The effect of deer browsing and understory light availability on stump mortality and sprout growth capacity in sessile oak
Effet de l'abroutissement des cervidés et de la disponibilité de lumière dans le sous-étage sur la mortalité des souches et la capacité de croissance des rejets de chêne sessile
Résumé
Coppice forestry is a conventional silvicultural practice that takes advantage of a tree's capacity to respond to disturbances by sprouting. Sprouting capacity is determined by many intrinsic and extrinsic factors such as parent tree age/size, understory light availability and deer browsing, which, under closed canopy conditions are important limiting factors for stump survival or sprout growth. However, the combined effect of potentially confounding abiotic and biotic factors on stump survival and sprout growth remains elusive, even more so under closed canopy conditions. This study aims to quantify the effect of deer browsing on stump mortality and sprout growth under closed-canopy conditions and to compare this effect with other known determinants. Here we show that stump survival and sprout growth in sessile oak (Quercus petraea Matt.) depend on deer browsing, understory light availability and the diameter of the parent tree. By studying paired fenced-unfenced plots, we confirmed that deer browsing decreased stump survival and inhibited sprout growth. Furthermore, by taking advantage of a gradient in understory light availability in monospecific and mixed stands of sessile oak and Scots pine (Pinus sylvestris L.), we showed a clear positive linear relationship between sprout growth and light availability. This relationship explained the observed differences among stand composition types. Finally, we found that increased understory light availability did not compensate for losses due to deer browsing. In the absence of deer browsing, our results demonstrate that sessile oak stumps regenerate well under closed-canopy conditions and maintain a moderate sprouting capacity at least until the age of 70-80 years old. Partial thinning could therefore be a potential tool to renew light-demanding tree species such as sessile oak in mixed high-forest stands. Nevertheless, we do not recommend coppicing sessile oak under closed canopies unless the oak stumps are protected from deer browsing and understory light availability is optimized as much as possible despite closed-canopy-management objectives.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...