Nonlinear boundary value problems relative to harmonic functions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Nonlinear boundary value problems relative to harmonic functions

Oussama Y. Boukarabila
  • Fonction : Auteur
  • PersonId : 983985

Résumé

We study the problem of finding a function u verifying −∆u = 0 in Ω under the boundary condition ∂u ∂n + g(u) = µ on ∂Ω where Ω ⊂ R N is a smooth domain, n the normal unit outward vector to Ω, µ is a measure on ∂Ω and g a continuous nondecreasing function. We give sufficient condition on g for this problem to be solvable for any measure. When g(r) = |r| p−1 r, p > 1, we give conditions in order an isolated singularity on ∂Ω be removable. We also give capacitary conditions on a measure µ in order the problem with g(r) = |r| p−1 r to be solvable for some µ. We also study the isolated singularities of functions satisfying −∆u = 0 in Ω and ∂u ∂n + g(u) = 0 on ∂Ω \ {0}.
Fichier principal
Vignette du fichier
Bouk-Ver-Art-12.pdf (393.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02494933 , version 1 (29-02-2020)
hal-02494933 , version 2 (31-07-2020)

Identifiants

Citer

Oussama Y. Boukarabila, Laurent Veron. Nonlinear boundary value problems relative to harmonic functions. 2020. ⟨hal-02494933v1⟩
108 Consultations
87 Téléchargements

Altmetric

Partager

More