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MARTIN BOUNDARY OF RANDOM WALKS IN CONVEX CONES

JETLIR DURAJ, KILIAN RASCHEL, PIERRE TARRAGO, AND VITALI WACHTEL

Abstract. We determine the asymptotic behavior of the Green function for zero-
drift random walks confined to multidimensional convex cones. As a consequence, we
prove that there is a unique positive discrete harmonic function for these processes
(up to a multiplicative constant); in other words, the Martin boundary reduces to a
singleton.
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1. Introduction and main results

The primary motivation of the present paper is to solve the following uniqueness
problem for discrete harmonic functions: take a lattice Λ (a linear transform of Zd), a
convex cone K in Rd and a discrete Laplacian operator

L(f)(x) =
∑
x∼y

py−x(f(y)− f(x)),

where the weights {pz}z∈Λ sum to 1, have zero drift (meaning that
∑

z∈Λ zpz = 0) and
satisfy some minimal moment assumptions (we will be more specific later). We prove
that up to multiplicative constants, there is a unique function f : Λ → R which is
positive, harmonic in Λ ∩K, i.e., L(f) = 0, and equal to zero outside K. In terms of
potential theory for random walks, we show that the Martin boundary of killed, zero-
mean random walks in cones is reduced to one point. Our solution to this uniqueness
problem is fully based on Martin boundary theory and requires the thorough asymptotic
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computation of the Green function for killed random walks in multidimensional cones.
These asymptotics represent actually the main contribution of the paper.

Green functions and Martin boundary of random walks in cones. Random walks
conditioned to stay in multidimensional cones are a very popular topic in probability.
Indeed, they appear naturally in various situations: nonintersecting paths [49, 26, 15],
which can be seen as random walks in Weyl chambers, random walks in the quarter
plane [29, 43], queueing theory [13], branching processes and random walks in random
environment [1], finance [14], modelling of some populations in biology [7], etc. As
these random walk models are in bijection with many other discrete models (maps,
permutations, trees, Young tableaux, partitions), they are also intensively studied in
combinatorics [10, 8, 22].

Let us now briefly review the literature regarding asymptotics of Green functions and
Martin boundary for killed random walks in cones (see [48] for a general introduction
to Martin boundary theory). In the one-dimensional case, Doney [20] describes the
harmonic functions and the Martin boundary of a random walk {S(n)} on Z killed
on the negative half-line (obviously there is essentially a unique cone in dimension 1,
namely N = {0, 1, 2, . . .}). Alili and Doney [2] extend this result to the corresponding
space-time random walk {(S(n), n)}.

In the higher dimensional case, let us start by quoting the famous Ney and Spitzer
result [41] on the Green function asymptotics of drifted, unconstrained random walks in
Zd. As a consequence, the Martin boundary is shown to be homeomorphic to the unit
sphere Sd−1. By large deviation techniques and Harnack inequalities, Ignatiouk-Robert
[34, 35], then Ignatiouk-Robert and Loree [37], find the Martin boundary of random
walks in half-spaces N× Zd−1 and orthants Nd, with non-zero drift and killing at the
boundary; they also derive the asymptotics of ratios of Green functions. For small step
walks in the quarter plane, Lecouvey and Raschel [38] show that generating functions
of harmonic functions are strongly related to certain conformal mappings.

The results on Green functions and Martin boundaries are rarer for driftless random
walks, and typically require a strong underlying structure: the random walks are
Cartesian products in [42]; they are associated with Lie algebras in [4, 5]; certain
reflection groups are supposed to be finite in [6]. Varopoulos [52, 53] derives upper and
lower bounds for the tail of the survival probability in cones under the assumption that
the increments of the random walk are bounded. He also proves various statements
on the growth or harmonic functions. Raschel [43, 44] obtains the asymptotics of the
Green function and the Martin boundary in the case of small step quadrant random
walks related to finite reflection groups. Bouaziz, Mustapha and Sifi [11] prove the
existence and uniqueness of the positive harmonic function for random walks satisfying
finite range, centering and ellipticity conditions, killed at the boundary of the orthant
Nd. Mustapha and Sifi [40] extend these results to Lipshitz domains, under similar
hypotheses. Ignatiouk-Robert [36] shows the uniqueness of the harmonic function in
a convex cone, under the assumption that the first exit time has infinite expectation.
Finally, in the paper [45], the second and third authors derive a local limit theorem for
zero-drift random walks confined to multidimensional convex cones, when the endpoint
is close to the boundary.
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As we will see below, our theorems unify and extend all these results in the context
of convex cones, under optimal moment assumptions.

Exit time, Green functions, harmonic functions and reverse random walk. Consider a
random walk {S(n)}n>1 on Rd, d > 1, where

S(n) = X(1) + · · ·+X(n)

and {X(n)}n>1 is a family of independent and identically distributed (i.i.d) copies of
a random variable X = (X1, . . . , Xd). The support of the increments is supposed to
generate a lattice, which we denote by Λ.

Given a cone K, let τx be the first exit time from the cone K of the random walk
with starting point x ∈ K, i.e.,

τx = inf{n > 1 : x+ S(n) /∈ K}. (1)

By definition, the Green function of S(n) killed at τx is

GK(x, y) =
∞∑
n=0

P(x+ S(n) = y, τx > n). (2)

A function h : K → R is said to be (discrete) harmonic with respect to K and {S(n)}
if for every x ∈ K and n > 1,

h(x) = E[h(x+ S(n)), τx > n].

Remark that the above identity for n = 1 implies all the other relations for n > 2. In
the sequel, a harmonic function with respect to K and {S(n)} will be simply called a
harmonic function.

Denisov and Wachtel proved [16, 18] the existence of a positive harmonic function
V : K → R+ defined by

V (x) = lim
n→∞

E[u(x+ S(n)), τx > n]. (3)

This harmonic function is of central importance in the present paper, since it will
ultimately be identified with the Martin boundary of the random walk in K.

We denote by {S′(n)}n>1 the reverse random walk, which is the sum of the increments
{X ′(n)}n>1, i.i.d, independent from {X(n)}n>1 and such that X ′(n) is distributed as
−X. In the sequel, every quantity involving S′ will be denoted similarly as the same
quantity involving S, with a prime added at the right.

Notations and assumptions on cones and random walks. Our hypotheses are of three
types: some of them only concern the random walk (see (H1), (H2) and (H3)), the
assumption (H4) is a convexity restriction on the cone, while the last ones, namely,
(H5), (M1) and (M2) (moment assumptions) concern the behavior of the random walk
in the cone.

(H1) E[Xi] = 0 (zero drift assumption),
(H2) cov(Xi, Xj) = δi,j (identity covariance matrix assumption),
(H3) the random walk is strongly aperiodic, i.e., if A = {x ∈ Λ : P(X = x) > 0},

then z +A generates Λ for all z ∈ Λ.
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Notice that (H2) is not a restriction: we may always perform a linear transform so as
to decorrelate the random walk (obviously this linear transform impacts on the cone in
which the walk is defined).

Denote by Sd−1 the unit sphere of Rd and by Σ an open, connected subset of Sd−1.
Let K be the cone generated by the rays emanating from the origin and passing through
Σ, i.e., Σ = K ∩ Sd−1; see Figure 1 for two examples. In this paper, we shall suppose
that

(H4) the cone K is convex.

We further require a form of irreducibility of the random walk, which is an adaptation
to unbounded random walks of the concept of reachability condition from infinity
introduced in [9].

(H5) The random walk S is asymptotically strongly irreducible, meaning that there
exists a constant R > 0 such that for any z ∈ K ∩Λ with |z| > R, there exists
a path with positive probability in K ∩B(z,R) which starts in z+K and ends
at z.

There are several simple situations where the latter condition is satisfied, in particular
when P(X ∈ −K) > 0. If K is C2, the condition (H5) is superfluous.

When K is convex, on each point q of ∂Σ there exists a non-trivial closed ball B
in Sd−1 such that B ∩ Σ = q. Hence, by standard analytic results [31, Thm 6.13], Σ
is regular for the Dirichlet problem. In particular (see for example the introduction of
[3]), there exists a function u harmonic on K, i.e., ∆u = 0, such that u is positive in
K and u∂K = 0, ∂K denoting the boundary of K. This function is unique up to scalar
multiplication, see [33, Cor. 6.10 and Rem. 6.11], and is called the réduite of K. It is
homogeneous (or radial) in the sense that u(tx) = tpu(x) for all t > 0 and x ∈ K. The
homogeneity exponent p is called the exponent of the cone K.
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Figure 1. In dimension 2, Σ is an arc of circle and the cone K is a
wedge of opening β. In dimension 3, any section Σ ⊂ S2 defines a cone.
The picture on the right gives the example of a spherical triangle on
the sphere S2, corresponding to the orthant K = N3 (after possible
decorrelation of the coordinates, see (H2)).
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Our next assumption (M1) involves the quantity

q = sup
σ∈∂Σ

qσ > 1,

that we now define. For each point σ ∈ ∂Σ, we define

Kσ := {u ∈ Rd : ∃t > 0, σ + tu ∈ K}. (4)

By convexity of K, the set Kσ is a convex cone, which represents the cone tangent to
K at σ. Let qσ denote the exponent of Kσ. Note that we always have 1 6 Kσ 6 p,
since K ⊂ Kσ and Kσ is included in a half-space. When K is C2 at σ, Kσ is precisely
a half-space, which yields qσ = 1.

We shall also assume a moment condition on the increments, which depends on the
asymptotic shape of the cone K:

(M1) E[|X|r(p)] < ∞ for some r(p) > p + q + d − 2 + (2 − p)+ and E[|X|2+δ] < ∞
for some δ > 0. If the boundary of K is C2 (which implies q = 1), the strict
inequality for r(p) may be replaced by a weak inequality.

In the case where the cone is C2 or when considering asymptotic results inside the cone,
the latter moment condition can be replaced by the following assumption of the local
structure of the distribution of the increments:

(M2) P(X = x) 6 |x|−p−d+1f(|x|) for some function f which is decreasing and such

that u(3−p)∨1f(u)→ 0 as u→∞.

In this paper, we do not require the existence of a bigger cone K ′ with ∂K \ {0} ⊂
int(K ′), such that the réduite u can be extended to a harmonic function on K ′. This
necessary condition in [16] is removed in [18] under the moment assumption (M1).

Main results. Our first main result is the asymptotics of the Green function (2) in the
regime where the endpoint tends to infinity while staying far from the boundary.

Theorem 1. Set r1(p) = p+d−2 + (2−p)+ and assume that either E|X|r1(p) is finite
or (M2) holds.

(a) If there exists α > 0 such that |y| → ∞ with dist(y, ∂K) > α|y|, then

GK(x, y) ∼ cV (x)
u(y)

|y|2p+d−2
. (5)

(b) If E|X|r is finite for some r > r1(p), there exists ρ > 0 such that (5) holds
uniformly for |y| → ∞ with dist(y, ∂K) > |y|1−ρ.

We will construct an example showing that the moment assumptions of Theorem 1
are optimal (see Section 5). We now turn to the Green function asymptotics along the
boundary. In the case when the cone is a half-space, we obtain the following:

Theorem 2. Assume that E|X|d+1 < ∞. Assume also that x = (0, . . . , 0, xd) with
xd = o(|y|). Then

GK(x, y) ∼ cV (x)V ′(y)

|y|d
.

Here, V ′ is the harmonic function for the killed reversed random walk {−S(n)}.
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Theorem 2 appears to be not only an extension of Uchiyama’s results [51], but will
be one of the crucial tools to derive the boundary asymptotics of the Green function
in the general convex case (Theorem 3 below).

When K is not a half-space but a general convex cone, we first introduce

Kρ := {y ∈ K : dist(y, ∂K) > R|y|1−ρ} (6)

as well as the stopping time

θy = inf{n > 1 : y + S′(n) ∈ Kρ}, (7)

for y ∈ K. We denote by yρ the random element y + S′(θy).

Theorem 3. Suppose that |y| goes to infinity with y/|y| converging to σ ∈ ∂Σ. Assume

(H1)–(H5) and E|X|r(p) <∞ for some r(p) > p+ qσ + d− 2 + (2− p)+, then

GK(x, y) ∼
V (x)E[u(yρ), τ

′
y > θy]

|y|p+q+d−2
.

If qσ = 1, then the latter asymptotics can be improved as

GK(x, y) ∼ V (x)cσ(dist(y, ∂K))

|y|p+d−1
,

with cσ a positive function which is asymptotically linear, and the moment assumption

can be replaced by E|X|p+d−1+(2−p)+ <∞ or by (M2).

Let us comment on three different aspects of Theorem 3. First, we will construct
an example showing that our hypotheses are optimal (see Section 5). Moreover, in the
above result, the convergence is uniform on all σ ∈ Σ. Finally, Theorem 3 easily implies
the identification of the Martin boundary of S killed when exiting K, answering the
uniqueness problem of the discrete harmonic functions.

Theorem 4. Assume (H1)–(H5) and (M1). The Martin kernel of S killed on the
boundary of K is reduced to one point, which corresponds to the function V in (3). In
particular, there is up to a scaling constant a unique positive harmonic function killed
at the boundary of K. If K is C2, (M1) can be changed into the local condition (M2).

Towards a Ney and Spitzer theorem in cones. Ney and Spitzer consider in [41] random
walks with non-zero drift in Zd and prove that the Martin boundary is homeomorphic
to the unit sphere Sd−1. In [37, 35], Ignatiouk-Robert and Loree prove that for
random walks in Nd with a drift whose all entries are non-zero, the Martin boundary
is homeomorphic to Sd−1 ∩Rd

+. However, the question of a general non-zero drift (i.e.,
with zero entries allowed) is left opened in [37, 35]. Our results should allow to complete
the picture; this will be the topic of future research.

Description of the methods used in our proofs. One of the standard approaches to
the analysis of Green functions is based on local limit theorems for the process
under consideration. For random walks confined to cones, one can apply local limit
theorems from [16]. Since these results are applicable for n > ε|y|2 only, one gets an
asymptotically sharp lower estimate for GK . To obtain an upper bound one needs
good control over P(x + S(n) = y, τx > n) for n � |y|2. Caravenna and Doney
[12] have used this approach to obtain necessary and sufficient conditions for validity
of the local renewal theorem for one-dimensional non-restricted random walks. To
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control local large deviation probabilities in our model, we use recent results obtained
in Raschel and Tarrago [45] by using heat kernel estimates. These results, which are
improvements of the local limit theorems of [16], lead to Theorem 1 (b) and to the
first claim in Theorem 3. The analysis of local probabilities requires a slightly stronger
moment assumptions than in Theorem 1 (a) and in the second half of Theorem 3
correspondingly. In order to derive these results, we use a different approach, where
we control the whole sum

∑
n6ε|y|2 P(x + S(n) = y, τx > n) instead of controlling

every summand. This part is based on the functional limit theorem for walks in cones
obtained in Duraj and Wachtel [23]. As we have mentioned before, this approach
requires less moments, but one needs to impose stronger regularity conditions on the
boundary of the cone.

Structure and sketch of the results. Our paper is organized as follows:

• Section 2: proof of Theorem 1 on the Green function asymptotics in the interior
domain.
• Section 3: proof of Theorem 2 on the Green function asymptotics along the

boundary in the case of the half-space; this result has its own interest and will
also be crucially used in the next section, in the general convex case.
• Section 4: proof of Theorem 3 on the Green function asymptotics along the

boundary in the general case; proof of Theorem 4 on the structure of the Martin
boundary (uniqueness problem).
• Section 5: optimality of the moment assumptions in Theorems 1 and 3.
• Section 6: proof of various lower bounds on the survival probability, which are

used when showing Theorem 3.

Acknowledgments. KR would like to thank Rodolphe Garbit, Irina Ignatiouk-Robert
and Sami Mustapha for various discussions concerning Martin boundary and the
uniqueness problem for harmonic functions.

2. Asymptotics of the Green function far from the boundary

In this section, we prove Theorem 1.

Sketch of the proof. The proof runs as follows. Fix some ε > 0 and split GK(x, y) into
two parts:

GK(x, y) =
∑

n<ε|y|2
P(x+ S(n) = y, τx > n) +

∑
n>ε|y|2

P(x+ S(n) = y, τx > n)

=: S1(x, y, ε) + S2(x, y, ε).

The main idea is that the first term will be negligible, meaning that

lim
ε→0

lim sup
|y|→∞

|y|2p+d−2

u(y)
S1(x, y, ε) = 0, (8)

while the second term S2(x, y, ε) will provide the main contribution in the Green
function asymptotics. The asymptotic analysis (8) of S1(x, y, ε) is very different under
the hypotheses (a) and (b) of Theorem 1; on the contrary, the study of S2(x, y, ε) will
be done uniformly in the two cases.
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Asymptotics of S2(x, y, ε). Let ρ > 0 small enough (to be chosen later), A = ε−1 and

KA
n,ε = {z ∈ K : |z| 6 A

√
n, dist(z, ∂K) > n1−ε}.

By [45, Prop. 9],

np/2+d/2

u
(

y√
n

) P(x+ S(n) = y, τx > n) = κH0V (x)e−|y|
2/2n + o(1)

uniformly in y ∈ KA
n,ε, and by [16, Thm 5],

np/2+d/2P(x+ S(n) = y, τx > n) = κH0V (x)u

(
y√
n

)
e−|y|

2/2n + o(1)

uniformly in y ∈ K. As |y| → ∞ with dist(y, ∂K) > |y|1−ρ and ρ small enough, one

has y ∈ KA
n,ε for all ε|y|2 6 n 6 |y|2+ε′ , for some ε′ > 0. Hence,

S2(x, y, ε) = κH0V (x)
∑

ε|y|26n6|y|2+ε′

1

np/2+d/2
u
( y√

n

)
e−|y|

2/2n

+ o

u(y)
∑

ε|y|26n6|y|2+ε′
n−p−d/2

+ o

 ∑
n>|y|2+ε′

1

np/2+d/2


= κH0V (x)u(y)

∑
n>ε|y|2

1

np+d/2
e−|y|

2/2n

+ o
(

(u(y)|y|−p + |y|−ε′)|y|−p−d+2
)

= κH0V (x)u(y)|y|−2p−d+2

∫ ∞
ε

z−p−d/2e−1/(2z)dz

+ o
(

(u(y)|y|−p + |y|−ε′)|y|−p−d+2
)
.

Letting here ε → 0 and recalling that u(y) > c|y|p−ρ for dist(y, ∂K) > |y|1−ρ, see [16,
Lem. 19] and [52], we obtain that for ρ small enough,

lim
ε→0

lim
|y|→∞

dist(y,∂K)>|y|1−ρ

|y|2p+d−2

u(y)
S2(x, y, ε) = κH0V (x)

∫ ∞
0

z−p−d/2e−1/(2z)dz. (9)

Asymptotics of S1(x, y, ε) in case (a). Let us prove the first part of Theorem 1. It
remains to show that (8) holds. Fix additionally some small δ > 0 and define

Θy := inf{n > 1 : x+ S(n) ∈ Bδ,y},
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where Bδ,y denotes the ball of radius δ|y| around the point y. Then we have

S1(x, y, ε) =
∑

n<ε|y|2
P(x+ S(n) = y, τx > n > Θy)

=
∑

n<ε|y|2

n∑
k=1

∑
z∈Bδ,y

P(x+ S(k) = z, τx > k = Θy)P(z + S(n− k) = y, τz > n− k)

6
∑

k<ε|y|2

∑
z∈Bδ,y

P(x+ S(k) = z, τx > k = Θy)
∑

j<ε|y|2−k

P(z + S(j) = y)

6 E
[
G(ε|y|2)(y − x− S(Θy)); τx > Θy,Θy 6 ε|y|2

]
, (10)

where

G(t)(z) :=
∑
n<t

P(S(n) = z).

We first focus on the case d > 3. Then, according to [50, Thm 2], for all z ∈ Zd,

G(z) := G(∞)(z) 6
C

1 + |z|d−2
, (11)

provided that E|X1|sd < ∞, where sd = 2 + ε for d = 3, 4 and sd = d − 2 for d > 5.
Since r1(p) = p+ d− 2 + (2− p)+ > sd, (11) yields

S1(x, y, ε)

6 CE

[
1

1 + |y − x− S(Θy)|d−2
; τx > Θy,Θy 6 ε|y|2

]
(12)

6 CP(|y − x− S(Θy)| 6 δ2|y|, τx > Θy,Θy 6 ε|y|2) +
C(δ)

|y|d−2
P(τx > Θy,Θy 6 ε|y|2).

Noting now that |y − x − S(Θy)| 6 δ2|y| yields |X(Θy)| > δ(1 − δ)|y| and using our
moment assumption, we conclude that

P(|y − x− S(Θy)| 6 δ2|y|, τx > Θy,Θy < ε|y|2)

6
∑

k<ε|y|2
P(|X(k)| > δ(1− δ)|y|, τx > k = Θy)

6 P(|X| > δ(1− δ)|y|)
∑

k<ε|y|2
P(τx > k − 1)

= o
(
|y|−r1(p)E[τx; τx < |y|2]

)
= o

(
|y|−d−p+2

)
. (13)
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Recalling that V is harmonic for S(n) killed at leaving K, we obtain

P(τx > Θy,Θy < ε|y|2)

=
∑

k<ε|y|2

∑
z:|z−y|6δ|y|

P(τx > k,Θy = k, x+ S(k) = z)

=
∑

k<ε|y|2

∑
z:|z−y|6δ|y|

V (x)

V (z)
P(V )(Θy = k, x+ S(k) = z)

6
V (x)

minz∈K:|z−y|6δ|y| V (z)
P(V )(Θy < ε|y|2).

It follows from the assumption dist(y, ∂K) > α|y| and [16, Lem. 13] that for sufficiently
small δ > 0,

min
z∈K:|z−y|6δ|y|

V (z) > C|y|p.

As a result,

|y|pP(τx > Θy,Θy < ε|y|2) 6 C(x)P(V )

(
max
n<ε|y|2

|x+ S(n)| > (1− δ)|y|
)
.

Applying now the functional limit theorem for S(n) under P(V ), see Theorem 2 and
Corollary 3 in [23], we conclude that

lim
ε→0

lim sup
|y|→∞

|y|pP(τx > Θy,Θy < ε|y|2) = 0. (14)

Note that the functional limit theorem from [23] only requires p ∨ (2 + ε)-moments.

Combining (12)–(14), we infer that (8) is valid under the assumption E|X1|r1(p) < ∞
in all dimensions d > 3.

Assume now that (M2) holds. It is clear that this restriction implies E|X1|p < ∞.
Therefore, [16, Thm 5] is still applicable and (9) remains valid for all random walks
satisfying (M2). In order to show that (8) remains valid as well, we notice that

S1(x, y, ε)

6 CE

[
1

1 + |y − x− S(Θy)|d−2
; |y − x− S(Θy)| 6 δ2|y|, τx > Θy,Θy 6 ε|y|2

]
+

C(δ)

|y|d−2
P(τx > Θy,Θy 6 ε|y|2).

In view of (14), we have to estimate the first term on the right-hand side only. For any
z such that |z − y| 6 δ2|y| we have

P(x+ S(Θy) = z, τx > Θy,Θy 6 ε|y|2)

6
ε|y|2∑
k=1

∑
z′∈K\Bδ,y

P(x+ S(k − 1) = z′, τx > k − 1)P(X(k) = z − z′).
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Since |z − z′| > δ(1− δ)|y|, we infer from (M2) that

P(x+ S(Θy) = z, τx > Θy,Θy 6 ε|y|2)

6 C(δ)|y|−p−d+1f(δ(1− δ)|y|)
ε|y|2∑
k=1

P(τx > k − 1)

6 C(δ)|y|−p−d+1f(δ(1− δ)|y|)E[τx; τx < |y|2]. (15)

Here and in the following we use that E[τx; τx < |y|2] ∼ C|y|−p+2 if p 6 2, as shown
in [16, Thm 1]. For every positive integer m, there are O(md−1) lattice points z such
that |z − y| ∈ (m,m+ 1]. Then, using (15), we obtain

E

[
1

1 + |y − x− S(Θy)|d−2
; |y − x− S(Θy)| 6 δ2|y|, τx > Θy,Θy 6 ε|y|2

]

6 C(δ)|y|−p−d+1f(δ(1− δ)|y|)E[τx; τx < |y|2]

δ2|y|∑
m=1

md−1

1 +md−2

6 C(δ)|y|−p−d+3f(δ(1− δ)|y|)E[τx; τx < |y|2].

Recalling that u(3−p)∨1f(u)→ 0, we conclude that

E

[
1

1 + |y − x− S(Θy)|d−2
; |y − x− S(Θy)| 6 δ2|y|, τx > Θy,Θy 6 ε|y|2

]
= o(|y|−p−d+2).

This completes the proof of the theorem for d > 3.
We now focus on d = 2; in this case, we cannot use the full Green function. We will

obtain bounds for G(t)(x) directly from the local limit theorem for unrestricted walks.
More precisely, we shall use Propositions 9 and 10 from Chapter 2 in Spitzer’s book
[47], which assert that as n→∞,

P(S(n) = z) =
1

2πn
e−|z|

2/2n +
ρ(n, z)

|z|2 ∨ n
, (16)

where as n→∞,

sup
z∈Z2

ρ(n, z)→ 0.

This asymptotic representation implies that for all t > 2,

sup
z∈Z2

G(t)(z) 6 C log t. (17)

Furthermore, for |z| → ∞ and t 6 a|z|2, one has

G(t)(z) 6
a|z|2∑
n=1

1

2πn
e−|z|

2/2n + o(1) =
1

2π

∫ a

0

1

v
e−1/2vdv + o(1).

As a result,

sup
z∈Z2

G(a|z|2)(z) 6 C(a) <∞. (18)
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Using (17) and (18), we obtain

S1(x, y, ε) 6 C log |y|P(|y − x− S(Θy)| 6 δ2|y|, τx > Θy,Θy 6 ε|y|2)

+ C(ε)P(τx > Θy,Θy 6 ε|y|2).

According to (13),

P(|y − x− S(Θy)| 6 δ2|y|, τx > Θy,Θy 6 ε|y|2) = o(|y|−r1(p)E[τx; τx < |y|2])

= o(|y|−p/ log |y|).

Combining this with (14), we conclude that (8) holds for d = 2. The proof of Theorem 1
(a) is completed.

Preliminary estimates for the proof of Theorem 1 (b). In this part, we give some bounds
on the local probability P(x+ S(n) = y, τx > n), when |x− y| is between the order of

fluctuations n1/2 and n1/2+κ, for some κ small enough. The main result will be given
in Proposition 8; it needs three lemmas, stated as Lemmas 5, 6 and 7.

We will use the coupling of Zaitsev and Götze (see [32, Thm 4] and [16, Lem. 17])
for random walks having increments satisfying to (M1). Suppose that X has moments
of order r(p), with r(p) > p+ d− 2 + (2− p)+ and r(p) > 2 + δ. By [27, Thm 4], there
exists a constant K such that for γ 6 1/2− 1/r(p),

P

(
sup

06s6n
|S(bkc)−B(k)| > n1/2−γ

)
6 Kn−r, (19)

with

r = r(p)(1/2− γ)− 1. (20)

In the proof of the following lemma, we use several estimates from [45] on the
transition probabilities of a Brownian motion in a cone. Those estimates come from
general Gaussian estimates for the heat kernel in a Lipschitz domain, see [33, Sec. 6]
for general statements. The first inequality from [33, Thm 5.11] gives an upper bound
for the transition probabilities in K for the Brownian motion started at y ∈ K killed
outside K:

P(y +B(1) ∈ dz, τbm
y > 1) 6 CP(τbm

y > 1) exp(−|z − y|2/c)dz, (21)

for some positive constants c and C. The survival time of the Brownian motion in K
is well estimated by the réduite, as shows the following inequality from [33, Thm 5.4]:

P(τbm
y > 1) 6 Cu(y). (22)

Define

Kn,ε = K∞n,ε = {z ∈ K : dist(z, ∂K) > n1−ε}.

Lemma 5. There exist κ, ε, c, C > 0 such that for all n large enough and A
√
n 6 t 6

n1/2+κ,

P(|S(n)| > t, τy > n) 6 C
(
u(y/
√
n) exp(−t2/(cn)) + n−r

)
and for y ∈ Kn,ε such that |y| 6 n1/2+κ,

P(τy > n) 6 Cu(y/
√
n).
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Proof. Choose x0 ∈ Rd and R0 > 0 such that

|x0| = 1, x0 +K ⊂ K and dist(Rx0 +K, ∂K) > 1.

Let y ∈ KA
n,ε and set y+ := y+Rx0n

1/2−γ . Using the same construction as in the proof
of [16, Lem. 20], we get

P(|S(n)| > t, τy > n)

6
∫
|z−y/

√
n|>t/

√
n−2Rn−γ

P(y+/
√
n+B(1) ∈ dz, τbm

y+/
√
n > 1) +O(n−r).

Using (21) yields∫
|z−y/

√
n|>t/

√
n−2Rn−γ

P(y+/
√
n+B(1) ∈ dz, τbm

y+/
√
n > 1)

6 CP(τbm
y+/
√
n > 1)

∫
|z−y/

√
n|>t/

√
n−2Rn−γ

C exp(−|z − y+/
√
n|2/c)dz. (23)

By the local Hölder continuity of the survival probability P(τbm
x > 1) in x (see [45,

Prop. 18]), there exist α, χ,Cα > 0 such that

P(τbm
y+/
√
n > 1) 6 P(τbm

y/
√
n > 1) + Cα

(
|y|/
√
n
)χ
n−αγ .

Hence, using (22) yields

P(τbm
y+/
√
n > 1) 6 Cu(y/

√
n) + Cαn

χκ−αγ .

By [16, Lem. 19], one has

u(x) > cd(x, ∂K)p, (24)

so that u(y/
√
n) > dist(y/

√
n,K)p > n−pε; choosing κ such that αγ−χκ > 0 and then

ε such that ε 6 (αγ−χκ)/p yields that for some C > 0 and y ∈ Kn,ε with |y| 6 n1/2+κ,

P(τbm
y+/
√
n > 1) 6 Cu(y/

√
n).

Hence, integrating in (23) over the angular coordinates gives∫
|z−y/

√
n|>t/

√
n−2Rn−γ

P(y+/
√
n+B(1) ∈ dz, τbm

y+/
√
n > 1)

6 Cu(y/
√
n)

∫
z>t/

√
n−4Rn−γ

exp(−|z|2/c)dz

for some C > 0. The latter inequality for t = 0 gives the second inequality of Lemma 5.
For the first one, notice that there exists C > 0 such that

∫∞
x exp(−z2)dz 6 C exp(−x2).

Choosing κ < γ yields exp((t/
√
n− 4Rn−γ)2/c) ∼ exp((t/

√
n)2/c) for t 6 n1/2+κ, and

finally we obtain that for some constant C > 0,∫
|z−y/

√
n|>t/

√
n−2n−γ

P(y+/
√
n+B(1) ∈ dz, τbm

y+/
√
n > 1) 6 Cu(y/

√
n) exp((t/

√
n)2/c).

�

We can extend the latter result by relaxing the condition y ∈ Kn,ε.
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Lemma 6. Let x ∈ K. There exists C > 0 such that for all t 6 n1/2+κ (κ being as in
Lemma 5),

P(|S(n)| > t, τx > n) 6 C
(
V (x)n−p/2 exp(−t2/(cn)) + n−r

)
.

Proof. Introduce the stopping time

tx,ε(n) = inf{n > 1 : x+ S(n) ∈ Kn,ε} (25)

and xε(n) = x+ S(tx,ε(n)). Then, applying [16, Sec. 4] to Lemma 5, we get

P(|S(n)| > t,τx > n) 6 C
(
n−p/2 exp(−t2/(cn))×

E
(
u(xε(n)), τx > tx,ε(n), tx,ε(n) 6 n1−ε)+ n−r

)
+ n−p/2O

(
E
(
|xε(n)|p, |xε(n)| > θn

√
n, τx > tx,ε(n), tx,ε(n) 6 n1−ε))

+O(exp(−Cnε′),

where θn = n−ε/8 and ε′ is small enough. Using Lemma 15 with α = p and q = r(p)
gives

n−p/2E
(
|xε(n)|p, |xε(n)| > θn

√
n, τx > tx,ε(n), tx,ε(n) 6 n1−ε) = o(n−(p+d−2+(2−p)+)/2),

since p+ d− 2 + (2− p)+ < r(p). Since (p+ d− 2 + (2− p)+)/2 > r, see (20), Lemma 5
yields

n−p/2E
(
|xε(n)|p, |xε(n)| > θn

√
n, τx > tx,ε(n), tx,ε(n) 6 n1−ε) = o(n−r)

for t 6 n1/2+κ. Since, by [16, Lem. 21],

lim
n→∞

E
(
u(xε(n)), τx > tx,ε(n), tx,ε(n) 6 n1−ε) = V (x),

the result is deduced. �

For the next lemma, we need some bounds from [16, Lem. 27 and 29]. There exist
positive constants a and C such that for all u > 0,

lim sup
n→∞

nd/2 sup
|z−x|>u

√
n

P(x+ S(n) = z) 6 C exp(−au2). (26)

In particular, there exists C(x) > 0 such that

sup
y∈K

P(x+ S(n) = y, τx > n) 6 C(x)n−p/2−d/2. (27)

Lemma 7. There exist C and n0 such that for n > n0, all y ∈ Kn,ε with |y| 6 n1/2+κ

and all z ∈ K,

P(y + S(n) = z, τy > n) 6 Cn−d/2u(y/
√
n).

Proof. Let m := bn/2c. Then

P(y + S(n) = z, τy > n) =
∑
z′∈K

P(y + S(m) = z′, τy > m)P(z′ + S(n−m) = z, τz′ > n−m)

6 CP(τy > m)m−d/2,
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where we have used (26) with u = 0 to bound P(z′ + S(m) = z, τz′ > n −m). Thus,

by Lemma 5, there exists n0 such that for n > n0 and y ∈ Kn,ε with |y| 6 n1/2+κ,

P(y + S(n) = z, τy > n) 6 Cn−d/2u(y/
√
n). �

Putting the previous results together yields the following estimate on the local
probability at middle range.

Proposition 8. Let x ∈ K. There exists C such that

P(x+ S(n) = y, τx > n) 6 CV (x)n−p/2−d/2
(
u(y)n−p/2 exp(−|x− y|2/(cn)) + n−r

)
for all y ∈ Kn,ε such that |y − x| 6 n1/2+κ.

Proof. Let m := bn/2c. Then we have

P(x+ S(n) = y, τx > n)

=
∑

z∈K: |z−x|>|y−x|/2

P(x+ S(m) = z, τx > m)P(y + S′(n−m) = y, τ ′y > n−m)

+
∑

z∈K: |z−x|<|y−x|/2

P(x+ S(m) = z, τx > m)P(y + S′(n−m) = y, τ ′y > n−m)

= M1 +M2.

By Lemma 6 and Lemma 7, the first sum is bounded from above by

M1 6 Cu(y/
√
n)n−d/2P(|S(n)| > |x− y|/2, τx > n)

6 CV (x)u(y/
√
n)n−d/2

(
n−p/2 exp(−|y − x|2/(cn)) + n−r

)
,

where we have used in the last inequality the hypothesis |y− x|/2 6 n1/2+κ in order to
apply Lemma 6. Similarly, by (27) and Lemma 5, the second sum is bounded by

M2 6 CV (x)n−d/2−p/2P(|S′(m)| > |x− y|/2, τ ′y > n)

6 CV (x)n−d/2−p/2
(
u(y/
√
n) exp(−|y − x|2/(cn)) + n−r

)
6 CV (x)u(y)n−d/2−p/2

(
n−p/2 exp(−|y − x|2/(cn)) + n−r

)
,

where we have used in the last inequality the hypothesis that |y − x|/2 6 n1/2+κ in
order to apply Lemma 5, as well as the fact that u(y) > 1 for y ∈ Kn,ε and n large
enough. The result is then deduced by summing the bounds of M1 and M2. �

Asymptotics of S1(x, y, ε) in case (b). We now prove Theorem 1 under the hypothesis
(b). Without loss of generality, we assume that d > 2. We have to show that (8) holds
for y satisfying dist(y, ∂K) > |y|1−ρ. Our strategy is to decompose S1(x, y, ε) as a sum
of three terms:

S1(x, y, ε) = Σ1 + Σ2 + Σ3 =

 N1∑
n=0

+

N2∑
n=N1+1

+

ε|x−y|2∑
n=N2

P(x+ S(n) = y, τx > n), (28)

with N1 of the form |y − x|2−ν and N2 to be defined later. We begin by giving an
estimate of the truncated Green function Σ1.
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Proposition 9. Let ν > 0 and suppose that E|X|r+(2−p)+ <∞. Then, for all a < r,

|y−x|2−ν∑
n=0

P(x+ S(n) = y, τx > n) = o(|x− y|a).

Proof. Following the proof of [16, Lem. 24], we introduce the stopping time

µ = inf{i > 1 : |X(i)| > |y − x|1−ν/α},

where α is large enough and will be chosen later. Let n 6 |y − x|2−ν . Then

P(x+ S(n) = y, τx > n)

= P(x+ S(n) = y, τx > n, µ > n) + P(x+ S(n) = y, τx > n, µ 6 n).

On the one hand, using Fuk-Nagaev inequalities [30] as in [16, Cor. 23] yields

P(x+ S(n) = y, τx > n, µ > n) 6 P(|S(n)| > |x− y|/2, sup
k6n
|X(k)| 6 |y − x|1−ν/α)

6

(
n
√
de

|x− y|2−ν/α/2

)|x−y|ν/α/(2√d)

6

(
|x− y|2−ν

√
de

|x− y|2−ν/α/2

)2|x−y|ν/α/(2
√
d)

6 exp(−C|x− y|ν/α)

for y large enough. On the other hand, recall that since X admits moments of order
r(p) := r + (2− p)+,

P(x+ S(n) = y, τx > n, µ 6 n)

6
n∑
k=1

P(τx > k − 1, |X(k)| > |y − x|1−ν/α, y + S′(n− k) = x+ S(k))

6 CV (x)
E[|X|r(p)]

|y − x|(1−ν/α)r(p)

n∑
k=1

k−p/2(n+ 1− k)−d/2,

where we have used the Markov property of the random walk, applied (26) with u = 0
to S′(n− k) and then (27) in the last inequality. Hence, we get

|y−x|2−ν∑
n=0

P(x+ S(n) = y, τx > n) 6 |y − x|2−ν exp(−C|x− y|ν/α)

+ CV (x)
E[|X|r(p)]

|y − x|(1−ν/α)r(p)

|y−x|2−ν∑
n=1

n∑
k=1

k−p/2(n+ 1− k)−d/2

6 C ′|y − x|−(1−ν/α)r(p)

|y−x|2−ν∑
k=1

k−p/2
|y−x|2−ν∑
k=1

k−d/2.
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Since d > 2, we have the elementary estimate, for some constant C > 0,

|y−x|2−ν∑
k=1

k−p/2
|y−x|2−ν∑
k=1

k−d/2 ∼ C log |y − x|1d=2+1p=2
(
|y − x|2−ν

)(1−p/2)∧0
.

Hence,

|y−x|2−ν∑
n=0

P(x+ S(n) = y, τx > n)

6 C|y − x|−(1−ν/α)r(p)+(2−ν)((1−p/2)∧0) log |y − x|1d=2+1p=2 .

Finally, since r(p) = r+ (2− p)+, for a < r and α large enough, we conclude the proof
of Proposition 9. �

We now conclude the proof of Theorem 1 (b).

Lemma 10. Suppose that E[|x|r(p)] <∞ with r(p) > p+ d− 2 + (2− p)+. Then,

lim
ε→0

lim sup
|y|→∞

dist(y,∂K)>|y|1−ρ

|y|2p+d−2

u(y)
S1(x, y, ε) = 0.

Proof. Our starting point is the three-term decomposition (28). Since dist(y, ∂K) >
|y|1−ρ, we have u(y) > |y|p−pρ by (24). Hence, it suffices to prove that

lim sup
|y|→∞

dist(y,∂K)>|y|1−ρ

|y|p+d−2+pρ(Σ1 + Σ2) = 0 (29)

and

lim
ε→0

lim sup
|y|→∞

dist(y,∂K)>|y|1−ρ

|y|2p+d−2

u(y)
Σ3 = 0. (30)

In order to prove (29), we start by the following estimate, obtained in Proposition 9,
for ρ small enough:

Σ1 = o(|x− y|−p/2−d/2−pρ).
We now study Σ2. Let ν > 0 be such that (2− ν)(1/2 +κ) > 1, with κ as in Lemma 5.
Suppose that δ < ν. With c as in Lemma 5, introduce

N2 = inf{n > 1 : exp
(
− |y−x|

2

cn

)
> n−r+pρ}.

Recall that r = r(p)(1/2 − γ) − 1, see (20), and that r > p/2 for d > 2 and γ small
enough, so that N2 exists as soon as ρ is small enough. Furthermore, for d > 2 and y
large enough, N2 > N1, since for K large enough,

exp

− |y − x|2
c |y−x|2
K log |y−x|

 = |y − x|−K/c 6
(
|y − x|2

K log |x− y|

)−r+p/2
.
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By our choice of ν and δ < ν, |y−x| 6 n1/2+κ for n > |y−x|2−δ and y large enough.
Applying Proposition 8 to Σ2 then yields

Σ2 6 CV (x)ε|x− y|2
(
|y − x|2−ν

)−r−p/2−d/2
6 CεV (x)u(y)|y − x|−(2r+p+d−2)+f(ν) 6 C

V (x)

A2
|y − x|−(2r+p+d−2)+f(ν),

where f : R→ R is linear. Since r > pρ , choosing ν small enough yields

Σ2 6 CεV (x)|y − x|−(r+p+d−2+u),

with u = 2r − pρ > 0, for y large enough. Hence (29) is proved.
We turn to the term Σ3. First, by the choice of N2 and Proposition 8,

Σ3 6 CV (x)u(y)

εb|y−x|2c∑
n=N2+1

n−p−d/2 exp

(
−|y − x|

2

cn

)
.

Set gk,B(t) = t−k exp(−B/t), with B, k > 0. Then

g′k,B(t) = (Bt−k−2 − kt−k−1) exp(−B/t),

and thus gk,B is increasing on [0, B/k]. Applying the latter property to k = p + d/2
and B = |y − x|2/c yields that if ε−1 > c(p + d/2) (which we assume from now on),
then

Σ3 6 Cε|y|−2p−d+2u(y) exp(−ε−1/c).

This implies (30), thereby completing the proof. �

3. Boundary asymptotics of the Green function: the half-space case

In this section we shall consider a particular cone

K =
{
x ∈ Rd : xd > 0

}
.

Since the rotations of the space do not affect our moment assumptions, the results of
this section remain valid for any half-space in Rd. For this very particular cone, we
have

• u(x) = xd;
• τx = inf{n > 1 : xd + Sd(n) 6 0};
• V (x) depends on xd only and is proportional to the renewal function of ladder

heights of the random walk {Sd(n)}.
In other words, the exit problem from K is actually a one-dimensional problem. This
allows is to use existing results for one-dimensional walks.

The proof of Theorem 2 is based on the following simple generalization of known
results for cones.

Lemma 11. Assume that E|X|2+δ <∞. Then, uniformly in x ∈ K with xd = o(
√
n),

(a) P(τx > n) ∼ κV (x)n−1/2;

(b) (x+S([nt])√
n

)t∈[0,1] conditioned on {τx > n} converges weakly to the Brownian

meander in K;

(c) supy∈K

∣∣∣n1/2+d/2P(x+ S(n) = y; τx > n)− cV (x) yd√
n
e−|y−x|

2/2n
∣∣∣→ 0.
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Proof. The first statement is the well-known result for one-dimensional random walks,
see [21, Cor. 3]. The second and third statements for fixed starting points x have been
proved in [23] and in [16], respectively. To consider the case of growing xd, one has to
make only one change: Lemma 24 from [16] should be replaced by the estimate

lim
n→∞

1

V (x)
E
[
|x+ S(νn)|; τx > νn, |x+ S(νn)| > θn

√
n, νn 6 n

1−ε] = 0

uniformly in xd 6 θn
√
n/2. If xd > n1/2−ε then νn = 0 and the expectation equals zero.

If xd 6 n1/2−ε then one repeats the proof of [16, Lem. 24] with p replaced by 1 and uses
the part (a) of the lemma to obtain an estimate for the sum

∑
j6n1−ε P(τx > j − 1)

uniform in xd. (In [16], the Markov inequality has been used, since one does not have
the statement (a) in general cones.) �

Lemma 12. Uniformly in y with yd = o(
√
n),

P(x+ S(n) = y, τx > n) ∼ cV (x)V ′(y)

n1+d/2
e−|y|

2/2n.

Proof. Set m = bn2 c and write

P(x+S(n) = y, τx > n)

=
∑
z∈K

P(x+ S(n−m) = z, τx > n−m)P(z + S(m) = y, τz > m)

=
∑
z∈K

P(x+ S(n−m) = z, τx > n−m)P(y + S′(m) = z, τ ′y > m),

where we recall that S′ = −S is the reverse random walk and

τ ′y := inf{n > 1 : y + S′(n) /∈ K}.
Applying part (c) of Lemma 11 to the random walk {S′(n)}, we obtain

P(x+S(n) = y, τx > n)

=
cV ′(y)

m1+d/2

∑
z∈K

zde
−|z−y|2/2mP(x+ S(n−m) = z, τx > n−m)

+ o
(
V ′(y)m−1/2−d/2P(τx > n−m)

)
.

Using now Lemma 11 (a), we get

P(x+S(n) = y, τx > n)

=
cV ′(y)V (x)

m1/2+d/2(n−m)1/2
Ex

[
Sd(n−m)√

m
e−|S(n−m)−y|2/2m

∣∣∣τx > n−m
]

+ o

(
V (x)V ′(y)

m−1/2−d/2(n−m)1/2

)
.

It follows from part (b) of the previous lemma that

Ex

[
Sd(n−m)√

m
e−|S(n−m)−y|2/2m

∣∣∣τx > n−m
]
∼ E

[
(MK,d(1)) e−|MK−y/

√
m|2/2

]
,

where MK(t) = (MK,1(t),MK,2(t), . . . ,MK,d(t)) is the meander in K.
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Since K = Rd−1 × R+, all coordinates of MK are independent. Furthermore,
MK,1(t), . . . ,MK,d−1(t) are Brownian motions and MK,d(t) is the one-dimensional
Brownian meander. Combining these observations with yd = o(

√
n), we conclude that

E
[
(MK,d(1)) e−|MK−y/

√
m|2/2

]
∼ E

[
MK,d(1)e−M

2
K,d/2

] d−1∏
i=1

E
[
e−(MK,i(1)−yi/

√
m)2/2

]
= C

d−1∏
i=1

e−y
2
i /4m ∼ Ce−|y|2/2n.

This completes the proof. �

Proof of Theorem 2. If y is such that yd > α|y| for some α > 0 then it suffices to
repeat the proof of Theorem 1. We thus consider the boundary case yd = o(|y|). Using
Lemma 12, one easily obtains

lim
ε→0

lim
|y|→∞

|y|d

V (x)v′(y)
S2(x, y, ε) = c.

It follows that

lim
ε→0

lim
|y|→∞

|y|d

V (x)v′(y)
S2(x, y, ε) = c lim

ε→0
lim
|y|→∞

∑
n>ε|y|2

|y|dn−1− d
2 e−

|y|2
2n

= c

∫ ∞
0

v−1−d/2e−
1
2v dv,

and the last integral is finite. It follows that the theorem will be proven if we show that

lim
ε→0

lim
|y|→∞

|y|d

V (x)V ′(y)
S1(x, y, ε) = 0. (31)

Using an appropriate rotation, we can reduce everything to the case yk = o(|y|) for any
k = 2, . . . , d− 1 and y1 ∼ |y|. This also implies yd = o(|y|).

We first split the probability P(x+ S(n) = y, τx > n) into two parts:

P(x+S(n) = y, τx > n,max
k6n
|X1(k)| 6 γy1)+P(x+S(n) = y, τx > n,max

k6n
|X1(k)| > γy1),

where γ ∈ (0, 1). Introduce the stopping time

σγ := inf{k > 1 : |X1(k)| > γy1}.

Then, by the Markov property,

P(x+ S(n) = y, τx > n,max
k6n
|X1(k)| > γy1)

=
n∑
k=1

P(x+ S(n) = y, τx > n, σγ = k)

6
n∑
k=1

P(τx > k − 1)P(|X1| > γy1) max
z

P(S(n− k) = z).
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Using now the bounds P(τx > k) 6 CV (x)k−1/2 and maxz P(S(k) = z) 6 Ck−d/2, we
obtain

P(x+ S(n) = y, τx > n,max
k6n
|X1(k)| > γy1)

6 CV (x)P(|X1| > γy1)
n∑
k=1

1√
k

1

(n− k + 1)d/2

6 CV (x)P(|X1| > γy1)
(log n)1d=2

√
n

.

Here, in the last step we have splited the sum
∑n

k=1
1√
k

1
(n−k+1)d/2

into
∑n

2
k=1 and∑n

k=n
2

and used elementary inequalities.

This implies that

ε|y|2∑
n=1

P(x+S(n) = y, τx > n,max
k6n
|X1(k)| > γy1) 6 C

√
εV (x)P(|X1| > γy1)|y| (log |y|)1d=2 .

As a result, for all random walks satisfying

E
[
|X|d+1 (log |X|)1d=2

]
<∞,

we have

ε|y|2∑
n=1

P(x+ S(n) = y, τx > n,max
k6n
|X1(k)| > γy1) = o

(
V (x)

|y|d

)
. (32)

In order to estimate P(x+S(n) = y, τx > n,maxk6n |X1(k)| 6 γy1) we shall perform
the following change of measure:

P(X(k) ∈ dz) =
ehz1

ϕ(h)
P(X(k) ∈ dz; |X1(k)| 6 γy1),

where

ϕ(h) = E
[
ehX1 ; |X1| 6 γy1

]
.

Therefore,

P(x+ S(n) = y, τx > n,max
k6n
|X1(k)| 6 γy1) = e−hy1ϕn(h)P(x+ S(n) = y, τx > n).

(33)
According to [30, Eq. (21)],

e−hy1ϕn(h)

6 exp

{
−hy1 + hnE[X1; |X1| 6 γy1] +

ehγy1 − 1− hγy1

γ2y2
1

nE[X2
1 ; |X1| 6 γy1]

}
.

Choosing

h =
1

γy1
log

(
1 +

γy2
1

nE[X2
1 ; |X1| 6 γy1]

)
(34)
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and noting that

|E[X1; |X1| 6 γy1]| = |E[X1; |X1| > γy1]| 6 1

γy1
E[X2

1 ] =
1

γy1
,

we conclude that uniformly for n 6 γ|y|2, it holds

e−hy1ϕn(h) 6

(
en

γy2
1

)1/γ

.

Plugging this into (33), we obtain that uniformly for n 6 γ|y|2,

P

(
x+ S(n) = y, τx > n,max

k6n
|X1(k)| 6 γy1

)
6 C(γ)

(
n

|y|2

)1/γ

P(x+ S(n) = y, τx > n). (35)

According to [28, Thm 6.2], there exists an absolute constant C such that

sup
z

P(S(n) = z) 6
C

nd/2
χ−d/2,

where

χ := sup
u>1

1

u2
inf
|t|=1

E [(t,X(1)−X(2)); |X(1)−X(2)| 6 u] .

Since h defined in (34) converges to zero as |y| → ∞ uniformly in n 6 γ|y|2,

E [(t,X(1)−X(2)); |X(1)−X(2)| 6 u]→ E [(t,X(1)−X(2)); |X(1)−X(2)| 6 u]

for every fixed u. Since S(n) is truly d-dimensional under the original measure,

inf
|t|=1

E [(t,X(1)−X(2)); |X(1)−X(2)| 6 u] > 0

for all large values u. As a result, there exists χ0 > 0 such that χ > χ0 for all |y| large
enough and all n 6 γ|y|2. Consequently,

sup
z

P(S(n) = z) 6
Cχ
−d/2
0

nd/2
. (36)

Combining this bound with (35), we obtain for all r ∈ (0, 1) and γ < 2/d,

|y|2−r∑
n=1

P

(
x+ S(n) = y, τx > n,max

k6n
|X1(k)| 6 γy1

)

6 C(γ)χ
−d/2
0 |y|−2/γ

|y|2−r∑
n=1

n1/γ−d/2 6 C(γ)χ
−d/2
0 |y|−2/γ |y|(2−r)(1/γ−d/2+1),

for all n 6 γ|y|2. If we choose γ so small that r(1/γ − d/2 + 1) > 2, then

|y|2−r∑
n=1

P

(
x+ S(n) = y, τx > n,max

k6n
|X1(k)| 6 γy1

)
= o

(
1

|y|d

)
. (37)
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In the case n > |y|2−r, we cannot ignore the condition τx > n. By the Markov
property at times n/3 and 2n/3 and by (36),

P(x+ S(n) = y, τx > n)

6
∑
z,z′

P(x+ S(n/3) = z, τx > n/3)P(z + S(n/3) = z′)P(z′ + S(n/3) = y, τz′ > n/3)

=
∑
z,z′

P(x+ S(n/3) = z, τx > n/3)P(z + S(n/3) = z′)P(y + S′(n/3) = z′, τy > n/3)

6
C

nd/2
P(τx > n/3)P(τ ′y > n/3).

Therefore, it remains to show that, uniformly in n ∈ [|y|2−r, |y|2],

P(τx > n/3) 6 C
1 + xd√

n
. (38)

Indeed, from this estimate and from the corresponding estimate for the reverse walk
we get

P(x+ S(n) = y, τx > n) 6 C
(xd + 1)(yd + 1)

nd/2+1
.

With the help of (35), this implies that

ε|y|2∑
n=|y|2−r

P

(
x+ S(n) = y, τx > n,max

k6n
|X1(k)| 6 γy1

)
6 Cε1/γ−d/2(xd+1)(yd+1)|y|−d.

Combining this with (32) and (37), we obtain (31).
To derive (38), we first estimate some moments of the random walk Sd(n) under P.

By definition of this probability measure,

E[Xd] =
1

ϕ(h)
E
[
Xde

hX1 ; |X1| 6 γy1

]
.

For the expectation on the right-hand side, we have the representation

E
[
Xde

hX1 ; |X1| 6 γy1

]
= E [Xd; |X1| 6 γy1] + hE [XdX1; |X1| 6 γy1]

+ E
[
Xd(e

hX1 − 1− hX1); |X1| 6 γy1

]
= −E [Xd; |X1| > γy1]− hE [XdX1; |X1| > γy1]

+ E
[
Xd(e

hX1 − 1− hX1); |X1| 6 γy1

]
.

In the last step, we have used the equalities E[Xd] = E[XdX1] = 0. If

E|X|3+δ <∞, (39)

then by the Markov inequality,

E [Xd; |X1| > γy1] + hE [XdX1; |X1| > γy1] = o(y−2
1 ) = o(n−1).
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Therefore,

E
[
Xde

hX1 ; |X1| 6 γy1

]
= o(n−1) + E

[
Xd(e

hX1 − 1− hX1); |X1| 6 γy1

]
.

It is obvious that |ex − 1− x| 6 x2

2 e
|x|. Therefore,∣∣∣E [Xd(e

hX1 − 1− hX1); |X1| 6 γy1

]∣∣∣ 6 h2

2
E
[
|Xd|X2

1e
h|X1|; |X1| 6 γy1

]
6
e

2
h2E|Xd|X2

1 + h2ehγy1E

[
|Xd|X2

1 ; |X1| >
1

h

]
6
e

2
h2E|Xd|X2

1 + h2+δehγy1E|Xd||X1|2+δ

6
e

2
h2E|X|3 + h2+δehγy1E|X|3+δ.

In the last step, we have used Hölder’s inequality. It is immediate from the definition
of h that h2 6 cn−1. Further, if n > |y|2−r with some r < δ

2 , then h2+δehγy1 = o(n−1).

From these estimates and from (39), we obtain that uniformly in n ∈ [|y|2−r, |y|2],∣∣∣E [Xde
hX1 ; |X1| 6 γy1

]∣∣∣ 6 c

n
. (40)

By the same arguments,

ϕ(h) = E
[
ehX1 ; |X1| 6 γy1

]
= P(|X1| 6 γy1) + hE [X1; |X1| 6 γy1] + E

[
ehX1 − 1− hX1; |X1| 6 γy1

]
= 1−P(|X1| > γy1)− hE [X1; |X1| > γy1] + E

[
ehX1 − 1− hX1; |X1| 6 γy1

]
= 1 + o(n−1). (41)

Combining this with (40), we finally obtain∣∣EXd

∣∣ 6 c1

n
. (42)

We now turn to the second and third moments of Xd under P. Using (41) and the
moment assumption, we have

EX2
d =

1

ϕ(h)
E[X2

de
hX1 ; |X1| 6 γy1] = (1 + o(1))E[X2

de
hX1 ; |X1| 6 γy1]

= E[X2
d ; |X1| 6 γy1] + o(1) +O

(
E
[
X2
d(ehX1 − 1); |X1| 6 γy1

])
= 1 + o(1) +O

(
hehγy1

)
.

Noting that hehγy1 = o(1) for all n > |y|2−r, we get

EX2
d = 1 + o(1). (43)
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Similarly,

E|Xd|3 = (1 + o(1))E[|Xd|3ehX1 ; |X1| 6 γy1]

6 c
(
E[|Xd|3; |X1| 6 1/h] + ehγy1E[|Xd|3; |X1| > 1/h]

)
6 c

(
E|Xd|3 + hδehγy1E|Xd|3+γ

)
.

Using once again the fact that hδehγy1 = o(1) for n > |y|2−r, we arrive at

E|Xd|3 6 c3. (44)

Now we can derive (38). First, it follows from (42) that

P(τx > n/3) 6 P(τ0
x+c1 > n/3),

where
τ0
y := inf{k > 1 : y + S0

d(k) 6 0} and S0
d(k) = Sd(k)− kEXd.

Applying [19, Lem. 25] to the random walk S0
d , we have

P(τ0
y > k) 6

E[y + S0
d(k); τ0

y > k]

E[(y + S0
d(k))+]

.

Relations (43) and (44) allow the application of the central limit theorem to the walk

S0
d(k), which gives E[(y + S0

d(k))+] > c
√
k. Consequently,

P(τ0
y > k) 6

C√
k
E[y + S0

d(k); τ0
y > k].

Further, by the optional stopping theorem,

E[y + S0
d(k); τ0

y > k] = y −E[y + S0
d(τ0

y ); τ0
y 6 k] 6 y −E[y + S0

d(τ0
y )].

We now use inequality [39, Eq. (7)], which states that there exists an absolute constant
A such that

−E[y + S0
d(τ0

y )] 6 A
E|Xd|3

EX2
d

.

Combining this with (43) and (44), we finally get

P(τ0
y > k) 6

C(y + 1)√
k

,

which implies (38). �

4. Boundary asymptotics of the Green function: the general case

The proof of Theorem 3 consists in splitting the Green function GK(x, y) in (2) as
a sum of two terms, the first (resp. second) one being given by the contribution in the
large deviation (resp. asymptotic) regime.

The main difficulty is to prove that the first term is actually dominated by the second
one; in order to achieve this, we use a coupling of the random walk with a Brownian
motion, with stronger bounds than the ones initially used in [16]. The drawback is the
need of stronger moment assumptions on the increments, which is the main reason why
the assumption (M1) is used instead of the classical moment condition of [16], namely

E|X|r(p) <∞ with r(p) = p if p > 2 and r(p) = 2 + δ for some δ > 0 if p 6 2.
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The arguments to show Theorem 3 are very different in the C2 regular case, and two
proofs are provided in this section.

Exact asymptotics with C2-regularity. In this part, we will assume that the cone
is C2. Before starting the proof of Theorem 3, we need to introduce some notation.
Let |y| → ∞ in such a way that dist(y, ∂K) = o(|y|). Let y⊥ ∈ ∂K be defined by the
relation

dist(y, ∂K) = |y − y⊥|.
Set σ(y) := y⊥/|y| ∈ ∂Σ and assume that σ(y) converges as |y| → ∞ to some σ̄ ∈ ∂Σ.
Let Hy denote a tangent hyperplane at point y⊥. Let Pn be the distribution of the
linear interpolation of t 7→ (y + S(nt))/

√
n conditioned to stay in the half-space Ky

containing the cone K and having boundary Hy. Then Pn → P weakly on C([0, 1]).
Denote

An := {f ∈ C([0, 1]) : f(k/n) ∈ K for all 1 6 k 6 n}.
Then

lim inf An ⊇ {f ∈ C([0, 1]) : f(t) ∈ K for all t ∈ (0, 1]}
and

lim supAn ⊆ {f ∈ C([0, 1]) : f(t) ∈ K for all t ∈ (0, 1]},
where A denote the closure of A.

Denote for every fixed n by [0, 1] 3 t 7→ S(nt) the linear interpolation of {S(k)}k6n.
The conditions to apply [24, Thm 2.3] are met. This leads to an invariance principle:

[0, 1] 3 r 7→ y+S(nr)√
n

converges weakly as n
|y|2 → t to the Brownian meander (Br)r61

inside the cone K started at σ√
t
. In particular, with Ty := inf{n > 1 : y + S(n) /∈ Ky},

P

(
y + S(n)√

n
∈ B

∣∣∣Ty > n

)
∼ Qσ,t(B) =

∫
B
qσ,t(z)dz,

n

|y|2
→ t, (45)

where qσ,t(z) is the density of the Brownian meander in K, started at σ√
t

and evaluated

at time 1. Theorem 2.3 in [24] also leads to

P(τy > n|Ty > n)→ cσ,t. (46)

The relations (45) and (46) imply that

V (y) > c|y|p−1(1 + dist(y, ∂K)). (47)

Indeed, by the harmonicity of V , one has for all n > 1,

V (y) = E[V (y + S(n)); τy > n].

Fix now some ε > 0 and note that choosing n = b|y|2c, it follows that V (z) ∼ u(z)
uniformly as z →∞ as long as the distance of z to ∂K is at least ε|z|, see [16, Lem. 13].
We obtain, as |y| → ∞ and ε→ 0,

V (y) > P(Ty > b|y|c2)cσ,1|y|p
∫
K
u(z)qσ,1(z)dz.

Due to results for the one-dimensional random walks, we arrive at

P(Ty > b|y|c2) > c
1 + dist(y, ∂K)

|y|
,

which establishes (47).
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Before proving Theorem 3, we record an auxiliary estimate needed in its proof.

Lemma 13. Define

φσ(t) = cσ,t

∫
K
u(z)e−

|z|2
2 qσ,t(z)dz.

Then there exists some c > 0 such that as t→ 0, φσ(t) = o(e−c/t).

Proof. First, due to the invariance principle for the half-space, it holds

cσ,t = Pσ(τme > t) = Pσ/
√
t(τ

me > 1),

where τme := inf{t > 0 : Mσ(t) 6∈ Ky}. Here Mσ(t) is a Brownian meander in Ky,
whereas we will denote the Brownian meander in K by Mσ

K(t). Since |σ| = 1 and K is
contained in Ky, it is clear that cσ,t → 1 as t→ 0.

Then we have

φσ(t) 6 CEσ/
√
t

[
u(Mσ

K(1))e−
|Mσ
K (1)|2

2

]
6 CEσ/

√
t

[
u(Mσ(1))e−

|Mσ(1)|2
2

]
.

The second inequality can be easily justified using the invariance principles for meanders
in K and Ky as well as the fact that cσ,t → 1 is bounded away from zero. It follows
that

φσ(t) 6 CEσ/
√
t

[
e−
|Mσ(1)|2

4

]
.

Due to rotational invariance of Brownian motion, the expectation above doesn’t depend
on σ, so that we can choose σ = (1, 0, . . . , 0) and Ky = Rd−1 × R+. The first
d − 1 coordinates become independent Brownian motions, whereas the last one is a
1-dimensional Brownian meander (see [25] for its density). This finishes the proof. �

Proof of Theorem 3 when K is C2. To estimate the contribution coming from large
values of n, one does not need the limit theorems from the previous paragraph: quite
rough estimates turn out to be sufficient.

Set m = bn/2c. Then, applying the Markov property at time m and inverting the
time in the second part of the path, we obtain

P(x+ S(n) = y, τx > n)

=
∑
z∈K

P(x+ S(m) = z, τx > m)P(y + S′(n−m) = z, τ ′y > n−m)

6 max
z∈K

P(x+ S(m) = z, τx > m)P(τ ′y > n−m).

By [16, Thm 5],

max
z∈K

P(x+ S(m) = z, τx > m) 6 C
V (x)

mp/2+d/2
.

Furthermore, due to results for the one-dimensional walks (see for example [17, Lem. 3]),

P(τ ′y > n−m) 6 P(T ′y > n−m) 6 C
1 + dist(y, ∂K)√

n−m
. (48)

Combining these estimates, we obtain

P(x+ S(n) = y) 6 CV (x)(1 + dist(y, ∂K))n−(p+d+1)/2.
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Consequently, for A > 2 and |y| > 1,∑
n>A|y|2

P(x+ S(n) = y) 6 CV (x)(1 + dist(y, ∂K))
∑

n>A|y|2
n−(p+d+1)/2

6 CV (x)A−(p+d−1)/2 1 + dist(y, ∂K)

|y|p+d−1
. (49)

We turn now to the middle part, namely, n ∈ (ε|y|2, A|y|2). Using again the Markov
property at time m = bn/2c and applying [16, Thm 5], we obtain

P(x+ S(n) = y, τx > n)

=
∑
z∈K

P(x+ S(m) = z, τx > m)P(y + S′(n−m) = z, τ ′y > n−m)

=
κH0V (x)

mp/2+d/2

∑
z∈K

(
u

(
z√
m

)
e−
|z|2
2m + o(1)

)
P(y + S′(n−m) = z, τ ′y > n−m)

=
κH0V (x)

mp/2+d/2
E

[
u

(
S′(n−m)√

m

)
e−
|S′(n−m)|2

2m ; τ ′y > n−m
]

+ o

(
P(τ ′y > n−m)

mp/2+d/2

)
.

Taking into account (48), we have

P(x+ S(n) = y, τx > n)

=
κH0V (x)

mp/2+d/2
E

[
u

(
S′(n−m)√

m

)
e−
|S′(n−m)|2

2m ; τ ′y > n−m
]

+ o

(
1 + dist(y, ∂K)

n(p+d+1)/2

)
.

Next, it follows from (45) and (46) that if n
|y2| ∼ t, then

E

[
u

(
S′(n−m)√

m

)
e−
|S′(n−m)|2

2m ; τ ′y > n−m
]
∼ P(T ′y > n−m)φσ(t/2).

Since T ′y is an exit time from a half-space,

P(T ′y > k) ∼ v′(y)k−1/2,

where v′(y) is the positive harmonic function for S′ killed at leaving the half-space Kσ.
As a result,

P(x+ S(n) = y, τx > n) = C0
V (x)v′(y)

n(p+d+1)/2
φσ

(
n

|y|2

)
+ o

(
1 + dist(y, ∂K)

n(p+d+1)/2

)
,

where

C0 := κH02(p+d+1)/2.



MARTIN BOUNDARY OF RANDOM WALKS IN CONVEX CONES 29

This representation implies that

A|y|2∑
ε|y|2

P(x+ S(n) = y, τx > n)

= C0V (x)v′(y)

A|y|2∑
ε|y|2

n−(p+d+1)/2φσ

(
n

2|y|2

)
+ o

(
1 + dist(y, ∂K)

n(p+d−1)/2

)

= C0
V (x)v′(y)

|y|p+d−1

∫ A

ε
φσ(t/2)t−(p+d+1)/2dt+ o

(
1 + dist(y, ∂K)

n(p+d−1)/2

)
.

Combining this with (49) and letting A→∞, one can easily obtain

lim
|y|→∞

|y|p+d−1

V (x)v′(y)
S2(x, y, ε) = C0

∫ ∞
ε

φσ(t/2)t−(p+d+1)/2dt.

From Lemma 13 it follows

lim
ε→0

lim
|y|→∞

|y|p+d−1

V (x)v′(y)
S2(x, y, ε) = C0

∫ ∞
0

φσ(t/2)t−(p+d+1)/2dt. (50)

It remains to estimate S1(x, y, ε). We shall use the same strategy as in the proof
of Theorem 1, but instead of the Green function for the whole space we shall use the
Green function for the half-space Ky. More precisely,

S1(x, y, ε) =
∑

n<ε|y2|

P(x+ S(n) = y, τx > n > θy)

=
∑

n<ε|y2|

n∑
k=1

∑
z∈Bδ,y

P(x+ S(n) = z, τx > k = θy)P(z + S(n− k) = y, τz > n− k)

=
∑

k<ε|y|2

∑
z∈Bδ,y

P(x+ S(n) = z, τx > k = θy)
∑

j<ε|y|2−k

P(z + S(j) = y, τz > j)

6
∑

k<ε|y|2

∑
z∈Bδ,y

P(x+ S(n) = z, τx > k = θy)
∑

j<ε|y|2
P(y + S′(j) = z, T ′y > j)

= E
[
Gε,y(x+ S(θy)); τx > θy, θy 6 ε|y|2

]
,

where

Gε,y(z) =
∑

j<ε|y|2
P(y + S′(j) = z, T ′y > j).

Applying Theorem 2 and (18) to the random walk S′(n), we obtain

Gε,y(z) 6 C
v′(y)(1 + dist(z,Hy))

1 + |z − y|d
∧ 1.

Therefore,

S1(x, y, ε) 6 CP(|y − x− S(θy)| 6 δ2|y|, τx > θy, θy 6 ε|y|2)

+ C(δ)
v′(y)

|y|d
E
[
(1 + dist(x+ S(θy), Hy); τx > θy, θy 6 ε|y|2

]
. (51)
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The first term has been estimated in (13) for random walks having finite moments of
order r2(p) := p+ d− 1 + (2− p)+:

P(|y − x− S(θy)| 6 δ2|y|, τx > θy, θy 6 ε|y|2) = o(|y|−p−d+1). (52)

In order to estimate the second term in (51), we shall perform again the change of
measure with the harmonic function V :

E
[
(1 + dist(x+ S(θy), Hy); τx > θy, θy 6 ε|y|2

]
= V (x)E(V )

[
1 + dist(x+ S(θy), Hy)

V (x+ S(θy))
; θy 6 ε|y|2

]
.

Applying now (47), we obtain

E
[
(1 + dist(x+ S(θy), Hy); τx > θy, θy 6 ε|y|2

]
6 CV (x)|y|−p+1P(V )(θy 6 ε|y|2).

From this estimate and (14), we conclude that

lim
ε→0

lim
|y|→∞

|y|p−1E
[
(1 + dist(x+ S(θy), Hy); τx > θy, θy 6 ε|y|2

]
= 0.

Combining this estimate with (51) and (52) as well as [16, Lem. 13], we get

lim
ε→0

lim
|y|→∞

|y|p+d−1S1(x, y, ε) = 0. (53)

Since v′(y) is bounded from below by a positive number, (53) and (50) yield the desired

result for the case E[|X|r2(p)] < ∞ due to classical results for the one-dimensional
random walk.

Assume now that (M2) holds. It is easy to see that the above proof that

lim
ε→0

lim
|y|→∞

|y|p+d−1

V (x)v′(y)
S2(x, y, ε) = C0

∫ ∞
0

φσ(t)t−(p+d+1)/2dt, (54)

goes through again word for word. Therefore we focus on the asymptotics of S1(x, y, ε)
in the following. With similar steps as above it holds

S1(x, y, ε)

6 C(δ)v′(y)E

[
1 + dist(x+ S(θy), Hy)

1 + |x+ S(θy)− y|d
, |y − x− S(θy)| 6 δ2|y|, τx > θy, θy 6 ε|y|2

]
+ C(δ)

v′(y)

|y|d
E
[
(1 + dist(x+ S(θy), Hy); τx > θy, θy 6 ε|y|2

]
.

The second summand can be treated just as above with help of (47) so that we need
to show

E

[
1 + dist(x+ S(θy), Hy)

1 + |x+ S(θy)− y|d
, |y − x− S(θy)| 6 δ2|y|, τx > θy, θy 6 ε|y|2

]
= O(|y|−p−d+1).

It holds

1 + dist(x+ S(θy), Hy) 6 1 + |S(θy)− y|+ |y − y⊥| = o(|y|) + |S(θy)− y|.
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To complete the proof we now show for r = d− 1 and r = d,

S2,r(x, y, ε) := E

[
1

1 + |x+ S(θy)− y|r
, |y − x− S(θy)| 6 δ2|y|, τx > θy, θy 6 ε|y|2

]
= o(|y|−p−d+1).

With a similar calculation as in the proof of Theorem 1 (using (15)), we obtain

E

[
1

1 + |y − x− S(θy)|d−1
; |y − x− S(θy)| 6 δ2|y|, τx > θy, θy 6 ε|y|2

]

6 C(δ)|y|−p−d+1f(δ(1− δ)|y|)E[τx; τx < |y|2]

δ2|y|∑
m=1

md−1

md−1

6 C(δ)|y|−p−d+2f(δ(1− δ)|y|)|y|(2−p)+ .
Finally,

E

[
1

1 + |y − x− S(θy)|d
; |y − x− S(θy)| 6 δ2|y|, τx > θy, θy 6 ε|y|2

]

6 C(δ)|y|−p−d+1f(δ(1− δ)|y|)E[τx; τx < |y|2]

δ2|y|∑
m=1

md−1

md

6 C(δ) log(|y|)|y|−p−d+2f(δ(1− δ)|y|)|y|(2−p)+ .

This finishes the proof of Theorem 3 when K is C2. �

Exact asymptotics in the general case. We now turn to the general convex case,
without assuming that the boundary is C2. Recall from (6) the definition of

Kρ := {y ∈ K : dist(y, ∂K) > |y|1−ρ},
where ρ is given in Theorem 1. Further, for y ∈ K, θy = inf{n > 0 : y + S′(n) ∈ Kρ}
was introduced in (7).

Proof of Theorem 3 in the general case. Split the Green function as

GK(x, y) =

|y−x|2−2ε−1∑
n=1

P(y + S′(n) = x, τ ′y > n)

+

∞∑
n=|y−x|2−2ε

P(y + S′(n) = x, τ ′y > n, θy > |y − x|2−2ε)

+

∞∑
n=|y−x|2−2ε

P(y + S′(n) = x, τ ′y > n, θy 6 |y − x|2−3ε, |S′θy | > |y − x|
1−ε/α)

+
∞∑

n=|y−x|2−2ε

P(y + S′(n) = x, τ ′y > n, θy 6 |y − x|2−3ε ∧ τ ′y, |S′θy | 6 |y − x|
1−ε/α)

:= T1 + T2 + T3 + T4,

and we shall study successively the terms T1, T2, T3 and T4.
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Study of T1 and T2. It follows from Proposition 8 that T1 6 C|y − x|−a, for some
parameter a > p+ q+d− 2 + (2−p)+. In order to analyse T2, we need the preliminary
estimates (55) and (56) below. To that purpose, remark that θy = t′y,ρ(|y|2−2ρ), see
(25). Hence, noting that t′y,ε(n) is increasing in n, we get with [16, Lem. 14]

P(θy > n1−ε, τ ′y > n) 6 P(t′y,ε(n) > n1−ε, τ ′y > n) 6 C exp(n−ε) (55)

for n > |y|2−2ε. Applying Lemma 15 to the stopping time θy and using the moment

condition E|X|r(p) <∞, we obtain that there exist C > 0 and α > 0 such that

P
(
|S′θy | > |y − x|

1−ε/α, θy 6 |y − x|2−ε, τ ′y > |y − x|2−ε
)
6 C|y − x|−s, (56)

with s > (2− 2ε)(p+ q + d− 4 + (2− p)+)/2.
Let us now write

T2 =
∑

n>|y−x|2−2ε

P(x+ S(n) = y, τx > n, θy > n
1−ε)

+
∑

n>|y−x|2−2ε

P(x+ S(n) = y, τx > n, |y − x|2−3ε 6 θy 6 n
1−ε).

By (55), the first term is bounded by
∑

n>|y−x|2−2ε C exp(−nε) 6 C exp(−|y− x|ε′) for

some C > 0 and some 0 < ε′ < ε. Moreover, by (27) and (55),∑
n>|y−x|2−2ε

P(x+ S(n) = y, τx > n, |y − x|2−3ε 6 θy 6 n
1−ε)

=
∑

n>|y−x|2−2ε

E[x+ S(n− θy) = y + S′(θy); τx > n− θy, τ ′y > θy, |y − x|2−3ε 6 θy 6 n
1−ε]

6
∑

n>|y−x|2−2ε

C(n− n1−ε)−d/2−p/2P(θy > |y − x|2−3ε, τy > |y − x|2−3ε)

6 C exp(−|y − x|ε(2−3ε)),

so that, finally,

T2 6 C exp(−|y − x|ε′),
for some constant C > 0 and 0 < ε′ < ε.

Study of T3. By (27), we have for n > |x− y|2−2ε and y large enough

P(y + S′(n) = x, τ ′y > n, θy 6 |y − x|2−3ε, |S′θy | > |y − x|
1−ε/α)

6 E[(n− θy)−p/2−d/2; τ ′y > θy, θy 6 |y − x|2−3ε, |S′θy | > |y − x|
1−ε/α]

6 Cn−p/2−d/2P(τ ′y > θy, θy 6 |y − x|2−3ε, |S′θy | > |y − x|
1−ε/α)

6 Cn−p/2−d/2|y − x|s.

Hence,

T3 6 C
∞∑

n=|x−y|2−2ε

n−p/2−d/2|y − x|s 6 |y − x|−(2−2ε)(p/2+d/2−1)−s.
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By the definition of s given in (56),

(2− 2ε)(p/2 + d/2− 1) + s > (p+ d− 2) + (p+ q + d− 4 + 2(1− p/2)+) + f(ε)

= p+ q + d− 2 + (p+ d− 4 + 2(1− p/2)+) + g(ε),

with g linear. Since p+ d− 4 + 2(1− p/2)+ > 0 for all p > 1 and d > 2,

T3 = o(|x− y|−b),
with b > p+ q + d− 2 for ε small enough.

Study of T4. By Theorem 1, we have

T4 > E[G|x−y|2−2ε(x, y + S′(θy)); τ
′
y > θy, θy 6 |y − x|2−3ε, |S(θy)| 6 |y − x|1−ε/α]

> CE[u(y + S′(θy))|y + S′(θy)|−2p−d+2; τ ′y > θy, θy 6 |y − x|2−3ε, |S(θy)| 6 |y − x|1−ε/α]

> C|y|−2p−d+2|y|p−q′′+q′+O(ε)P(τ ′y > θy, θy 6 |y − x|2−3ε, |S(θy)| 6 |y − x|1−ε/α),

for some q′′ > q′ > q small enough, where we have used the fact that y + S′(θy) ∈ Kε,

|S(θy)| 6 |y − x|1−ε/α and Lemma 19 to give a lower bound on u(y + S′(θy)). Hence,

T4 > |y|−p−q
′′+q′−d+2+O(ε)(P(τ ′y > |y − x|2−3ε)− C exp(−|y|ε)−K|y − x|s).

By Lemma 18, P(τ ′y > |y−x|2−3ε) > C|y−x|−q′/2(2−3ε) and s > q′/2 for ε and q′ small
enough, which yields

T4 > c|y|−p−q
′−d+2+O(ε).

Hence, for ε and q′ small enough,

T1 + T2 + T3 = o(T4).

Moreover, by Theorem 1,

E[GK(x, y + S′(θy)); τ
′
y > θy, θy 6 |y − x|2−3ε, |S(θy)| 6 |y − x|1−ε/α]

∼ V (x)|y|−2p−q+2E[u(y + S′(θy)), τ
′
y > θy, θy 6 |y − x|2−3ε, |S(θy)| 6 |y − x|1−ε/α],

as y goes to infinity. Since we also have

E[u(y + S′(θy)); τ
′
y > θy, (θy > |y − x|2−3ε) ∪ (|S(θy)| > |y − x|1−ε/α)]

= o(E[u(y + S′(θy)); τ
′
y > θy, θy 6 |y − x|2−3ε, |S(θy)| 6 |y − x|1−ε/α])

for the same reasons as before, the result is deduced. �

The uniqueness of the harmonic function is then a straightforward deduction of the
latter theorem together with Martin boundary theory.

Corollary 14. The Martin boundary of S killed on the boundary of K is reduced to
a singleton, and there exists a unique harmonic function (up to multiplication by a
constant).

Proof. Let x0, x ∈ K and let (yn) be a sequence in K going to infinity. Then, by
Theorems 1 and 3, as n→∞,

GK(x, yn)

GK(x0, yn)
→ V (x)

V (x0)
.

The Martin boundary is thus reduced to a singleton. �
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5. Optimality of the moment conditions

In this section, we prove that the assumptions of Theorems 1 and 3 are optimal.
Uchiyama [50] has shown, see Theorem 2 there, that if d > 5 and E|X|d−2 < ∞,

then
GRd(0, z) ∼

c

|z|d−2

as |z| → ∞. The same asymptotics is valid when d = 4 or d = 3, provided that
respectively E|X|2 log |X| <∞ or E|X|2 <∞.

Uchiyama mentions also that this moment condition is optimal: for any ε > 0, there
exists a random walk satisfying E|X|d−2−ε <∞ and

lim sup
|z|→∞

|z|d−2GRd(0, z) =∞.

Uchiyama considers dimensions 4 and 5 only, but it is quite simple to show that this
statement holds in every dimension d > 5. We now give an example in our setting
of a random walk which shows the optimality of Uchiyama’s condition and of the
moment condition in Theorem 1. Our example is just a multidimensional variation of
the classical Williamson example, see [54].

Let d be greater than 4 and consider X with the following distribution. For every
n > 1 and for every basis vector ek put

P(X = ±2nek) =
qn
2d
,

where the sequence qn is such that
∞∑
n=1

qn = 1 and qn ∼
c log n

2n(d−2)
.

Clearly,

E|X|d−2 =∞ and E
|X|d−2

log1+ε |X|
<∞.

Using now the obvious inequality GRd(0, x) > P(X = x), we conclude that for every
j = 1, . . . , d,

lim
n→∞

2(d−2)nGRd(0,±2nej) =∞.
If we have a cone K such that p > 2 and ej ∈ Σ for some j, then, choosing

qn ∼ c logn
2n(p+d−2) , we also have

lim
n→∞

2(p+d−2)nGK(ej , (1 + 2n)ej) =∞.

Therefore, the finiteness of E|X(1)|r1(p) cannot be replaced by a weaker moment
assumption.

But Uchiyama shows that the moment assumption E|X|d−2 is not necessary, as
it can be replaced by P(X = x) = o(|x|−d−2), which implies the existence of the
second moment only. In Theorem 1 we have a similar situation: the moment condition
E|X|r1(p) < ∞ is not necessary and can be replaced by the assumption (M2), which
yields the finiteness of E|X|p∨2 only. It has been shown in [16] that if p > 2, the
condition E|X|p <∞ is an optimal moment condition for the existence of the harmonic
function V (x).
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Clearly, one can adapt the random walk from the example above to show that the
moment assumption in the second statement of Theorem 3 is minimal as well. Indeed,
it suffices to take qn ∼ c logn

2n(p+d−1) and to assume that one of the vectors ±ej belongs to
the boundary of the cone K.

In order to show that the moment conditions in the first claim of Theorem 3 are
nearly minimal we consider the cone K = Rd

+, d > 3. Clearly, p = d for this cone. Set

σ = (1, 0, 0, . . . , 0). Then one has Kσ = R ×Rd−1
+ and qσ = d − 1. We assume again

that

P(X = ±2nek) =
qn
2d
.

This time we choose qn ∼ c logn
23(d−1)n . Denoting by 1 the vector e1 + · · ·+ ed, we obtain

that as n→∞,

GK(1,1 + 2ne1)� 2−3(d−1)n.

Moreover, it is rather simple to see that E[u(yρ), τ
′
y > θy] converges to a positive

constant for 1+ 2ne1. As a result, the first statement may fail for a random walk with
E|X|3d−3 =∞. Remark that the first statement requires not only finiteness of moment
of order p+ qσ + d− 2 + (2− p)+, but also finiteness of some moment strictly greater
than p+ qσ +d−2+(2−p)+. We conjecture that this condition is actually sharp when
d > 3.

6. Boundary asymptotics of the survival probability

The goal of this section is to collect lower bounds on the survival probability at
time n > 1 of the random walk starting at x when n = o(|x|2) and x → ∞ while
x
|x| → σ ∈ ∂K. Those bounds are used in the proof of our main results. The strategy

of the proof is to compare the tangent cone at σ with some smaller cones included in
K. Let us give a first recall a useful result from [45, Lem. 21].

Lemma 15. Let 0 6 r 6 p and A > 0, and suppose that the increment X admits
moments of order κ > r. Set

S(x, n)+ = sup
16`6n1−ε

|S(`)|1τx>`.

Then, for each s < (κ− r)/2 and β ∈ ((p/2− 1)∧ 0, p/2), there exists C > 0 such that

E
[
(S(x, n)+)r;S(x, n)+ > n1/2−ε/8] 6 Cn−sn1−(p/2−β)(1 + |x|)p−2β

for all x ∈ K. In particular, uniformly on x ∈ K, |x| 6 A
√
n,

E
[
(S(x, n)+)r;S(x, n)+ > n1/2−ε/8] 6 Cn−s+1.

Recall from (H5) that a random walk S is strongly irreducible in a cone K if there
exists a constant R > diam Λ such that for any z ∈ C ∩ Λ, there exists a path with
positive probability in K ∩B(z,R) which starts in z+K and ends at z. If K is a cone
with exponent q such that S is strongly irreducible in K, then there exists c > 0 such
that for all z ∈ K and all n > 1,

P(τz > n) > cn−q/2. (57)

See [45, Lem. 13] for a proof of this fact.
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We now prove that a tangent cone can be well approximated by a smaller cone
included in the original cone. We recall that Kσ denotes the tangent cone to K at σ,
see (4), and for α > 0 we set

Kσ,α = {x ∈ Kσ : α|x− σ| 6 dist(x, ∂Kσ)}.

Notice that for α small enough, Kσ,α is a non-empty cone. For ε > 0, let

Vε(σ) = B(σ, ε) ∩K and ∂Vε(σ) = B(σ, ε) ∩ ∂K.

Hereafter, (z − σ) +Kσ,α denotes the translated version of Kσ,α with origin at z.

Lemma 16. For all α > 0 sufficiently small, there exist ε, α′ > 0 such that for all
y ∈ ∂Vε(σ) and all z ∈ (y − σ) +Kσ,α ∩B(σ, ε), one has z ∈ K and

dist(z, ∂K) > α′|z − y|.

The proof of the above lemma uses a few basic facts from convex analysis. Recall
that for a convex function φ : C → R defined on an open convex set C ⊂ Rd−1, we
define the subgradient ∂φ(x) of φ at x ∈ C by

∂φ(x) = {v ∈ Rd−1 : ∀u ∈ C, φ(u)− φ(x) > 〈v, u− x〉}.

The subgradient is upper-semicontinuous in the following sense: if xn → x and vn → v
with vn ∈ ∂φ(xn) for any n, then v ∈ ∂φ(x).

For s ∈ Rd−1, the convex function φ admits a directional derivative φs(x) at any
point x ∈ C, and we have

φs(x) = max
v∈∂φ(x)

〈v, s〉.

Note that the upper-semicontinuity of the subgradient implies a uniform upper-
semicontinuity of the directional derivatives.

Lemma 17. Let x ∈ C and ε > 0. There exists a neighborhood V of x such that

φs(u) 6 φs(x) + ε

for all u ∈ V and s ∈ Sd−2.

Proof. Let us prove the statement by contradiction. Assume the existence of a sequence
(xn, sn) in C × Sd−2 such that xn → x and φsn(xn) > φsn(x) + ε. Up to taking a
subsequence, we can assume that sn → s ∈ Sd−2. For each n, let vn be the maximizer
of 〈v, sn〉 for v ∈ ∂φxn . Since ∂φ is uniformly bounded on a neighborhood of x, we can
assume by compactness that vn converges to a vector v0. By upper-semicontinuity of
∂φ, one has v0 ∈ ∂φ(x). Then we have

φsn(xn) = 〈vn, sn〉 → 〈v0, s〉 6 max
v∈∂φ(x)

〈v, s〉 6 φs(x), (58)

and on the other hand

〈vn, sn〉 = φsn(xn) > φsn(x) + ε.

Since s 7→ φs(x) is continuous and sn → s, φsn(xn) > φs(x) + ε/2 for n large enough,
and by (58) we get a contradiction. �
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Proof of Lemma 16. Up to an isometry of Rd, we can assume σ = 0 and that
(0, . . . , 0, 1) is a vector pointing inside K. Let V be a neighborhood of 0 in Hd :=
{x ∈ Rd : xd = 0} such that there exists a convex function φ : V → R with Lipschitz
constant M whose graph is locally the boundary of K around σ. We further assume
that there exists ε > 0 such that

{(y, t) ∈ V ×R : φ(y) < t < φ(y) + ε} ⊂ K.

Such ε always exists if we assume V small enough.
Note that the tangent cone of K at σ is exactly the set

Kσ = {(y, xd) ∈ Rd−1 ×R : xd > φy(0)}.

Let α be small enough so that Kσ,α is non-empty. For β > 0, set

K̃β := {(y, xd) ∈ Rd−1 ×R : xd > φy(0) + β|y|}.

Then, (K̃β)β>0 is a decreasing sequence of cones and
⋃
β>0 K̃β = Kσ, hence there exists

α′ > 0 such that Kσ,α ⊂ K̃α′ . By Lemma 17, let ε′ < ε be such that BRd−1(0, ε′) ⊂ V

is a neighborhood of 0, with the property that for each y ∈ BRd−1(0, ε′) and s ∈ Sd−2,
we have

φs(y) 6 φs(0) + α′/2. (59)

Let z ∈ y+K̃α′∩B(y, ε′/2) with y = (y1, φ(y1)) ∈ ∂K and y1 ∈ BRd−1(0, ε′/2). Writing
z = (z1, z2) ∈ Rd−1 ×R, we have on the first hand

z2 − φ(y1) > φz1−y1(0) + α′|z1 − y1|.

On the other hand, integrating (59) on the segment [y1, z1] ⊂ BRd−1(0, ε′) yields

φ(z1)− φ(y1) =

∫ 1

0
φz1−y1(y1 + t(z1 − y1))dt 6 φz1−y1(0) + α′/2|z1 − y1| 6 z2 − φ(y1).

Hence, z2 > φ(z1) + α′/2|z1 − y1|, which yields

φ(z1) + α′/2|z1 − y1| < z2 < φ(z1) + ε/2 (60)

by the choice of ε′. Since z1 ∈ V , (z1, u) ∈ K for all u ∈ (φ(z1), φ(z1)+ε), which implies

that (z1, z2) ∈ K. Therefore, for y ∈ ∂Vε′/2(σ) we have (y−σ) + K̃α′ ∩B(σ, ε′/2) ⊂ K.

Since Kσ,α ⊂ K̃α′ , we also have (y − σ) +Kσ,α ∩B(σ, ε′/2) ⊂ K for all y ∈ ∂Vε′/2(σ).
Since φ is Lipschitz with Lipschitz constant M > 0 on BRd−1(0, ε′), standard

geometric arguments yield that for c = sin(arctan(1/M)),

d(z, ∂K) > c(z2 − φ(z1)),

when z = (z1, z2) ∈ K with z1 ∈ BRd−1(0, ε′/2) and z2 6 ε′/2. Thus, (60) yields that

d(z, ∂K) > cα′

2 |z1 − y1|. (61)

Since the Lipschitz property also yields |z1 − y1| > |φ(z1)− φ(y1)|/M , we deduce that

d(z, ∂K) > cα′

2M |φ(z1)− φ(y1)|.

Hence, for c′ = min{c, cα′2M },

d(z, ∂K) > c′

2 (z2 − φ(z1) + φ(z1)− φ(y1)) > c′

2 |z2 − φ(y1)|. (62)
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Let t be such that |y − z| 6 tmax{|y1 − z1|, |z2 − y2|}. Then, since y2 = φ(y1),

d(z, ∂K) > c′

2t |y − z|.
This concludes the proof of the second statement. �

Proposition 18. Suppose (H5) that S is strongly irreducible in K. Let σ ∈ ∂K and
qσ the exponent associated to the corresponding tangent cone Kσ. Then, for all q′ > qσ
and ε > 0 small enough, there exists c > 0 such that for all x large enough with x

|x| → σ

and for all n 6 |x|2−ε,
P(τx > n) > cn−q

′/2.

Proof. Let q′ > qσ be small enough, and let α > 0 be such that qKσ,α = q′. Such α exists,

since Kσ,α ∩ Sd−1 converges in Hausdorff distance to Kσ as α goes to zero. Similarly

to the proof of Lemma 16, assume without loss of generality that K ⊂ Rd−1 × R+,
σ = (1, 0, . . . , 0) and v = (0, . . . , 0, 1) is a vector pointing towards the interior of K.
For x ∈ K, let x� be the projection of x on ∂K along (0, . . . , 0, 1). As x goes to infinity
while x/|x| → σ, x�/|x| converges to σ and |x/|x| − x�| → 0.

By Lemma 16, there exist η, α′ > 0 such that for all z ∈ ∂Vη(σ) and all u ∈
(z − σ) + Kσ,α ∩ B(z, η), dist(u, ∂K) > α′|u − z|. For α small enough and |x| large
enough, x/|x| ∈ (x�/|x| − σ) +Kσ,α, with x�/|x| ∈ ∂Vη(σ), which yields then that

dist(x, ∂K) > α′|x− x�|. (63)

For α small enough so that v+ σ points towards the interior of Kσ,α, let t > 0 be such
that the harmonic function VKσ,α(σ + tv) is positive. The existence of t is guaranteed

by [16, Thm 1], which gives also c > 0 such that P(τtv,Kσ,α−σ > n) > cn−q
′/2 for all

n > 1. Hence, for x such that |x− x�| > t, x− tv ∈ x� − σ +Kσ,α and

P(τx,x�−σ+Kσ,α > n) > P(τx,x−tv+Kσ,α > n) > cn−q
′/2. (64)

Let us assume from now on that |x − x�| > t. Suppose first that n > |x − x�|2−ε.
Thanks to the moments assumption (M1), we can apply the first part of Lemma 15 to
the random walk in K ′ := x� − σ + Kσ,α with r = 0, κ > q′ + 2 small enough and ε′

small enough to get

P( sup
16l6n

|S(l)| > n1/2+ε′ , τx,K′ > n) 6 Cn−s,

with s > q′/2, for n > |x − x�|2−ε. Hence, the latter inequality together with (64)
yields

P( sup
16l6n

|S(l)| 6 n1/2+ε′ , τx,K′ > n) > cn−q
′/2,

for n > |x− x�|2−ε and some c > 0. Since n 6 |x|2−ε, choosing ε′ small enough implies
that

P( sup
16l6n

|S(l)| 6 |x|1−ε′′ , τx,K′ > n) > cn−q
′
.

Since, by Lemma 16, (x� − σ) + Kσ,α ∩ B(x�, η|x|) ⊂ K, the latter inequality implies
that

P(τx,K > n) > P( sup
16l6n

|S(l)| 6 |x|1−ε′′ , τx,K′ > n) > c′n−q
′
.
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for all n > |x− x�|2−ε and x large enough.

Suppose now that n 6 |x − x�|2−ε. Applying Doob and Rosenthal inequalities
together with (63) gives

P(τx 6 n) 6 P( sup
16k6n

|Sk| > dist(x, ∂K))

6 P( sup
16k6n

|Sk| > α′|x− x�|)

6
2nE[|X|2]

α′2|x− x�|2

6 Cn−ε/(2−ε).

Hence, there exist c,N > 0 such that P(τx > n) > c for n > N with n 6 |x− x�|2−ε.
Suppose finally that |x − x�| 6 t. By the proof of [16, Lem. 14] and the strong

irreducibility of S in K, there exist c, ρ, n0 > 0 such that for x large enough, we have

P(|x+ S(n0)− (x+ S(n0))�| > t, |S(n0)| 6 n0R) > ρ.

Hence, for n > n0, by the Markov property and the first part of the proof,

P(τx > n) > E[τx+S(n0) > n− n0; |x+ S(n0)− (x+ S(n0))�| > t, |S(n0)| 6 n0R]

> cρ(n− n0)−q
′
.

This gives the result for n large enough. �

We also give an asymptotic lower bound of the réduite u along the boundary, which
are sharper than (24).

Lemma 19. Let σ ∈ ∂Σ and q′′ > q′ > qσ. Then there exists c > 0 such that uniformly
on x going to infinity while x/|x| → σ and dist(x, ∂K) = o(|x|),

u(x) > c|x|p−q′′ dist(x, ∂K)q
′
.

Proof. We use the same notations as in the previous proof and take α > 0 such that
qKσ,α = q′. Let x going to infinity with x/|x| → σ. By Lemma 16, there exists ε > 0
such that for t > 0 and x large enough,

P(τbm
x > t) > P(τ > t, sup

06u6t
|B(u)| 6 ε|x− x�|),

where we have set τ := τbm
x,x�−σ+Kσ,α

.

Let us show that P(τ > t, sup06u6t |B(u)| > ε|x − x�|) is negligible in comparison
with P(τ > t), by adapting the reflection principle to a Brownian motion in a cone. By
conditioning on the last time θ when B reaches the sphere of radius ε|x− x�|, we get

P(τ > t, sup
06u6t

|B(u)| > ε|x−x�|, |B(t)| 6 ε|x−x�|) 6 P(θ < t < τ, 〈Bt−Bθ, Bθ〉 < 0).

We denote by B(θ) the process Bθ+u −Bθ, which is a Brownian meander independent
of (B(u))06u6θ, see for example [46]. Denote by K+ (resp. K−) the intersection of K
with the set

{v ∈ Rd : 〈v,Bθ〉 > 〈Bθ, Bθ〉} (resp. {v ∈ Rd : 〈v,Bθ〉 < 〈Bθ, Bθ〉}),
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and let s denote the symmetry with respect to the hyperplane Bθ +B⊥θ . Since we have
s(K−) ⊂ K+,

(B(θ) +Bθ
u)06u6t−θ ⊂ K− implies that s

(
(B(θ) +Bθ

u)06u6t−θ

)
⊂ K+.

Moreover, s turns a negative meander into a positive one, and is thus measure
preserving. Therefore,

P(s({(B(θ) +Bθ
u)06u6t−θ ⊂ K−})) = P({(B(θ) +Bθ

u)06u6t−θ ⊂ K−}).
This implies that

P(θ < t < τ, 〈Bt −Bθ, Bθ〉 < 0) 6 P(θ < t < τ, 〈Bt −Bθ, Bθ〉 > 0).

Since 〈Bt −Bθ, Bθ〉 > 0 implies that |Bt| > |Bθ|, we get finally

P

(
τ > t, sup

06u6t
|B(u)| > ε|x− x�|, |B(t)| 6 ε|x− x�|

)
6 P

(
τ > t, sup

06u6t
|B(u)| > ε|x− x�|, |B(t)| > ε|x− x�|

)
.

Since

P(τ > t, sup
06u6t

|B(u)| > ε|x− x�|, |B(t)| > ε|x− x�|) = P(τ > t, |B(t)| > ε|x− x�|),

we have

P(τ > t, sup
06u6t

|B(u)| > ε|x− x�|) = P(τ > t, sup
06u6t

|B(u)| > ε|x− x�|, |B(t)| 6 ε|x− x�|)

+ P(τ > t, sup
06u6t

|B(u)| > ε|x− x�|, |B(t)| > ε|x− x�|)

6 2P(τ > t, sup
06u6t

|B(u)| > ε|x− x�|, |B(t)| > ε|x− x�|)

6 2P(τ > t, |B(t)| > ε|x− x�|).

Therefore, using [16, Lem. 18] yields for t = o(|x− x�|2),

P(τ > t, sup
06u6t

|B(u)| > ε|x− x�|) = o(P(τ > t)),

and finally

P(τ > t, sup
06u6t

|B(u)| 6 ε|x− x�|) ∼
uKσ,α(x− x�)

tq′/2
,

uniformly for t and x such that x− x� = o(
√
t). Since by Lemma 16,

P(τ > t, sup
06u6t

|B(u)| 6 ε|x− x�|) 6 P(τbm
x > t),

and uKσ,α(x− x�) > cdist(x− x�, ∂Kσ,α)q
′

by (24), we have

P(τbm
x > t) >

cdist(x− x�, ∂Kσ,α)q
′

tq′/2
.

Usual Gaussian estimates in K (see for example [45, App. A]) yields therefore

u(x)

tp/2
> cP(τbm

x > t) >
cdist(x− x�, ∂Kσ,α)q

′

tq′/2
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for x going to infinity with x/|x| → σ, dist(x−x�, ∂Kσ,α) = o(|x|) and x−x� = o(
√
t).

Hence, evaluating the above inequality at t = |x|2(p−q′′)/(p−q′) for q′′ > q′ small enough
gives for any q′ > q the existence of c > 0 such that

u(x) > c|x|p−q′′ dist(x− x�, ∂Kσ,α)q
′
. �
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[3] R. Bañuelos and R. Smits (1997). Brownian motion in cones. Probab. Theory Related Fields 108
299–319

[4] P. Biane (1991). Quantum random walk on the dual of SU(n). Probab. Theory Related Fields 89
117–129
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