Analysis of the SORAS domain decomposition preconditioner for non-self-adjoint or indefinite problems - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Analysis of the SORAS domain decomposition preconditioner for non-self-adjoint or indefinite problems

Résumé

We analyze the convergence of the one-level overlapping domain decomposition preconditioner SORAS (Symmetrized Optimized Restricted Additive Schwarz) applied to a general linear system whose matrix is not necessarily symmetric/self-adjoint nor positive definite. By generalizing the theory for the Helmholtz equation developed in [I.G. Graham, E.A. Spence, and J. Zou, preprint arXiv:1806.03731, 2019], we identify a list of assumptions and estimates that are sufficient to obtain an upper bound on the norm of the preconditioned matrix, and a lower bound on the distance of its field of values from the origin. As an illustration of this framework, we prove new estimates for overlapping domain decomposition methods with Robin-type transmission conditions for the heterogeneous reaction-convection-diffusion equation.
Fichier principal
Vignette du fichier
paper_BCNT.pdf (306.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02513123 , version 1 (20-03-2020)
hal-02513123 , version 2 (08-11-2020)
hal-02513123 , version 3 (26-05-2021)

Identifiants

Citer

Marcella Bonazzoli, Xavier Claeys, Frédéric Nataf, Pierre-Henri Tournier. Analysis of the SORAS domain decomposition preconditioner for non-self-adjoint or indefinite problems. 2020. ⟨hal-02513123v1⟩
345 Consultations
223 Téléchargements

Altmetric

Partager

More