively using a sequence
of iterating function systems of Nm contractive similitudes

(ψi,m)1≤i≤Nm

with contraction factors
(di,m)1≤i≤Nm

by
Km = Φm(K0) := ∪Nm

i=1Ψi,m(K0).

These are standard concepts, which we do not discuss in our paper in detail, are thoroughly
described, for instance, in [1, 19] (see also Appendix B).

Theorem 20 assumes a fractal Self-Similar Face Condition and a strong version of the
Open Set Condition, see Figure 2, that we introduce as follows.

Assumption 1 (Fractal Self-Similar Face). We assume that each Km is a polygonal surface
with (n− 2)-dimensional hypersurface boundary that is the same as the (n− 2)-dimensional
hypersurface boundary of K0.

Assumption 2 (A Strong Open Set Condition). We assume the Open Set Condition for
the sequence Φm is satisfied with two different convex open polygons O $ O′, not depending
on m, such that

∂O ∩K0 = ∂O′ ∩K0 = ∂O ∩ ∂O′ = ∂(n−2)K0.

Theorem 20. If Assumptions 1 and 2 are satisfied, then Ωm and Ω are uniformly exterior
and interior (ǫ,∞)-domains, that is, ǫ does not depend on m.

Proof. By the recent result [5, Theorem 2.15] (see also [5, Appendix A]), it is enough to
prove the interior and exterior NTA conditions with uniform constants. This is proved by
tedious but routine induction arguments outlined below.

By [5, Defintion 2.12], we need to verify the Corkscrew condition [5, Defintion 2.10] and
the Harnack chain condition [5, Defintion 2.12] with constants not depending on m.

The Corkscrew condition, both exterior and interior, is immediately implied by the self-
similarity and the Open Set Condition.

Note that, by the standard decompositions into different scales, it is essentially enough
to consider the case when all contraction factors di,m are equal, that is di,m = d for all i
and m. To verify the Harnack chain condition, assume that x, y ∈ Ωm such that distance
to the boundary of each x and y is comparable to δ1 ∼ dm1 and |x − y| = δ2 ∼ dm2 , where
m ≥ m1 ≥ m2.

We proceed by considering different cases.
To begin with, assume that y is in a 0-cell but not in any 1-cell. In this case we can

apply the following strategy: connect x to the outer boundary of its 1-cell by the Harnack
chains of balls lying in this 1-cell, and connect this Harnack chain to y by a Harnack chain
inside Ω ∩O′ \ Φ1(O). It is routine to verify by induction in m the required bounds on the
diameter and number of balls. This is the crucial observation which is essentially the same
as the main result in Ref. [1], and therefore we omit details of the proof.
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Figure 2: An illustration for the Open Set Condition in the case of the square Koch curve,
also called the Minkowski fractal. The thick dotted line outlines the set O, which is called the
0-cell. The thin dotted lines outlines the open sets in Φ1(O), which are called 1-cells. The
bottom picture illustrates the stronger form of the Open Set Condition used in Theorem 20:
the thin solid lines outline the open sets O′ and Φ1(O′).

If x and y are in the same 1-cell, then the induction argument in m applies.
Therefore it is enough to consider the case when x and y are in different 1-cells. In this

case there are two sub-cases: first, when x and y are not in adjacent 1-cells; second, when x
and y are in adjacent 1-cells. In both these sub-cases we can complete the arguments by the
following strategy: connect each x and y to the outer boundary of their respective 1-cells
by the Harnack chains of balls, and connect these two Harnack chains together inside the
polygonal set Ω∩O′ \Φ1(O). It is routine to verify the bounds on the diameter and number
of balls because the polygonal set Ω ∩ O′ \ Φ1(O) does not depend on m,m1,m2 and thus
has interior angles controlled from below.

If x and y are in the compliment Ωcm, then the same arguments apply with Ω replaced
by Ωc.

Remark 4. The essential arguments in the proof of Theorem 20 are similar to those in
Ref. [1], where the reader can find background and detailed explanations of the techniques.
Our results are stronger because we make more restrictive Assumptions 1 and 2.

Note that in our self-similar case, under Assumptions 1 and 2, one can also verify the
uniform in m (ǫ,∞)-condition by inductively constructing the required twisted conical cylin-
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der, called also the cigar, connecting x and y.
In the two dimensional case there are more straightforward arguments to show that polyg-

onal approximations to a self-similar curve bound uniformly (ε,∞)-domains. Such argu-
ments can be based on the Ahlfors three point condition, see [27, page 73] and [10, Lemma
3.3].

6.2 Trace and extension theorems in the approximation framework

of self similar fractals in Rn

In this subsection we assume the same notation and assumptions as in Subsection 6.1. For
N contraction factors di, i = 1, . . . , N we define

D =
N
∑

i=1

dn−1
i . (33)

With notations w|m = (w1, . . . , wn) for wi ∈ {1, . . .N} and

ψw|m = ψw1 ◦ . . . ◦ ψwm
,

we introduce the volume measure µ as the unique Radon measure on

K =

+∞
⋃

m=1

Φm(K0),

such that

µ(ψi|m(K)) =

∏m
i=1 d

n−1
wi

Dm
. (34)

While the fractal boundary ∂Ω is irregular, the prefractal boundary ∂Ωm is polygonal,
so we can easily give well posedness results for partial differential equations with domains
having such boundary and use the classic Lebesgue measure on such a boundary and to
obtain a well-posedness result on the solution u of the Westervelt equation on a domain Ω
by a convergence argument on the functions um solutions of the Westervelt equation on a
domain Ωm. This also allows to construct an approximation of u. In order to do so the
following results are needed.

Theorem 21. Let

σm :=
1

Dm
, (35)

where D defined by (33). For any function g ∈ H1(Rn)

σm

∫

Km

TrKm
gds→

∫

K

TrKg dµ for m→ +∞. (36)

Proof. Let firstly suppose that g ∈ C(Rn). We follow the proof of Theorem 2.1 in Ref. [10]
given for the special case of von Koch snowflake. For a fixed summit A on ∂K0 we introduce
the measure

µm =
∑

(w1,...,wn)∈{1,...,N}m

∏m
i=1 d

n−1
wi

Dm
δψw|m(A).

Let us prove that µm weakly converges to the measure µ considered on K. For any m, we
introduce the following positive linear functional on the space C(K)

Gm(h) =
∑

(w1,...,wm)∈{1,...,N}m

h(ψw|m(A)).
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As K is compact of Rn, then h ∈ C(K) is uniformly continuous on K. Consequently, we
have

∀ε > 0, ∃q ∈ N∗ such that ∀n,m > q |Gn(h)−Gm(h)| < ε.

Thus for each fixed h ∈ C(K) the numerical sequence (Gm(h))m∈N∗ converges. Hence the
limit defines a positive linear functional on C(K). By the Riesz representation theorem,
there exists a unique (positive) Borel measure µ̃ such that

lim
m→∞

Gn(h) =

∫

K

h dµ̃.

Moreover µ̃ satisfies (34). Hence, from the uniqueness of a such measure, µ and µ̃ coincide,
and we obtain

∀h ∈ C(K) lim
m→∞

∫

K

h dµm =

∫

K

hdµ, (37)

which is the definition of the weak convergence of µm to µ. We also notice that µ(K) = 1.
Let us formally write

∣

∣

∣

∣

1

Dm

∫

Km

g ds−
∫

K

g dµ

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

Dm

∫

Km

g ds−
∫

K

g dµm

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

K

g dµm −
∫

K

g dµ

∣

∣

∣

∣

. (38)

Since

∫

Km

gds =
∑

(w1,...,wm)∈{1,...,N}m

∫

ψw|n

gds

=
∑

(w1,...,wm)∈{1,...,N}m

∏m
i=1 d

n−1
wi

Dm
g(ψw|m(Pw|n)),

where Pw|m ∈ K0 and under the assumption the Lebesgue measure λ(K0) = 1, the first
term on the right hand side of (38) can be estimated by using the uniform continuity of g as

∣

∣

∣

∣

1

Dm

∫

Km

g ds−
∫

K

g dµm

∣

∣

∣

∣

≤

∑

(w1,...,wm)∈{1,...,N}m

|g(ψw|m(Pw|n))− g(ψw|m(A)|
∏m
i=1 d

n−1
wi

Dm
.

As the second term on the right hand side of (38) can be estimated by using (37) we
achieve the desired result for g ∈ C(Rn). To obtain the same for g ∈ H1(Rn) we apply the
density argument and [11, Thm. 3.5].

To be able to control the traces on the prefractal boundaries we generalize Lemma 3.1 [10]
for our n-dimensional case.

Lemma 1. Let Km be the m-th prefractal set. Then

∀P ∈ Rn λn−1(B(P, r) ∩Km) ≤ CDmr,

where the constant C > 0 is independent on m, B(P, r) denotes the Euclidean ball with
center in P and radius 0 < r ≤ 1 and λn−1 is the (n− 1)−dimensional Lebesgue measure.

Proof. Let us fixe h ∈ N such that

(max dn−1
i )h < r ≤ (max dn−1

i )h−1.
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Then B(P, r) ⊂ B(P, (max dn−1
i )h−1).

When h > m, since max di >
1
N , it holds

λn−1(B(P, r) ∩Km) ≤λn−1(B(P, (max dn−1
i )h−1) ∩Km)

≤C1(max dn−1
i )h−1 < C1N

n−1r,

where C1 is independent of m.
Let us now consider the case when h ≤ m. There are at most C2 open sets ψw|h−1(T ) =

ψw1 ◦· · ·◦ψwn
(C2 independent of m), where T is the set of the open set condition associated

to (ψi)1≤i≤N , that has not empty intersection with B(P, (max dn−1
i )h−1). Then as

λn−1(B(P, (max dn−1
i )h−1) ∩Km ∩ ψw|h−1(T )) ≤Dm

∏h−1
i=1 d

n−1
wi

Dh−1

≤Dm (max dn−1
i )h−1

Dh−1
,

we obtain

λn−1(B(P, r) ∩Km) ≤λn−1(B(P, (max dn−1
i )h−1) ∩Km)

≤C2D
m (max dn−1

i )h−1

Dh−1
≤ NC2D

mr.

Therefore we have the following uniform trace estimate for the prefractal boundaries
with an analogous estimate in the fractal case:

Theorem 22. Let u ∈ Hσ(Rn) and 1
2 < σ ≤ 1. Then for all m ∈ N

1

Dm
‖TrKm

u‖2L2(Km) ≤ Cσ‖u‖2Hσ(Rn), (39)

where Cσ > 0 is a constant independent of m. In addition, on the fractal K with the measure
µ satisfying Theorem 2 it also holds for n−d

2 < σ < 1 + n−s
2 and for a constant Cσ > 0

‖TrKu‖2L2(K) ≤ Cσ‖u‖2Hσ(Rn). (40)

Proof. The proof of (39) is essentially the same as for (40) proved in Ref. [10] and is thus
omitted, the key point being Lemma 1 and the use of Bessel kernels with Lemma 1 on p. 104
in Ref. [30]. In addition (40) is a direct consequence of Theorem 7. We finish by notice that
] 12 , 1] ⊂]n−d2 , 1 + n−s

2 [.

The following theorem extends functions of H1(Ωm) to the space H1(Rn) by an operator
whose norm is independent of the (increasing) number of sides. It is a particular case
of the extension theorem due to Jones (Theorem 1 in Ref. [27]) as the domains Ωm are
(ε,∞)−domains with ε independent of m. We also give the extension result for the limit
domain Ω coming from the Rogers extension theorem [49] due to a “degree-independent”
operator for Sobolev spaces on (ε,∞)-domains.

Theorem 23. For any m ∈ N, there exists a bounded linear extension operator
EΩm

: H1(Ωm) → H1(Rn), whose norm is independent of m, that is

‖EΩm
v‖H1(Rn) ≤ CJ‖v‖H1(Ωn) (41)

with a constant CJ > 0 independent of m.
In addition, for the (ε,∞)-domain Ω with a fractal boundary K there exists a bounded

linear extension operator EΩ : Hσ(Ω) → Hσ(Rn), 1
2 < σ ≤ 1, such that

‖EΩv‖Hσ(Rn) ≤ CΩ‖v‖Hσ(Ω). (42)
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Proof. The independence on m comes from the fact that the Ωm are (ε,∞) domains with
ε fixed according to Theorem 20. Then we just have to apply the result of Ref. [27] on
quasiconformal mappings. The extension result for the fractal domain Ω follows from the
Rogers extension theorem [49, Thm. 8], since by its definition Ω is (ε,∞)-domain, with the
use of interpolation techniques (see also [10, Thm. 3.5]).

6.3 Mosco type convergence

We consider a domain Ω of Rn defined in Subsection 6.1 and its polyhedral approximation
by domains Ωm. We suppose as in Section 4 that

∂Ω = ΓD,Ω ∪ ΓN,Ω ∪ ΓR,Ω with ΓR,Ω = K

and
∂Ωm = ΓD,Ωm

∪ ΓN,Ωm
∪ ΓR,Ωm

with ΓR,Ωm
= Km,

where the parts of boundaries with letters D, N and R correspond to the type of the
homogeneous boundary condition considered on them: the Dirichlet, the Neumann and the
Robin boundary conditions respectively.

Our aim is to consider the limit m → +∞ of the weak solutions of the following West-
ervelt mixed boundary problem























∂2t u− c2∆u− ν∆∂tu = α∂t[u∂tu] + f on ]0,+∞[×Ωm,
u = 0 on ΓD,Ωm

× [0,+∞[,
∂
∂nu = 0 on ΓN,Ωm

× [0,+∞[,
∂
∂nu+ amu = 0 on Km × [0,+∞[,
u(0) = u0,m, ut(0) = u1,m on Ωm.

(43)

To be able to do it let us introduce the space

H(Ω) := H1([0,+∞[;H1(Ω))∩H2([0,+∞[;L2(Ω)) (44)

and let us consider Ω∗ a Sobolev admissible domain such that Ω ⊂ Ω∗ for all m ∈ N∗

Ωm ⊂ Ω∗.
For u ∈ H(Ω∗) and φ ∈ L2([0,+∞[, H1(Ω∗)) we define

Fm[u, φ] :=

∫ +∞

0

∫

Ωm

∂2t uφ+ c2∇u∇φ+ ν∇∂tu∇φ dλdt

+

∫ +∞

0

∫

Km

c2amTr∂Ωm
u Tr∂Ωm

φ+ νamTr∂Ωm
∂tu Tr∂Ωm

φdsdt (45)

∫ +∞

0

∫

Ωm

−α(u∂2t u)φ− α(∂tu)
2φ+ fφ dλdt

and also

F [u, φ] :=

∫ +∞

0

∫

Ω

∂2t uφ+ c2∇u∇φ+ ν∇∂tu∇φ dλdt

+

∫ +∞

0

∫

K

c2aTr∂Ωu Tr∂Ωφ+ νaT r∂Ω∂tu Tr∂Ωφdµdt (46)

∫ +∞

0

∫

Ω

−α(u∂2t u)φ− α(∂tu)
2φ+ fφ dλdt.

We also define for u ∈ L2([0,+∞[;L2(Ω∗))

Fm[u, φ] =

{

Fm[u, φ] if u ∈ H(Ω∗),
+∞ otherwise

(47)

and

F [u, φ] =

{

F [u, φ] if u ∈ H(Ω∗),
+∞ otherwise.

(48)
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Remark 5. We see that u is a weak solution of the Westervelt problem (28) on [0,+∞[×Ω
in the sense of Theorem 19 if there hold

• u ∈ X with the space X defined in (25);

• for all φ ∈ L2([0,+∞[;V (Ω)) F [u, φ] = 0, where F is defined in (46);

• u(0) = u0 and ut(0) = u1 on Ω.

The expression F [u, φ] = 0 can be obtained multiplying the Westervelt equation from
system (28) by φ ∈ X integrating on [0,+∞[×Ω and doing integration by parts taking into
account the boundary conditions. In the same way with Fm[u, φ] given by Eq. (45) we can
define the weak solution of problem (43).

In order to state our main result, we also need to recall the notion of M − convergence
of functionals introduced in Ref. [45].

Definition 8. A sequence of functionals Gm : H → (−∞,+∞] is said to M -converge to a
functional G : H → (−∞,+∞] in a Hilbert space H, if

1. (lim sup condition) For every u ∈ H there exists um converging strongly in H such
that

limGm[um] ≤ G[u], as m→ +∞. (49)

2. (lim inf condition) For every vm converging weakly to u in H

limGm[vm] ≥ G[u], as m→ +∞. (50)

Because of the quadratic nonlinearity of the Westervelt equation to be controlled for
weak solutions, we consider domains in Rn only with n = 2 or 3. For the linear problem it
is possible to work with higher dimensions too. The main result is the following theorem.

Theorem 24. Let Ω be a fractal domain of R2 or R3 and (Ωm)m∈N∗ be the prefractal
polyhedral sequence described and defined previously, all included in a Sobolev admissible
domain Ω∗. For φ ∈ L2([0,+∞[;H1(Ω∗)), and am = aσm, where σm defined in (35), the
sequence of functionals u 7→ Fm[u, φ] defined in (47), M -converges in L2([0,+∞[;L2(Ω∗)),
to the following functional u 7→ F [u, φ] defined in (48) as m→ +∞.

Moreover, for all φ ∈ L2([0,+∞[;H1(Ω∗)) if vm ⇀ u in H(Ω∗) defined in (44), then

Fm[vm, φ] −→
m→+∞

F [u, φ],

where Fm and F are defined by equations (45) and (46) respectively.

Remark 6. If (Ωm)m∈N∗ is a monotone increasing sequence up to Ω, i.e. Ωm ⊂ Ω for all
m, then it is not necessary to take Ω∗ different to Ω, it is sufficient to take Ω∗ = Ω. In all
cases, thanks to Theorem 23, functions vm(t) ∈ H1(Ωm) can be uniformly on m extended
to the functions EΩm

vm(t) ∈ H1(Rn) and after it we work with their restrictions on Ω∗:
[EΩm

vm(t)] |Ω∗ ∈ H1(Ω∗). By the same way, for u(t) ∈ H1(Ω) we consider if Ω 6= Ω∗

[EΩu(t)] |Ω∗ ∈ H1(Ω∗). To avoid complicated notations we work directly with functions from
H1(Ω∗).

We also make the attention that we don’t impose on (Ωm)m∈N∗ any restriction to be
monotone, but only to satisfy Assumptions 1 and 2 and, by the fractal approximation, to
converge to Ω in the sense of the characteristic functions: ‖1Ωm

− 1Ω‖L1(Ω∗) → 0 for
m→ +∞.

Proof. We consider φ ∈ L2([0,+∞[;H1(Ω∗)).
Proof of "lim sup" condition. Without loss of generality, let us take directly a fixed

u ∈ H(Ω∗) and define vm = u for all m. Hence (vm)m∈N∗ is strongly converging sequence
in L2([0,+∞[;L2(Ω∗)). Thus by the definition of functionals Fm[u, φ] and F [u, φ], they are
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equal respectively to Fm[u, φ] and F [u, φ], which are well defined (and hence are finite). As
by our construction Ωm → Ω for m → +∞ in the sense of the characteristic functions and
u ∈ H(Ω∗), for the linear terms in (45) integrated over Ωm to pass to the limit we can
directly apply the dominated convergence theorem for m→ +∞
∫ +∞

0

∫

Ωm

∂2t uφ+ c2∇u∇φ+ ν∇∂tu∇φdxdt

→
∫ +∞

0

∫

Ω

∂2t uφ+ c2∇u∇φ+ ν∇∂tu∇φdxdt. (51)

Indeed, knowing that u ∈ H(Ω∗) and φ ∈ L2([0,+∞[;H1(Ω∗)) by Hölder’s inequality we
have

∫ +∞

0

∫

Ω∗

|∂2t uφ|dxdt ≤‖∂2t u‖L2([0,+∞[;L2(Ω∗))‖φ‖L2([0,+∞[;L2(Ω∗)) < +∞,

∫ +∞

0

∫

Ω∗

|c2∇u∇φ|dxdt ≤c2‖∇u‖L2([0,+∞[;L2(Ω∗))‖∇φ‖L2([0,+∞[;L2(Ω∗)) < +∞,

∫ +∞

0

∫

Ω∗

|νε∇∂tu∇φ|dxdt ≤ν‖∇∂tu‖L2([0,+∞[;L2(Ω∗))‖∇φ‖L2([0,+∞[;L2(Ω∗)) < +∞.

To pass to the limit for the nonlinear terms integrated over Ωm we also apply the dominated
convergence theorem

∫ +∞

0

∫

Ωm

−α(u∂2t u)φ− α(∂tu)
2φdxdt →

∫ +∞

0

∫

Ω

−α(u∂2t u)φ− α(∂tu)
2φdxdt. (52)

More precisely, we successively apply Hölder’s inequality and the Sobolev embeddings to
control

∫ +∞

0

∫

Ω∗

|(u∂2t u)φ|dxdt

≤‖u‖L∞([0,+∞[;L4(Ω∗))‖∂2t u‖L2([0,+∞[;L2(Ω∗))‖φ‖L2([0,+∞[;L4(Ω∗))

≤C‖u‖H1([0,+∞[;H1(Ω∗))‖∂2t u‖L2([0,+∞[;L2(Ω∗))‖φ‖L2([0,+∞[;H1(Ω∗)) < +∞

and
∫ +∞

0

∫

Ω∗

|(∂tu)2φ|dxdt

≤‖∂tu‖L∞([0,+∞[;L2(Ω∗))‖∂tu‖L2([0,+∞[;L4(Ω∗))‖φ‖L2([0,+∞[;L4(Ω∗))

≤C‖∂tu‖H1([0,+∞[;L2(Ω∗))‖∂tu‖L2([0,+∞[;H1(Ω∗))‖φ‖L2([0,+∞[;H1(Ω∗)) < +∞.

Let (φj)j∈N∗ ⊂ C∞([0,+∞[×Ω∗) be a bounded sequence converging to φ:

φj →
j→+∞

φ in L2([0,+∞[, H1(Ω∗)).

Thus we can express the difference between the boundary therms as follows
∫ +∞

0

∫

Km

σmTr∂Ωm
∂tu Tr∂Ωm

φdsdt−
∫ +∞

0

∫

K

Tr∂Ω∂tu Tr∂Ωφdµdt

=

∫ +∞

0

∫

Km

σmTr∂Ωm
∂tu Tr∂Ωm

(φ− φj)dsdt (53)

+

∫ +∞

0

∫

Km

σmTr∂Ωm
∂tu Tr∂Ωm

φjdsdt−
∫ +∞

0

∫

K

Tr∂Ω∂tu Tr∂Ωφjdµdt

−
∫ +∞

0

∫

K

Tr∂Ω∂tu Tr∂Ω(φ− φj)dµdt.
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Thanks to Theorems 39 and 7, we estimate the first integral in (53) using the Cauchy-
Schwartz inequality by

∣

∣

∣

∣

∫ +∞

0

∫

Km

σmTr∂Ωm
∂tu Tr∂Ωm

(φ − φj)dsdt

∣

∣

∣

∣

≤ C‖ER2∂tu‖L2([0,+∞[,H1(R2))‖ER2(φ− φj)‖L2([0,+∞[,H1(R2))

≤ C‖∂tu‖L2([0,+∞[,H1(Ω∗))‖φ− φj‖L2([0,+∞[,H1(Ω∗)),

with a constant C > 0 independent on m. Therefore, for all ε > 0 there exists j1 ∈ N∗ such
that for all j ≥ j1 and all m ∈ N

∣

∣

∣

∣

∫ +∞

0

∫

Km

σmTr∂Ωm
∂tu Tr∂Ωm

(φ− φj)dsdt

∣

∣

∣

∣

≤ ε

3
. (54)

In the same way by Theorems 22 and 7 we can show that there exists j2 ∈ N∗ such that for
all j ≥ j2

∣

∣

∣

∣

∫ +∞

0

∫

K

Tr∂Ω∂tu Tr∂Ω(φ− φj)dµdt

∣

∣

∣

∣

≤ ε

3
. (55)

Let us now fix j = max(j1, j2). Given the regularity of φj , we have

∂tuφj ∈ L2([0,+∞[, H1(Ω∗)).

So by Theorem 21 for almost all time t ∈ [0,+∞[ we find

∫

Km

σmTr∂Ωm
∂tu Tr∂Ωm

φjds−
∫

K

Tr∂Ω∂tu Tr∂Ωφjdµ →
m→+∞

0.

Moreover by Theorems 39 and 7
∣

∣

∣

∣

∫

Km

σmTr∂Ωm
∂tu Tr∂Ωm

φjdsdt

∣

∣

∣

∣

≤C‖ER2∂tu‖H1(R2)‖ER2φj‖H1(R2)

≤C‖∂tu‖H1(Ω∗)‖φj‖H1(Ω∗),

with a constant C > 0 independent on m. We notice that since u ∈ H(Ω∗)

‖∂tu‖H1(Ω∗)‖φj‖H1(Ω∗) ∈ L1([0,∞[).

Consequently, by the dominated convergence theorem

∣

∣

∣

∣

∫ +∞

0

∫

Km

σmTr∂Ωm
∂tu Tr∂Ωm

φjdsdt−
∫ +∞

0

∫

K

Tr∂Ω∂tu Tr∂Ωφjdµdt

∣

∣

∣

∣

→
m→+∞

0. (56)

Thus, putting together (54), (55) and (56) in (53), we finally obtain that

∫ +∞

0

∫

Km

σmTr∂Ωm
∂tu Tr∂Ωm

φdsdt−
∫ +∞

0

∫

K

Tr∂Ω∂tu Tr∂Ωφdµdt →
m→+∞

0. (57)

In the same way we prove that

∫ +∞

0

∫

Km

σmTr∂Ωm
u Tr∂Ωm

φdsdt−
∫ +∞

0

∫

K

Tr∂Ωu Tr∂Ωφdµdt →
m→+∞

0. (58)

By using (51), (52), (57), (58) and the fact that by the dominated convergence theorem for
f ∈ L2([0,+∞[;L2(Ω))

∫ +∞

0

∫

Ωm

fφdxdt →
m→+∞

∫ +∞

0

∫

Ω

fφdxdt,
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we conclude that for all φ ∈ L2([0,+∞[, H1(Ω))

Fm[u, φ] −→
m→+∞

F [u, φ].

This proves the "lim sup" condition since the infinite case obviously holds.
Proof of the "lim inf" condition. Now, let (vm)m∈N∗ be a bounded sequence in

H(Ω∗) such that
vm ⇀ u in H(Ω∗) m→ +∞.

Then by definition of H(Ω∗) in (44), it follows that

∂2t vm ⇀ ∂2t u in L2([0,+∞[;L2(Ω∗)), (59)

∂tvm ⇀ ∂tu, ∇∂tvm ⇀ ∇∂tu in L2([0,+∞[;L2(Ω∗)), (60)

and
vm ⇀ u, ∇vm ⇀ ∇u in L2([0,+∞[;L2(Ω∗)). (61)

Moreover, working in Rn with dimension n ≤ 3, by Theorem 8 it is possible to chose
any 2 ≤ p < 6 ensuring the compactness of the embedding L2([0,+∞[;H1(Ω∗)) ⊂⊂
L2([0,+∞[;Lp(Ω∗)). For higher dimension the desired assertion with p ≥ 2 fails. So for
2 ≤ p < 6

vm → u, ∂tvm → ∂tu in L2([0,+∞[;Lp(Ω∗)). (62)

From the compact embedding of H1(Ω∗) in Hσ(Ω∗) (12 < σ < 1) we also have that

vm → u, ∂tvm → ∂tu in L2([0,+∞[;Hσ(Ω∗)). (63)

Let φ ∈ L2([0,∞[, H1(Ω∗)), we want to show that

Fm[vm, φ] −→
m→+∞

F [u, φ].

We start by studying the convergence of the terms with
∫ +∞

0

∫

Ωm
:

∣

∣

∣

∫ +∞

0

∫

Ωm

∂2t vmφdxds −
∫ +∞

0

∫

Ω

∂tu∂tφdxds
∣

∣

∣
≤
∣

∣

∣

∫ +∞

0

∫

Ω∗

∂2t vm1Ωm
φdxds

−
∫ +∞

0

∫

Ω∗

∂2t vm1Ωφdxds
∣

∣

∣
+
∣

∣

∣

∫ +∞

0

∫

Ω∗

∂2t vm1Ωφdxds −
∫ +∞

0

∫

Ω∗

∂2t u1Ωφdxds
∣

∣

∣
.

The second term on the right hand side tends to zero as m → +∞ by (59) as 1Ω∂tφ ∈
L2([0,+∞[;L2(Ω∗)). For the first term

∣

∣

∣

∫ +∞

0

∫

Ω∗

∂2t vm(1Ωm
− 1Ω)φdxds

∣

∣

∣
≤ ‖(1Ωm

− 1Ω)φ‖L2([0,+∞[×Ω∗)‖∂2t vm‖L2([0,+∞[×Ω∗),

but ‖∂2t vm‖L2([0,+∞[×Ω∗) is bounded for all m by (59) and by the dominated convergence
theorem

‖(1Ωm
− 1Ω)φ‖L2([0,+∞[×Ω∗) −→

m→+∞
0.

Then for m→ +∞
∫ +∞

0

∫

Ωm

∂2t vmφdxds →
∫ +∞

0

∫

Ω

∂2t uφdxds.
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Using (61) we can deduce in the same way

∫ +∞

0

∫

Ωm

∂2t vmφ+ c2∇vm∇φ+ νε∇∂tvm∇φ dxdt

−→
m→+∞

∫ +∞

0

∫

Ω

∂2t uφ+ c2∇u∇φ+ νε∇∂tu∇φdxdt. (64)

For the quadratic terms we have

∣

∣

∣

∣

∫ +∞

0

∫

Ωm

(vm∂
2
t vm)φdxdt −

∫ +∞

0

∫

Ω

(u∂2t u)φdxdt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ +∞

0

∫

Ωm

(vm∂
2
t vm)φdxdt −

∫ +∞

0

∫

Ω

(vm∂
2
t vm)φdxdt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ +∞

0

∫

Ω

(vm∂
2
t vm)φdxdt −

∫ +∞

0

∫

Ω

(u∂2t u)φdxdt

∣

∣

∣

∣

. (65)

To show that the first term on the right hand side tends to 0 for m → +∞ we use the fact
that by Hölder’s inequality

∣

∣

∣

∣

∫ +∞

0

∫

Ωm

(vm∂
2
t vm)φdxdt −

∫ +∞

0

∫

Ω

(vm∂
2
t vm)φdxdt

∣

∣

∣

∣

≤‖(1Ωm
− 1Ω)φ‖L2([0,+∞[;L4(Ω∗))‖vm‖L∞([0,+∞[;L4(Ω∗))‖∂2t vm‖L2([0,+∞[;L2(Ω∗)).

Using the Sobolev embeddings we have for all m

‖vm‖L∞([0,+∞[;L4(Ω∗))‖∂2t vm‖L2([0,+∞[;L2(Ω∗))

≤C‖vm‖H1([0,+∞[;H1(Ω∗))‖∂2t vm‖L2([0,+∞[;L2(Ω∗)) ≤ K

with a constant K > 0 independent on m, as (vm)m∈N∗ is weakly convergent in H(Ω∗).
Moreover, as by the Sobolev embedding we have

φ ∈ L2([0,+∞[;H1(Ω∗)) ⊂⊂ L2([0,+∞[;L4(Ω∗)),

then by the dominated convergence theorem we obtain

‖(1Ωm
− 1Ω)φ‖L2([0,+∞[;L4(Ω∗)) −→

m→+∞
0.

So
∣

∣

∣

∣

∫ +∞

0

∫

Ωm

(vm∂
2
t vm)φdxdt −

∫ +∞

0

∫

Ω

(vm∂
2
t vm)φdxdt

∣

∣

∣

∣

−→
m→+∞

0. (66)

Now we consider
∣

∣

∣

∣

∫ +∞

0

∫

Ω

(vm∂
2
t vm)φdxdt −

∫ +∞

0

∫

Ω

(u∂2t u)φdxdt

∣

∣

∣

∣

.

We see that

‖vmφ− uφ‖L2([0,+∞[;L2(Ω)) =

∫ +∞

0

‖(vm − u)φ‖2L2(Ω)ds.

Consequently, by the Young inequality

‖vmφ− uφ‖L2([0,+∞[;L2(Ω)) ≤
∫ +∞

0

‖vm − u‖2L3(Ω)‖φ‖2L6(Ω)ds
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and by the Sobolev embeddings we find

‖vmφ− uφ‖L2([0,+∞[;L2(Ω)) ≤K
∫ +∞

0

‖vm − u‖2H1(Ω)‖φ‖2H1(Ω)ds

‖vmφ− uφ‖L2([0,+∞[;L2(Ω)) ≤K‖vm − u‖2L∞([0,+∞[;H1(Ω)‖φ‖2L2([0,+∞[;L2(Ω)).

HereK > 0 is a general constant independing onm. But we have vm ⇀ u inH1([0,+∞[;H1(Ω∗)) ⊂⊂
L∞([0,+∞[;H1(Ω)), so vm → u in L∞([0,+∞[;H1(Ω)). Hence

vmφ→ uφ in L2([0,+∞[;L2(Ω)).

Combining this strong convergence result with the weak convergence (59) we obtain

∣

∣

∣

∣

∫ +∞

0

∫

Ω

(vm∂
2
t vm)φdxdt −

∫ +∞

0

∫

Ω

(u∂2t u)φdxdt

∣

∣

∣

∣

−→
m→+∞

0. (67)

Then (65),(66) and (67) allow us to conclude that

∣

∣

∣

∣

∫ +∞

0

∫

Ωm

(vm∂
2
t vm)φdxdt −

∫ +∞

0

∫

Ω

(u∂2t u)φdxdt

∣

∣

∣

∣

−→
m→+∞

0. (68)

Now we consider

∣

∣

∣

∣

∫ +∞

0

∫

Ωm

(∂tvm)2φdxdt−
∫ +∞

0

∫

Ω

(∂tu)
2φdxdt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ +∞

0

∫

Ωm

(∂tvm)2φdxdt −
∫ +∞

0

∫

Ω

(∂tvm)2φdxdt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ +∞

0

∫

Ω

(∂tvm)2φdxdt −
∫ +∞

0

∫

Ω

(∂tu)
2φdxdt

∣

∣

∣

∣

(69)

The first term goes to 0 when m goes to infinity in the same way that for the proof of (66),
moreover we have:
∣

∣

∣

∣

∫ +∞

0

∫

Ω

(∂tvm)2φdxdt−
∫ +∞

0

∫

Ω

(∂tu)
2φdxdt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ +∞

0

∫

Ω

(∂tvm − ∂tu)(∂tvm + ∂tu)φdxdt

∣

∣

∣

∣

.

By the Young inequality

∣

∣

∣

∣

∫ +∞

0

∫

Ω

((∂tvm)2 − (∂tu)
2)φdxdt

∣

∣

∣

∣

≤
∫ +∞

0

‖∂tvm − ∂tu‖L3(Ω)‖∂tvm + ∂tu‖L2(Ω)‖φ‖L6(Ω)dt

and by the Sobolev embeddings and the Cauchy-Schwarz inequality we find

∣

∣

∣

∣

∫ +∞

0

∫

Ω

((∂tvm)2 − (∂tu)
2)φdxdt

∣

∣

∣

∣

≤ ‖∂tvm + ∂tu‖L∞([0,+∞[;L2(Ω))

· ‖∂tvm − ∂tu‖L2([0,+∞[;L3(Ω))‖φ‖L2([0,+∞[;H1(Ω)).

By (62) ‖∂tvm − ∂tu‖L2([0,+∞[;L3(Ω)) −→
m→+∞

0 and, as

∂tvm ⇀ ∂tu in H1([0,+∞[;L2(Ω)) ⊂⊂ L∞([0,+∞[;L2(Ω)),

the numerical sequence (‖∂tvm + ∂tu‖L∞([0,+∞[;L2(Ω)))m∈N∗ is bounded. Consequently

∣

∣

∣

∣

∫ +∞

0

∫

Ω

((∂tvm)2 − (∂tu)
2)φdxdt

∣

∣

∣

∣

−→
m→+∞

0.
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Coming back to (69) we obtain

∣

∣

∣

∣

∫ +∞

0

∫

Ωm

(∂tvm)2φdxdt −
∫ +∞

0

∫

Ω

(∂tu)
2φdxdt

∣

∣

∣

∣

−→
m→+∞

0. (70)

Let us consider the boundary term

∫ +∞

0

∫

Km

σmTr∂Ωm
∂tvm Tr∂Ωm

φdsdt−
∫ +∞

0

∫

K

Tr∂Ω∂tu Tr∂Ωφdµdt

=

∫ +∞

0

∫

Km

σmTr∂Ωm
∂t(vm − u) Tr∂Ωm

φdsdt (71)

+

(
∫ +∞

0

∫

Km

σmTr∂Ωm
∂tu Tr∂Ωm

φdsdt−
∫ +∞

0

∫

K

Tr∂Ω∂tu Tr∂Ωφdµdt

)

.

By (57) we already have the convergence to zero of the second term in (71). Now thanks to
Theorems 22 and 7 we find

|
∫ +∞

0

∫

Km

σmTr∂Ωm
∂t(vm − u) Tr∂Ωm

φdsdt|

≤C‖ER2(∂tvm − ∂tu)‖L2([0,+∞[,Hσ(R2))‖ER2φ‖L2([0,+∞[,H1(R2))

≤C‖∂tvm − ∂tu‖L2([0,+∞[,Hσ(Ω∗))‖φ‖L2([0,+∞[,H1(Ω∗))

with a constant C > 0 independent on m. Then by (63)

∣

∣

∣

∣

∫ +∞

0

∫

Km

σmTr∂Ωm
∂t(vm − u) Tr∂Ωm

φdsdt

∣

∣

∣

∣

→
m→+∞

0. (72)

By (71), (72) and (57) we result in

∫ +∞

0

∫

Km

σmTr∂Ωm
∂tvm Tr∂Ωm

φdsdt−
∫ +∞

0

∫

K

Tr∂Ω∂tu Tr∂Ωφdµdt →
m→+∞

0. (73)

In the same way

∫ +∞

0

∫

Km

σmTr∂Ωm
vm Tr∂Ωm

φdsdt−
∫ +∞

0

∫

K

Tr∂Ωu Tr∂Ωφdµdt →
m→+∞

0. (74)

So by (64), (68), (70), (73) and (74) we have for all φ ∈ L2([0,+∞[;H1(Ω))

Fm[vm, φ] → F [u, φ],

as m→ +∞ and this conclude the proof.

We finish by proving the weak convergence of the solutions of the Westervelt problem
on the prefractal domains to the weak solution on the fractal domain.

Theorem 25. Let domains Ω and Ωm in R2 or R3 be defined as previously satisfying
Theorem 20, Ω∗ be a Sobolev admissible domain such that Ω ⊂ Ω∗, ∀m Ωm ⊂ Ω∗ and

∂ΓD,Ωm
= ∂ΓD,Ω = ∂ΓD,Ω∗ .

For g ∈ L2(Ω∗), let u0 ∈ V (Ω), u1 ∈ V (Ω), ∆u0 = g|Ω ∈ L2(Ω) in the sense of the Poisson
problem (13) with a > 0. In addition, let for all m ∈ N∗ u0,m ∈ V (Ωm) and u1,m ∈ V (Ωm)
with ∆u0,m = g|Ωm

∈ L2(Ωm) such that

(ER2u0,m)|Ω ⇀
m→+∞

u0 in H1(Ω),

(ER2u1,m)|Ω ⇀
m→+∞

u1 in H1(Ω).
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Then for um ∈ X(Ωm), the weak solution of problem (43) on Ωm associated to the initial
conditions u0,m and u1,m in the sense of Theorem 19 with am = aσm, and u ∈ X(Ω), the
weak solution of problem (28) on Ω in the sense of Theorem 19, it follows that they are weak
solutions in the sense of Remark 5 and

(ER2um)|Ω∗ ⇀ u∗ in H(Ω∗) with u∗|Ω = u,

where H(Ω∗) is defined in (44).

Proof. By the definitions of um and u respectively from Theorem 19 we have as a direct
consequence that um ∈ X(Ωm) and u ∈ X(Ω) are weak solutions in the sense of Remark 5.
Therefore for all φ1 ∈ L2([0,+∞[;V (Ωm)) and φ2 ∈ L2([0,+∞[;V (Ω))

Fm[um, φ1] = 0 and F [u, φ2] = 0.

Extending with the help of Theorem 23 we obtain

‖(ER2um)|Ω∗‖H(Ω∗) ≤ C‖um‖H(Ωm)

with a constant C > 0 independent on m.
By assumption, for (Ωm)m∈N and Ω we have the same ∂ΓD fixed, and they are all

(ε, δ)-domains with fixed ε and δ. So we can apply Theorem 10. After what we apply
Theorems 13, 14, 15, 19. As in these theorems the dependence of the constants on the
domain only depends on the constant from the Poincaré’s inequality, we obtain the existence
of r∗ independent on m in Theorem 19 such that if r < r∗ and

‖f‖L2(R+;L2(Ωm)) + ‖∆u0,m‖L2(Ωm) + ‖u1,m‖V (Ωm) ≤
ν

C1
r,

with C1 > 0 independent on m, then

C‖um‖H(Ωm) ≤ ‖um‖X(Ωm) ≤ 2r,

with C > 0 independent on m. Therefore,

‖(ER2um)|Ω∗‖H(Ω) ≤ K

with a constant K > 0 independent on m, and consequently, there exits u∗ in H(Ω∗) and a
subsequence still denoted by (ER2um)|Ω∗ such that

(ER2um)|Ω∗ ⇀ u∗ in H(Ω∗).

Now for m ∈ N we define

Um :=

+∞
⋂

i=m

Ωi ∩ Ω.

It is an increasing sequence of open sets with Um ↑ Ω for m→ +∞.
We also define

V (Um) := {u ∈ H1(Um)| Tru = 0 on ΓDir,Um
= (∪∞

i=mΓD,Ωi
∪ ΓD,Ω) ∩ ∂Um},

the closed set Wm ⊂ Ω∗ such that ∂Wm = ΓDir,Um
∪ ΓD,Ω∗ and

Vm(Ω∗) := {φ ∈ L2([0,+∞[;H1(Ω∗)| φ|Um
∈ L2([0,+∞[;V (Um)) and u = 0 on Wm}.

Set φ ∈ VM (Ω∗), then for all m ≥M φ|Ωm
∈ L2([0,+∞[;V (Ωm)). Thus by Theorem 24 we

have
0 = Fm[(ER2um)|Ω∗ , φ] → F [u∗, φ].
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Consequently for all M ∈ N and for all φ ∈ VM (Ω∗)

F [u∗, φ] = 0.

But by definition of Um for φ ∈ L2([0,+∞[;V (Ω)) we can construct a sequence

φm ∈ Vm(Ω∗) →֒ L2([0,+∞[;V (Ω))

such that
φm|Ω →

m→+∞
φ in L2([0,+∞[, V (Ω)).

Then for all φ ∈ L2([0,+∞[;V (Ω))

F [u∗, φ] = 0.

By definition of um we also have u∗(0) = u0, ∆u
∗(0) = ∆u0 in L2(Ω) and ∂tu

∗(0) = u1 in
V (Ω). Moreover

u∗ ∈ H(Ω∗).

Thus we deduce u∗|Ω = u which allows to conclude.

Remark 7. Given the variational formulations (45) and (46), it is also possible to consider
the prefractal approximations not only for ΓR,Ω, but also for ΓN,Ω and ΓD,Ω simultaneously,
which can be described by different fractals. In this case Theorem 24 stays true and we have
an equivalent of Theorem 25 with the help of Theorem 10 which ensures that the constants
in the Poincaré’s inequality can be taken independent on m. As particular examples in
R2, Theorems 24 and 25 hold for the studied in Ref. [10] case of von Koch mixtures (see
Appendix B) and for the Minkowski fractal.
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A Proof of Theorem 13

As in Ref. [14] let us define for every m ∈ N∗, t ≥ 1 the function

Gt,m(ξ) :=







0 if ξ ≤ 0,
ξt if ξ ∈]0,m[,
mt−1u if ξ ≥ m,

(75)

which by its definition is piece wise smooth and has a bounded derivative. This implies that
Gt,m(u) ∈ V (Ω) for u ∈ V (Ω) by Theorem 7.8 of Ref. [21]. For some fixed m ≥ 1 and q ≥ 2
we introduce the following notations:

v := Gq−1,m(u), w := G q
2 ,m

(u).

Using again Theorem 7.8 in Ref. [21] we obtain that

∂xi
w∂xj

w =

{

q2

4(q−1)∂xi
u∂xj

v, if u(x) ≤ m

∂xi
u∂xj

v, if u(x) ≥ m.

Consequently we find

‖∇w‖2L2(Ω) ≤
q2

4(q − 1)
(∇u,∇v)L2(Ω)

≤q[(∇u,∇v)L2(Ω) + a

∫

ΓR

TrΓR
u TrΓR

vdmd]

≤q(f, v)L2(Ω)

≤q‖f‖L2(Ω)‖v‖L2(Ω).
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Using estimate (16) we obtain

‖w‖2L6(Ω) ≤ C‖∇w‖2L2(Ω) ≤ Cq‖f‖L2(Ω)‖v‖L2(Ω),

where C > 0 depends only on Ω in the same way as in Proposition 3. Then we use the fact

that 0 ≤ v ≤ w
2(q−1)

q to deduce

‖w 2
q ‖qL3q(Ω) ≤ Cq‖f‖L2(Ω)‖w

2
q ‖q−1
L2(q−1)(Ω)

. (76)

Let us denote by u+ and u− the positive and negative parts of u, u± := max(0,±u). The

sequence of functions w
2
q = [G q

2
,m(u)]

2
q is increasing as m increases and converges to u+ as

m goes to infinity. Thus, if we take u = u+

M with M = C‖f‖L2(Ω), from (76) with the help
of the monotone convergence theorem we have

‖u‖qL3q(Ω) ≤ q‖u‖q−1
L2(q−1)(Ω)

. (77)

We take q0 = 2 and qn+1 = 1 + ηqn with η = 3
2 for all n ∈ N, what allows us thanks to

estimate (77) to find
‖u‖qn+1

L3qn+1(Ω)
≤ qn+1‖u‖ηqnL3qn(Ω).

From the last estimate we obtain by induction that

‖u‖L3qn+1(Ω) ≤
(

n+1
∏

k=1

q
ηn+1−k

qn+1

k

)

‖u‖
2 ηn+1

qn+1

L6(Ω) .

As η = 3
2 > 1 we see that η ≤ qn+1

qn
≤ 2η, which by induction implies that qn+1 = 4ηn+1− 2.

Consequently,

‖u‖L3qn+1(Ω) ≤ 2
∑n+1

k=1 η
−k

(2η)
1
2

∑n+1
k=1 kη

−k‖u‖
2 ηn+1

4ηn+1−2

L6(Ω) .

Since η > 1 we can pass to the limit for n→ +∞:

‖u‖L∞(Ω) ≤ K‖u‖
1
2

L6 ,

where
K = 2

∑+∞
k=1

η−k

(2η)
1
2

∑+∞
k=1

kη−k

< +∞.

Taking into account that

‖u‖L∞(Ω) ≤ K|Ω| 1
12 ‖u‖

1
2

L∞(Ω),

we conclude in
‖u‖L∞(Ω) ≤ K2|Ω| 16 .

Finally, by definition of u we obtain

‖u+‖L∞(Ω) ≤ C‖f‖L2(Ω),

where C > 0 depends only on Ω in the same way as in Proposition 3. As u− = (−u)+, and
by linearity −u is the solution of the Poisson problem (13) with f replaced by −f , then we
also have

‖u−‖L∞(Ω) ≤ C‖f‖L2(Ω),

which finishes the proof.
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B Scale irregular Koch curves

Koch mixtures [10] can give a typical example of a fractal self-similar boundary in R2.
We recall briefly some notations introduced in Section 2 page 1223 of Ref. [10] for scale

irregular Koch curves built on two families of contractive similitudes. Let B = {1, 2}: for
a ∈ B let 2 < la < 4, and for each a ∈ B let

Ψ(a) = {ψ(a)
1 , . . . , ψ

(a)
4 }

be the family of contractive similitudes ψ
(a)
i : C → C, i = 1, . . . , 4, with contraction factor

l−1
a defined in Ref. [11].

Let Ξ = BN; we call ξ ∈ Ξ an environnent. We define the usual left shift S on Ξ. For
O ⊂ R2, we set

Φ(a)(O) =

4
⋃

i=1

ψ
(a)
i (O)

and
Φ(ξ)
m (O) = Φ(ξ1) ◦ · · · ◦ Φ(ξm)(O).

Let K be the line segment of unit length with A = (0, 0) and B = (1, 0) as end points. We
set, for each m in N,

K(ξ),m = Φ(ξ)
m (K).

K(ξ),m is the so-called m-th prefractal curve. The fractal K(ξ) associated with the environ-
ment sequence ξ is defined by

K(ξ) =
+∞
⋃

m=1

Φ
(ξ)
m (Γ),

where Γ = {A,B}. For ξ ∈ Ξ, we set i|m = (i1, . . . , im) and ψi|m = ψ
(ξ1)
i1

◦ · · · ◦ ψ(ξm)
im

. We

define the volume measure µ(ξ) as the unique Radon measure on K(ξ) such that

µ(ξ)(ψi|m(K(Smξ))) =
1

4m

(see Section 2 in Ref. [7]) as, for each a ∈ B, the family Φ(a) has 4 contractive similitudes.
The fractal set K(ξ) and the volume measure µ(ξ) depend on the oscillations in the

environment sequence ξ. We denote by h
(ξ)
a (m) the frequency of the occurrence of a in the

finite sequence ξ|m, m ≥ 1:

h(ξ)a (m) =
1

m

m
∑

i=1

1{ξi=a}, a = 1, 2.

Let pa be a probability distribution on B, and suppose that ξ satisfies

h(ξ)a (m) −→
m→+∞

pa,

(where 0 ≤ pa ≤ 1, p1 + p2 = 1) and

|h(ξ)a (m)− pa| ≤
C0

m
, a = 1, 2, (n ≥ 1),

with some constant C0 ≥ 1, that is, we consider the case of the fastest convergence of the
occurrence factors.

Under these conditions, the measure µ(ξ) has the property that there exist two positive
constants C1, C2, such that (see Refs. [46, 47]),

C1r
d(ξ) ≤ µ(ξ)(K(ξ) ∩Br(x)) ≤ C2r

d(ξ) for all x ∈ K(ξ), 0 < r ≤ 1,
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where Br(x) ⊂ R2 denotes the Euclidean ball of radius r and centered at x with

d(ξ) =
ln 4

p1 ln p1 + p2 ln p2
.

According to Definition 3, it means that K(ξ) is a d(ξ)-set and the measure µ(ξ) is a d(ξ)−
dimensional measure equivalent to the d(ξ)-dimensional Hausdorff measure md(ξ) .
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