Intersection multiplicity of a sparse curve and a low-degree curve - Archive ouverte HAL
Article Dans Une Revue Journal of Pure and Applied Algebra Année : 2020

Intersection multiplicity of a sparse curve and a low-degree curve

Résumé

Let $F(x, y)∈C[x, y]$ be a polynomial of degreed and let $G(x, y)∈C[x, y]$ be a polynomial with t monomials. We want to estimate the maximal multiplicity of a solution of the system $F(x, y) =G(x, y) = 0$. Our main result is that the multiplicity of any isolated solution $(a, b)∈C2$ with nonzero coordinates is no greater than $52d2t2$. We ask whether this intersection multiplicity can be polynomially boundedin the number of monomials of F and G, and we briefly review someconnections between sparse polynomials and algebraic complexity the-ory.
Fichier principal
Vignette du fichier
S0022404919302920.pdf (504.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02502580 , version 1 (07-03-2022)

Licence

Identifiants

Citer

Pascal Koiran, Mateusz Skomra. Intersection multiplicity of a sparse curve and a low-degree curve. Journal of Pure and Applied Algebra, 2020, 224 (7), pp.106279. ⟨10.1016/j.jpaa.2019.106279⟩. ⟨hal-02502580⟩
286 Consultations
88 Téléchargements

Altmetric

Partager

More