Diagonal convergence of the Remainder Pad\'e approximants for the Hurwitz zeta function - Archive ouverte HAL
Article Dans Une Revue Journal of Number Theory Année : 2021

Diagonal convergence of the Remainder Pad\'e approximants for the Hurwitz zeta function

Résumé

The Hurwitz zeta function $\zeta(s, a)$ admits a well-known (divergent) asymptotic expansion in powers of $1/a$ involving the Bernoulli numbers. Using Wilson orthogonal polynomials, we determine an effective bound for the error made when this asymptotic series is replaced by nearly diagonal Padé approximants. By specialization, we obtain new fast converging sequences of rational approximations to the values of the Riemann zeta function at every integers $\ge 2$. The latter can be viewed, in a certain sense, as analogues of Apéry's celebrated sequences of rational approximations to $\zeta(2)$ and $\zeta(3)$.
Fichier principal
Vignette du fichier
RPAzeta_def.pdf (285.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02498437 , version 1 (04-03-2020)

Identifiants

Citer

Marc Prévost, Tanguy Rivoal. Diagonal convergence of the Remainder Pad\'e approximants for the Hurwitz zeta function. Journal of Number Theory, 2021, ⟨10.1016/j.jnt.2020.10.019⟩. ⟨hal-02498437⟩
153 Consultations
131 Téléchargements

Altmetric

Partager

More