Martin boundary of random walks in convex cones
Résumé
We determine the asymptotic behavior of the Green function for zero-drift random walks confined to multidimensional convex cones. As a consequence, we prove that there is a unique positive discrete harmonic function for these processes (up to a multiplicative constant); in other words, the Martin boundary reduces to a singleton.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...