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DIAGONAL CONVERGENCE OF THE REMAINDER PADÉ
APPROXIMANTS FOR THE HURWITZ ZETA FUNCTION

M. PRÉVOST AND T. RIVOAL

Abstract. The Hurwitz zeta function ζ(s, a) admits a well-known (divergent) asymp-
totic expansion in powers of 1/a involving the Bernoulli numbers. Using Wilson orthogonal
polynomials, we determine an effective bound for the error made when this asymptotic
series is replaced by nearly diagonal Padé approximants. By specialization, we obtain new
fast converging sequences of rational approximations to the values of the Riemann zeta
function at every integers ≥ 2. The latter can be viewed, in a certain sense, as analogues
of Apéry’s celebrated sequences of rational approximations to ζ(2) and ζ(3).

1. Introduction

Hurwitz zeta function is defined, for <(a) > 0 and <(s) > 1, as

ζ(s, a) =
∞∑
k=0

1

(k + a)s
.

It is assumed that a 7→ log(a + k) is defined with its principal determination. For fixed a
such that <(a) > 0, ζ(s, a) can be analytically continued to s ∈ C \ {1}, with a pole at
s = 1.

The goal of this paper is to construct rapidly convergent sequences of complex numbers
to ζ(s, a), which are in fact sequences of rational numbers when s ≥ 2 and a ≥ 1 are
integers. Our method is based on the construction of remainder Padé approximants to
(analytic continuation of) ζ(s, a), ie to ordinary Padé approximants to the remainder series∑∞

k=n+1
1

(k+a)s
when n is viewed as a variable. We refer to [5, 6, 7, 8, 9] for other examples

of this method. In the present situation, we first remark that, for any integer n ≥ 0, we
have the trivial relation

ζ(s, a) =
n−1∑
k=0

1

(k + a)s
+ ζ(s, n+ a). (1.1)
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It is known that t1−sζ(s, 1/t) (defined with the principal determination of log(t)) admits
an asymptotic expansion in Poincaré sense:

t1−sζ(s, 1/t) ∼ 1

s− 1
+
t

2
+
∞∑
k=1

(s)2k−1

(2k)!
B2kt

2k, t→ 0,<(t) > 0 (1.2)

where (B2k)k≥1 is the sequence of Bernoulli numbers of positive even indices. With t =
1/(n+a), we deduce from (1.2) an asymptotic expansion in powers of 1/(n+a) of ζ(s, n+
a) on the right-hand side of (1.1), which we want to “replace” by certain of its Padé
approximants evaluated at 1/(n + a). We provide a derivation of (1.2) for the reader’s
convenience in §2.

For any s > 0, let us consider the formal power series

Φs(z) :=
∞∑
n=0

(s)2n+1

(2n+ 2)!
B2n+2(−z)n, (1.3)

which appears on the right hand side of (1.2). It is a divergent series for all z 6= 0. As we
shall see, it is also the asymptotic expansion at z = 0, z /∈ [0,+∞) of a function analytic
in C \ [0,∞):

Φ̂s(z) =

∫ +∞

0

µs(x)

1− zx
dx,

where µs(x) is an explicit weight function given in §2. The assumption that s is real ensures
the positivity of µs(x), which is crucial for us.

We shall prove in §5 an estimate (Proposition 2) for the error term

εk,s(z) := Φ̂s(z)− [k/k]Φs(z).

Using Carleman’s criterion [4, p. 84], the first author proved in [7] the convergence of
εk,s(z) to 0 as k → +∞, for fixed s and z. The bound (5.1) given in Proposition 2 is
useless when z is fixed but it becomes interesting for certain choices of z = z(k) → 0 as
k → +∞. This is the situation we are in, and this enables us to construct sequences that
converge quickly to ζ(a, s). If s, a ∈ N, these are sequences of rational numbers.

Theorem 1. Let s > 0, s 6= 1 and a ∈ C be such that <(a) > 0. Set an := n + a. Then,
for every large enough integer n and any integer k ≥ 0, we have

ζ(s, a) =
n−1∑
k=0

1

(k + a)s
+

1

(s− 1)as−1
n

+
1

2asn
+

1

as+1
n

[k/k]Φs

(
− 1

a2
n

)
+εk,s

(
− 1

a2
n

)
, (1.4)

where

|εk,s(−1/a2
n)| ≤ Ds

(2k + 2ρ)Γ(2k + ρ+ 1)2

|an|4k+2 (4k + 2ρ+ 1)(2k + 1)
(

4k+2ρ
2k+1

)2 , (1.5)

where ρ := 1
2
(m+ 7) and Ds := (2π)sm!/Γ(s) and m := bsc.
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The right-hand side of (1.5) tends to 0 as n → +∞ slowly if k is fixed and much more
rapidly if k is chosen as a function of n of (sub)linear growth. “Large enough integer n”
means that n must be such that <(1/(n + a)2) > 0; in particular we can take n ≥ 0 if
a > 0. The term 1

s−1
in (1.2) reflects the fact that s = 1 is a pole of ζ(s, a) (see (2.1) below).

However, the formal series Φs(z) is well-defined for s = 1 and its Padé approximants can
be computed as well. We did that in [8] and proved a result similar to Theorem 1 for the
Digamma function defined by

Ψ(a) := −γ +
∞∑
k=0

(
1

k + 1
− 1

k + a

)
,

which can be viewed as a convergent version of −ζ(1, a). The results of the present paper
therefore complement those of [8]. Of particular importance in Theorem 1 is the case when
a = 1 because our results enable to construct fast convergent sequences of real numbers to
the values of the Riemann zeta function ζ(s).

Corollary 1. Let r ∈ Q such that 0 < r < 2e. Let s > 0, s 6= 1. Then, for every integer
n ≥ 1 such that rn is an integer, we have

ζ(s) =
n∑
k=1

1

ks
+

1

(s− 1)ns−1
− 1

2ns
+

1

ns+1
[rn/rn]Φs

(
− 1

n2

)
+ δr,s,n, (1.6)

where

lim sup
n→+∞

|δr,s,n|1/n ≤
( r

2e

)4r

. (1.7)

The paper is organized as follows. In §2, we present a Stieljes type integral representation

of ζ(s, a) that enables to analytically continue it, and we deduce some properties of Φ̂s(z).
In §3, we obtain a bound for the weight function µs(x). This bound displays a connection
with Wilson’s polynomials for the weight function |Γ(α + ix)Γ(β + ix)|2. We use this
connection in §5 to prove an intermediate result (Proposition 2), from which Theorem 1 is
then easily deduced in §6. In §7, we extend the previous results to the case s is negative.
We conclude in §8 with some remarks on the special case s ∈ N in Corollary 1.

2. Consequences of an integral representation of ζ(s, a)

The first author proved in [7] that for every s, a ∈ C such that <(s) > 0, s 6= 1, <(a) > 0,
and every non-negative integer m > <(s)− 1, we have

ζ(s, a) =
1

as−1

(
1

s− 1
+

1

2a
+

∫ +∞

0

ωs(x)

a2 + x2
dx

)
(2.1)

where log(a) is defined with its principal determination and the weight function ωs is
defined (for any s ∈ C and x ≥ 0) by

ωs(x) :=
2(−1)mxs

Γ(s)Γ(m+ 1− s)

∫ +∞

x

(t− x)m−s
dm

dtm

(
1

e2πt − 1

)
dt. (2.2)
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The function t 7→ (t − x)m−s and x 7→ xs are defined with the principal determinations
of log(t − x) and log(x). Note that ωs(x) is really independent of the integer m, as an
integration by parts shows. When s ≥ 1 is an integer, we take m = s so that

ωs(x) =
2(−1)s−1xs

(s− 1)!

ds−1

dxs−1

(
1

e2πx − 1

)
∈ L1(R).

In that case, (2.1) was known earlier, see [4, p. 230] for instance. When s is not an integer,
we observe that |ωs(x)| � x<(s) in a neighborhood of x = 0, while |ωs(x)| � e−2πx as
x→ +∞. Hence, ωs(x) ∈ L1(R) when <(s) > 0.

For <(s) > 0 and x ≥ 0, we define µs(x) := ωs(
√
x)

2
√
x
∈ L1(R+) and set

Φ̂s(z) :=

∫ +∞

0

µs(x)

1− zx
dx.

This defines a function of z analytic in C \ [0,+∞). Provided <(s) > 0, s 6= 1, Eq. (1.2)
can then be rewritten as

t1−sζ(s, 1/t) =
1

s− 1
+
t

2
+ t2Φ̂s(−t2) (2.3)

for any t such that <(1/t) > 0.
Now, for any integer k ≥ 0, we have

(−1)k
B2k+2

2k + 2
=

∫ +∞

0

x2kω1(x)dx =

∫ +∞

0

xkµ1(x)dx. (2.4)

This classical identity is reproved in [8, Proposition 1] for instance. It is proved in [7,
Theorem 2] that, more generally, for every integer k ≥ 0 and every s such that <(s) > 0,
we have

(s)2k+1

(2k + 2)!
(−1)kB2k+2 =

∫ +∞

0

x2kωs(x)dx =

∫ +∞

0

xkµs(x)dx. (2.5)

It follows from (2.5) that, for any integer N ≥ 0, z ∈ C \ [0,+∞) and <(s) > 0,

Φ̂s(z) =
N−1∑
k=0

(s)2k+1

(2k + 2)!
B2k+2(−z)k + zN

∫ +∞

0

xN

1− zx
µs(x)dx

and this justifies the claim that the divergent series Φs(z) is the asymptotic expansion

at z = 0, z /∈ [0,+∞) of Φ̂s(z). Moreover, using (2.3), this also justifies the asymptotic
expansion (1.2) in the Introduction.

3. Bounds for the weight ωs(x)

The goal of this section is to prove the following

Proposition 1. For any s > 0 and any x ≥ 0, we have

0 ≤ Γ(s)xωs(x) ≤ 2(2π)s−1m!G
(m+ 5

2
, 1, x

)
,
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where m := bsc and
G(α, β, x) := |Γ(α + ix)Γ(β + ix)|2 . (3.1)

3.1. Intermediate bounds. We set G(α, β, x) := |Γ(α + ix)Γ(β + ix)|2 for α, β > 0 and
x ∈ R. We prove here the

Lemma 1. (i) For every x > 0 and every integer m ≥ 0, we have

0 ≤ (−1)m
dm

dxm

(
1

e2πx − 1

)
≤ (2π)mm!

e2πmx

(e2πx − 1)m+1
. (3.2)

(ii) For every x ≥ 0 and every integer m ≥ 0, we have( x

1− e−2πx

)m+1

G(2, 1, x) ≤ G
(m+ 5

2
, 1, x

)
. (3.3)

Proof. The proof is tedious but without any difficulties. We will implicitely use some
classical properties of the Gamma function.

(i) For x > 0, set ν(x) = 1
ex−1

. We have

dmν(x)

dxm
= (−1)mν(x)m+1

m∑
k=1

a
(m)
k ekx,

where the a
(m)
k satisfy the linear recursion

a
(m+1)
k = (m+ 2− k)a

(m)
k−1 + ka

(m)
k , k = 1, . . . ,m+ 1

with the convention that a
(0)
1 = a

(1)
1 = 1, a

(m)
0 = 0, a

(m)
m+1 = 0 for any m ≥ 1. Since a

(1)
1 = 1,

we obtain by induction that for all k = 1, . . . ,m, a
(m)
k ≥ 0, a

(m+1)
m+1 = a

(m)
m = 1 and

m+1∑
k=1

a
(m+1)
k = (m+ 1)

m∑
k=1

a
(m)
k = (m+ 1)!.

It follows that

(−1)m
dmν(x)

dxm
= ν(x)m+1

m∑
k=1

a
(m)
k ekx.

Hence,

0 ≤ (−1)m
dmν(x)

dxm
≤ ν(x)m+1emx

m∑
k=1

a
(m)
k = m!

emx

(ex − 1)m+1
.

In other words, we have

0 ≤ (−1)m
dm

dxm

(
1

e2πx − 1

)
≤ (2π)mm!

e2πmx

(e2πx − 1)m+1

as expected.

(ii) It will be enough to prove that, for every integer p ≥ 1 and every x ≥ 0, we have

G(p, 1, x)

G(p+ 1
2
, 1, x)

x

1− e−2πx
≤ 1 and

G(p+ 1
2
, 1, x)

G(p+ 1, 1, x)

x

1− e−2πx
≤ 1.
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Eq. (3.3) will then follow from this two bounds by induction on m ≥ 0.
Firstly, we have

G(p, 1, x)

G(p+ 1
2
, 1, x)

x

1− e−2πx
=

x

1− e−2πx

|Γ(p+ ix)|2∣∣Γ(p+ 1
2

+ ix)
∣∣2

=
x

1− e−2πx

|p− 1 + ix|2 |p− 2 + ix|2 · · · |ix|2 |Γ(ix)|2∣∣p− 1
2

+ ix
∣∣2 ∣∣p− 3

2
+ ix

∣∣2 · · · ∣∣1
2

+ ix
∣∣2 ∣∣Γ(1

2
+ ix)

∣∣2
=

x

1− e−2πx

|p− 1 + ix|2 |p− 2 + ix|2 · · · |ix|2 π
x sinh(πx)∣∣p− 1

2
+ ix

∣∣2 ∣∣p− 3
2

+ ix
∣∣2 · · · ∣∣1

2
+ ix

∣∣2 π
cosh(πx)

≤ x2

1
4

+ x2
coth(πx)

1

1− e−2πx
=

x2

1
4

+ x2

1 + e−2πx

(1− e−2πx)2
≤ 1.

The last inequality is proved as follows: for all x ≥ 0, we have

1− x2

1
4

+ x2

1 + e−2πx

(1− e−2πx)2
=
e4πx − 2(1 + 6x2)e2πx + 1 + 4x2

(1− e2πx)2(1 + 4x2)

≥ e4πx − 2(1 + 6x2)e2πx + 1− 4x2 − 48x3

(1− e2πx)2(1 + 4x2)

=
(e2πx − 1 + 4x)(e2πx − 1− 4x− 12x2)

(1− e2πx)2(1 + 4x2)
≥ 0,

as the study of the variations of e2πx − 1 + 4x and e2πx − 1− 4x− 12x2 shows.
Similarly, we have

G(p+ 1
2
, 1, x)

G(p+ 1, 1, x)

x

1− e−2πx
=

x

1− e−2πx

∣∣p− 1
2

+ ix
∣∣2 ∣∣p− 3

2
+ ix

∣∣2 · · · ∣∣1
2

+ ix
∣∣2 π

cosh(πx)

|p+ ix|2 |p− 1 + ix|2 · · · |ix|2 π
x sinh(πx)

≤ x

1− e−2πx

π
cosh(πx)

|ix|2 π
x sinh(πx)

=
tanh(πx)

1− e−2πx
=

eπx

eπx + e−πx
≤ 1.

This completes the proof. �

3.2. Proof of Proposition 1. We can now prove Proposition 1.
Since for every x > 0 and every integer m ≥ 0, we have

(−1)m
dm

dxm

( 1

e2πx − 1

)
≥ 0

(by the lower bound in Lemma 1(i)), the integral definition (2.2) of ωs(x) shows that for
any x ≥ 0 and any s > 0, we have xωs(x) ≥ 0 and Γ(s) > 0.
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We now proceed to get the upper bound. From now on, m := bsc, so that 0 ≤ s−m < 1.
Starting from (2.2) and the upper bound in Lemma 1(i), we obtain in succession

Γ(s)ωs(x) ≤ 2xs(2π)mm!

Γ(m+ 1− s)

∫ ∞
x

(t− x)m−s
e2πmt

(e2πt − 1)m+1
dt

=
2xs(2π)mm!

Γ(m+ 1− s)

∫ ∞
x

(t− x)m−se−2πt
( e2πt

e2πt − 1

)m+1

dt

≤ 2xs(2π)mm!

Γ(m+ 1− s)

( e2πx

e2πx − 1

)m+1
∫ ∞
x

(t− x)m−se−2πtdt

= 2xs−m−1(2π)s−1m!
( x

1− e−2πx

)m+1

e−2πx

We now use that, for x ≥ 0,

e−2πx ≤ π2 x2

sinh(πx)2
=: G(1, 1, x).

Indeed, we have for x ≥ 0

π2x2 − sinh(πx)2e−2πx =
1

4

(
2πx− 1 + e−2πx)

) (
2πx+ 1− e−2πx

)
≥ 0.

Hence,

Γ(s)xωs(x) ≤ 2xs−m(2π)s−1m!
( x

1− e−2πx

)m+1

G(1, 1, x)

≤ 2(2π)s−1m!
( x

1− e−2πx

)m+1

(1 + x2)G(1, 1, x) (since xs−m ≤ 1 + x2)

= 2(2π)s−1m!
( x

1− e−2πx

)m+1

G(2, 1, x) ≤ 2(2π)s−1m!G
(m+ 5

2
, 1, x

)
by Lemma 1(ii).

4. Wilson’s polynomials

We now make a crucial observation: G(α, β, x) is Wilson’s weight on (0,+∞), for which
the orthogonal polynomials are explicitly known; see [2, 11]. We review these facts in this
section.

Let α, β > 0. Wilson’s polynomials are defined by

Pn(α, β, x) := in3F2

[
−n, n+ 2α + 2β − 1, β − ix

α + β, 2β
; 1

]
∈ R[x]

and they have the parity of n. The leading coefficient of Pn(α, β, x) is

(−1)n
(n+ 2α + 2β − 1)n

(α + β)n (2β)n
.
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They satisfy the orthogonality relations∫ +∞

−∞
Pn(α, β, x)Pm(α, β, x)G(α, β, x)dx = 0, n 6= m,

and ∫ +∞

−∞
P 2
n(α, β, x)G(α, β, x)dx =

(1)n(2α)n(α + β − 1
2
)n

(2β)n(2α + 2β − 1)n(α + β + 1
2
)n
A(α, β),

where

A(α, β) :=

∫ +∞

−∞
G(α, β, x)dx =

Γ(α)Γ
(
α + 1

2

)
Γ(β)Γ

(
β + 1

2

)
Γ(α + β)Γ

(
1
2

)
Γ
(
α + β + 1

2

) .

Consider now the weight function γ(α, β, x) := 1√
x
G(α, β,

√
x) ∈ L1(R+). The sequence

of monic orthogonal polynomials (Tk(α, β, x))k on [0,∞) with respect to γ(α, β, x) is given
by

Tk(α, β, x) =
(α + β)2k (2β)2k

(2k + 2α + 2β − 1)2k

P2k(α, β,
√
x).

In particular, for all k ≥ 0,∫ +∞

0

T 2
k (α, β, x)γ(α, β, x)dx =

π2(4k + 2α + 2β − 1)(2k)!Γ(2k + 2α)Γ(2k + 2β)Γ(2k + 2α + 2β − 1)

28k+4α+4β−3Γ
(
2k + α + β + 1

2

)2 . (4.1)

If β = 1, then

Tn(α, 1, x) =
(−1)n(2n)!(α)2n+1

(2n+ 2α)2n+1

2n∑
j=0

(
2n+ 1

j + 1

)(
2n+ 2α + j

j + 1

)(
i
√
x− 1

j

)
/

(
α + j

j + 1

)
and, after simplification of (4.1),∫ +∞

0

T 2
k (α, 1, x)γ(α, 1, x)dx =

2π(2k + 2α)

(2k + 1)(4k + 2α + 1)

Γ(2k + α + 1)2(
4k+2α
2k+1

)2 .

5. A bound for the Padé approximants of Φs

We recall that

Φ̂s(z) :=

∫ +∞

0

µs(x)

1− zx
dx, z ∈ C \ [0,+∞).

In this section, we shall prove the following bound.
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Proposition 2. Let z ∈ C such that <(z) < 0, and s > 0. For any integer k ≥ 0, set

εk,s(z) := Φ̂s(z)− [k/k]Φs(z).

Then,

|εk,s(z)| ≤ Cs|z|2k+1 2π(2k + 2ρ)Γ(2k + ρ+ 1)2

(4k + 2ρ+ 1)(2k + 1)
(

4k+2ρ
2k+1

)2 (5.1)

where ρ := 1
2
(m+ 7) and Cs := (2π)s−1m!/Γ(s) and m := bsc.

Proof. We first prove a crucial inequality, namely Eq (5.3) below. By Proposition 1, we
have for any x ≥ 0

Γ(s)
√
xωs(
√
x) ≤ 2(2π)s−1m!G

(m+ 5

2
, 1,
√
x
)

where s > 0 and m = bsc. Hence, for x ≥ 0,

0 ≤ Γ(s)xµs(x) ≤ (2π)s−1m!G
(m+ 5

2
, 1,
√
x
)

≤ (2π)s−1m!√
x

G
(m+ 7

2
, 1,
√
x
)

(5.2)

= (2π)s−1m! γ
(m+ 7

2
, 1, x

)
where γ(α, β, x) := 1√

x
G(α, β,

√
x) ∈ L1(R+). In (5.2), we used

√
xG(m+5

2
, 1, x) ≤ |m+5

2
+

ix|2G(m+5
2
, 1, x) = G(m+7

2
, 1, x).

Hence, for x ≥ 0 and s > 0, we have

0 ≤ xµs(x) ≤ Csγ
(m+ 7

2
, 1, x

)
(5.3)

where Cs := (2π)s−1m!/Γ(s).

For the general properties of Padé approximants and orthogonal polynomials, we refer to
[3]. Let qk(x) ∈ R[x] denote the k-th monic orthogonal polynomial with respect to xµs(x)
on [0,+∞). Since xµs(x) ≥ 0 on [0,+∞), the roots of qk(x) are in [0,+∞) and thus in
particular |qk(x)| ≥ |x|k for all x ∈ C such that <(x) ≤ 0. The polynomial zkqk(1/z) is the
denominator of [k/k]Φs and we have

Φ̂s(z)− [k/k]Φs(z) =
z

qk(1/z)2

∫ +∞

0

qk(x)2

1− zx
xµs(x)dx

for all z ∈ C \ [0,+∞); see the generalization mentioned right after [8, Proposition 3]
(where it must be understood that qn(u) is orthogonal for the weight um−n+1ω(u) and not
just ω(u)).

Set ρ = m+7
2

. Eq. (5.3) enables us to apply [8, Proposition 4]: for any k ≥ 0 and s > 0,
we have

0 ≤
∫ +∞

0

qk(x)2xµs(x)dx ≤
∫ +∞

0

Tk(ρ, 1, x)2γ(ρ, 1, x)dx.
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It follows that for all k ≥ 0, s > 0 and z ∈ C such that <(z) < 0, we have∣∣∣∣ z

qk(1/z)2

∫ +∞

0

qk(x)2

1− zx
xµs(x)dx

∣∣∣∣ ≤ Cs|z|2k+1

∫ +∞

0

T 2
k

(
ρ, 1, x

)
γ
(
ρ, 1, x

)
dx

≤ Cs|z|2k+1 2π(2k + 2ρ)

(2k + 1)(4k + 2ρ+ 1)

Γ(2k + ρ+ 1)2(
4k+2ρ
2k+1

)2 .

Therefore,∣∣∣Φ̂s(z)− [k/k]Φs(z)
∣∣∣ ≤ Cs|z|2k+1 2π(2k + 2ρ)

(4k + 2ρ+ 1)(2k + 1)

Γ(2k + ρ+ 1)2(
4k+2ρ
2k+1

)2 ,

which completes the proof of Proposition 2. �

6. Proofs of Theorem 1 and Corollary 1

Assume that s > 0, s 6= 1 and a ∈ C is such that <(a) > 0. There exists N(a) ≥ 0
such that if n ≥ N(a), then <(−1/(n + a)2) < 0. Hence for n ≥ N(a), ζ(s, n + a) and

Φ̂s(−1/(n+ a)2) are both well-defined and we have (with an := n+ a)

ζ(s, a) =
n−1∑
k=0

1

(k + a)s
+ ζ(s, n+ a)

=
n−1∑
k=0

1

(k + a)s
+

1

(s− 1)as−1
n

+
1

2asn
+

1

as+1
n

Φ̂s

(
− 1

a2
n

)
=

n−1∑
k=0

1

(k + a)s
+

1

(s− 1)as−1
n

+
1

2asn

+
1

as+1
n

[k/k]Φs

(
− 1

a2
n

)
+

1

as+1
n

εk,s

(
− 1

a2
n

)
.

This proves (1.4), and (1.5) is a consequence of Proposition 2 with z = −1/a2
n.

To prove Corollary 1, we take a = 1 in Theorem 1, change n to n− 1, take k = rn and
set δr,s,n := εrn,s(−1/n2). We get (1.6). The lim sup estimate (1.7) comes from Stirling’s
formula applied to the upper bound for εrn,s(−1/n2) given by Proposition 2.

7. The case s real negative

In this section, we show that convergence of certain remainder Padé approximants occur
in the case where s is negative but only for well chosen degree of the numerators of those
approximants. More precisely we don’t consider the weight xωs(x) as in Proposition 1
but xs+2p+1Ws(x), with p ≥ 1, such that s + 2p is positive. Thus the convergence will be
established for remainder Padé approximants of degree [n+ p, n] when n tends to ∞.

For <(s) < 0, Eqs. (2.1) and (2.2) become
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Theorem 2. Let s ∈ C \ Z≤0 with <(s) < 0, a ∈ C with <(a) > 0, and an integer p ≥ 1
such that <(s) + 2p > 0. Then

ζ(s, a) =

a−s+1

(
1

s− 1
+

1

2a
+

p−1∑
k=0

(s)2k+1

(2k + 2)!
B2k+2a

−2−2k +
a−2p(−1)p

Γ(s)

∫ ∞
0

u2p

a2 + u2
Ws(u)du

)
where the weight function

Ws(u) =
2us

Γ(1− s)

∫ ∞
u

(y − u)−s
dy

e2πy − 1

is non-negative on [0,+∞).

Proof. We begin with the following formula

as(a2 + y2)−s/2 sin(s arctan(y/a))

=
(−1)p

Γ(s)Γ(1− s)

∫ y

0

a1−2pus+2p(y − u)−s

a2 + u2
du+

p−1∑
k=0

(s)2k+1(y/a)2k+1(−1)k

(2k + 1)!
,

the proof of which is similar to that in [7].
We recall Hermite’s formula for ζ(s, a),<(a) > 0, which is a consequence of Plana’s

summation formula:

ζ(s, a) =
1

2
a−s +

a1−s

s− 1
+ 2

∫ ∞
0

(a2 + y2)−s/2 sin
(
s arctan

(y
a

)) dy

e2πy − 1
. (7.1)

Thus

ζ(s, a) =
1

2
a−s +

a1−s

s− 1
+

2a−s
∫ ∞

0

(
(−1)p

Γ(s)Γ(1− s)

∫ y

0

a1−2pus+2p(y − u)−s

a2 + u2
du+

p−1∑
k=0

(s)2k+1(y/a)2k+1(−1)k

(2k + 1)!

)
dy

e2πy − 1

The first term in the integral can be written as∫ ∞
0

∫ y

0

us+2p(y − u)−s

a2 + u2
du

dy

e2πy − 1
=

∫ ∞
0

us+2p

a2 + u2
du

∫ ∞
u

(y − u)−s
dy

e2πy − 1
,

where we can apply Fubini’s theorem because because

0 ≤ us+2p(y − u)−s

a2 + u2

1

e2πy − 1
≤ 4−p(−s)−sp−2p(2p+ s)2p+s 1

a2 + u2

y2p

e2πy − 1

and the right-hand side is a function of (u, y) integrable on [0,+∞) × [0,+∞). Eq. (2.5)
completes the proof. �
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All the previous results for s with <(s) > 0 are derived from the bound of the weight
Γ(s)xωs(x) obtained in §3. Thus all the results in the previous sections are true for s
negative provided the Padé approximant [k, k] is replaced by [k+p, k]. We adapt the same
proof as in the previous sections to get the following analogues of Proposition 1, Theorem 1
and Corollary 1 respectively.

Proposition 3. For s < 0, s /∈ Z≤0, if p = b−s/2c+ 1 then

0 ≤ x2p+1Ws(x) ≤ 2(2π)s−1G(5/2, 1, x).

Theorem 3. Let s < 0, s /∈ Z≤0 and a ∈ C be such that <(a) > 0. Set an := n+ a. Then,
for every large enough integer n and any integer k ≥ 0, we have

ζ(s, a) =
n−1∑
k=0

1

(k + a)s
+

1

(s− 1)as−1
n

+
1

2asn
+

1

as+1
n

[k+ p/k]Φs

(
− 1

a2
n

)
+ εk,s

(
− 1

a2
n

)
, (7.2)

where

|εk,s(−1/a2
n)| ≤ Ds

(2k + 2ρ)Γ(2k + ρ+ 1)2

|an|4k+3+2p+s(4k + 2ρ+ 1)(2k + 1)
(

4k+2ρ
2k+1

)2 , (7.3)

where ρ := 5
2

and Ds := (2π)s/Γ(s) and p := b−s/2c+ 1.

Corollary 2. Let r ∈ Q such that 0 < r < 2e. Let s < 0, s /∈ Z≤0 and p := b−s/2c + 1
Then, for every integer n ≥ 1 such that rn is an integer, we have

ζ(s) =
n∑
k=1

1

ks
+

1

(s− 1)ns−1
− 1

2ns
+

1

ns+1
[rn+ p/rn]Φs

(
− 1

n2

)
+ δr,s,n, (7.4)

where

lim sup
n→+∞

|δr,s,n|1/n ≤
( r

2e

)4r

. (7.5)

8. The case a = 1 and s ∈ N

In this section, we discuss the sequences of rational numbers produced by the Padé
approximants of Φs(z) when a = 1 and s ≥ 1 is an integer. When s = 1, we refer to our
paper [8] where we proved in particular that

γ =
n∑
k=1

1

k
− log(n)− 1

2n
+

1

n2
[n− 1/n]Φ1

(
− 1

n2

)
+ δ1,n, lim sup

n→+∞
|δ1,n|1/n ≤ (2e)−4.

This is very similar to (1.6) when s ≥ 2 and r = 1:

ζ(s) =
n∑
k=1

1

ks
+

1

(s− 1)ns−1
− 1

2ns

+
1

ns+1
[n/n]Φs

(
− 1

n2

)
+ δs,n, lim sup

n→+∞
|δs,n|1/n ≤ (2e)−4.
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The change from the Padé approximants [n − 1/n] to [n/n] is not fundamental. It is due
to the simplification of a part of our argument, to avoid distinguishing two cases. These
equations thus provide sequences of rational numbers ps,n/qs,n (written in reduced form)
such that

γ = lim
n→+∞

(p1,n

q1,n

− log(n)
)
, ζ(s) = lim

n→+∞

ps,n
qs,n

(s ≥ 2).

We computed diagonal Padé approximants [n/n]Φs for various values of the integer s ≥ 1
for n from 1 to 146. It seems that |δs,n|1/n always exists and is not very far from our upper
bound (2e)−4. The situation is apparently different for the asymptotic behavior of the
denominators qs,n. On the one hand, if s = 1, it seems that |q1,n| grows at least like

c(1)n
2 log(n)(1+o(1)) for some constant c(1) > 1, while if the integer s ≥ 4, then it seems

that |qs,n| grows at least like c(s)n log(n) for some constant c(s) > 1. On the other hand,
if s ∈ {2, 3}, |qs,n| seems to grow like c(s)n(1+o(1)) for some constant c(s) > 1. In fact, if
s ∈ {2, 3}, then variants of p2,n/q2,n and p3,n/q3,n are known to coincide with the famous
sequences Apéry [1] used to prove the irrationality of ζ(2) and ζ(3); see [6] or [8, §7] for
details.
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