N

N

Nonlinear boundary value problems relative to harmonic
functions

Oussama Y. Boukarabila, Laurent Veron

» To cite this version:

Oussama Y. Boukarabila, Laurent Veron. Nonlinear boundary value problems relative to harmonic
functions. 2020. hal-02494933v1

HAL Id: hal-02494933
https://hal.science/hal-02494933v1
Preprint submitted on 29 Feb 2020 (v1), last revised 31 Jul 2020 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02494933v1
https://hal.archives-ouvertes.fr

Nonlinear boundary value problems
relative to harmonic functions

Y .Oussama Boukarabila*

Laurent Véron'

To Shair with high esteem and sincere friendship

Abstract

We study the problem of finding a function u verifying —Awu = 0 in Q under
the boundary condition % + g(u) = p on 9Q where Q@ C RY is a smooth
domain, n the normal unit outward vector to €2, p is a measure on 0f) and g
a continuous nondecreasing function. We give sufficient condition on ¢ for this
problem to be solvable for any measure. When g(r) = |[r[P=1r, p > 1, we give
conditions in order an isolated singularity on 92 be removable. We also give
capacitary conditions on a measure p in order the problem with g(r) = |r[P~1r
to be solvable for some p. We also study the isolated singularities of functions
satisfying —Au =0 in Q and 2% + g(u) = 0 on 09 \ {0}.

Key Words: Dirichlet to Neumann operator; Laplace-Beltrami operator; Sin-
gularities; Limit set; Radon Measure.
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1 Introduction

Let Q be a smooth bounded domain in RY such that 0 € Q2 and g: R+ R a
continuous nondecreasing function such that rg(r) > 0. The aim of this article
is to study the following nonlinear problem

—Au+u=0 in Q
ou _ . (1.1)
n +g(u) =p in 09Q,

where p is a Radon measure on 02 and n the outward normal unit vector on
J9. An associated model problem on which we can develop sharp estimate is
the following equation in the upper half-space Rf ={z = (21,...,7y) € RV :
TN > 0},
—Au=0 in Rf
ou _ .
———+ |uftu=0 in ORY \ {0}

ox
where p > 1. These two problems are by essence non-local and actually, the
second problem can be expressed by introducing the square root of the Laplacian
in R¥~! under the form

(1.2)

(—Ay_)Fa+@ =0  in R¥N-1\ {0}, (1.3)
N-1 59

where A, | = Z 922 and @(z1,...,2N-1) = u(x1,...,xNn-1,0). The second
€T=
j=1 77

equation is equivariant under the scaling transformation T) (k > 0) defined by

Tilu](z) = kﬁu(kx) (1.4)



Therefore it is natural to look for self-similar solutions i.e. solutions satisfying
Ti[u] = u for any k > 0. Introducing the spherical coordinates (r, o) € (0, 00 X
SN=1)  then a self-similar solution endows the form

1

u(z) =u(r,o) =r r1w(o), (1.5)
and w satisfies
ANw+lypw=0 in N1
Ow _ . _ (1.6)
$+|w|p lw=0 in 95N~

where A’ is the Laplace-Beltrami operator on the unit sphere SV=1, v is the
outward normal unit vector to 8Sf ~! tangent to SV and

e () (L v ) o

This problem points out the existence of critical values of p. We denote by £ the
set of solutions of (1.6) and £ = {w € £ : w > 0}. This set has the following
structure:

Theorem A. 1- If

N-1
18
Pz Ny (1.8)
then € = {0}.
2- If
< 1.9
l<ps< 57— (1.9)
then &4 = {0}.
- N-1
- 1.10
1 <P<N—o (1.10)

then & = {ws, —ws, 0} where wy is the unique positive solution of (1.6).

When 1 < p < %5, we show that there exist signed solutions to (1.6).

Theorem B. Let Q ¢ RN, N > 2, be a bounded C? domain such that 0 € 9
and g : R — R a continuous function which satisfies sg(s) > 0. Then any
function u € C1(Q\ {0}) solution of

—Au=0 m

%—!—g(u) =0 in 0Q\ {0},

satisfying near x = 0 either u(z) = o(|z|>~N) if N > 3 or u(z) = o(In|z|) if
N =2, is constant and g(u) = 0.

(1.11)

The set £ plays a fundamental role in the characterization of boundary
isolated singularities of solutions of

—Au=0 in
1.12
g—z +ulPtu=0 in 00\ {0}. (1.12)



Theorem C. Let ) C RN be a smooth bounded domain such that 0 € OS).
Assume u € CH(Q\ {0}) is a nonnegative function satisfying (1.12) and such
that |x\ﬁu(sc) is bounded.

1-Ifp > %, then u =0

2- If % <p< %, we have the following alternative:

2-(i) either

lim rﬁu(r,a) = w,(0) locally uniformly on SY ', (1.13)
r—0

2-(ii) or there exists a nonnegative real number k such that there holds,

a) lim |2z> Nu(z) =k if N>3,
b) lim (—1In|z|)tu(z) =k if N=2. ’
|z|—=0

The assumption on the boundedness of |x|17+1u(x) seems necessary since no
Keller-Osserman universal estimate [22], [27] appears to hold. Actually, if u
satisfies (1.2), the function @ defined in whole RY by

. ] u(zr, e zy) ifx, >0
U, By ) = { w(Z1y ey, —Ty) ifz, <0, (1.15)
satisfies
— Al + 2|u|P*1uH8M =0 inRY\{0}, (1.16)

where Hory i the (N-1)-dimensional Lebesgue measure supported by OR%Y.

Hence the coercivity due to the nonlinear term is localized on aRf . Such

problems with measure valued nonlinear potential are studied in [29]. Notice
N-1
N—-2
), hence Theorem B implies Theorem C.

also that when p > then the assumption u(z) = O(|x|7ﬁ) implies that

u(z) = of|z[>~
When u satisfies (1.14), the problem can be interpreted with a boundary
data holding in the sense of distributions,

—Au=0 in Q
1.1
O L wp = ks in D'(09). (L1.17)
on

For more general measures and nonlinearities, we define a solution of problem
(1.1) as follows,

Definition. Let Q C RN be as in Theorem B, p € M(IN) and g : R — R be
a continuous function. A function u € LY(Q) is a weak solution of (1.1) if it
admits a boundary trace u|sq which is a Borel function on 99, g(u) € L'(982)
and

/u(—A£+£)da:+/ g(u)de:/ &dp, for all € €C(Q), (1.18)
Q a0 a0

4



where

C(Q) = {5 € CHQ) : AE € L™(Q), g—fl =0 on aQ} . (1.19)

In the next result we give a condition for the unconditionnal solvability of
problem (1.1).

Theorem D. Let Q ¢ RY, N > 3 be a bounded C? domain and g : R — R a
continuous nondecreasing function such that g(0) = 0. If g satisfies

/100(9(8) + \g(—s)|)s_%ds < 00, (1.20)

then for any p € M(ON), the problem (1.1) admits a unique solution.

A nonlinearity which satisfies (1.20) is called subcritical. When N = 2 this
notion has to be modified. Following Vazquez we define the exponential orders
of growth of a continuous nondecreasing function g : R — R vanishing at 0 by

a.(g) = inf {a >0 /Oooeasg(s)ds < oo} : (1.21)

and

a_(g) = sup {a <0: /0 e*®g(s)ds > —oo} . (1.22)

— 00

Theorem E. Let Q C R? be a bounded C? domain and g : R — R a continuous
nondecreasing function such that g(0) = 0.

1- If ay(g) = a—(g) = 0, then for any p € IM(OQ) the problem (1.1) admits a
unique solution,

2-if 0 < ay(g) < 00 and —oco < a_(g) < 0 the problem (1.1) admits a unique
k

solution with p = Z a;dq,, with aj € 02 and a; € R*, provided
j=1

a—(9) =0 ay(g9)

(1.23)

When N > 3 and g does not satisfy (1.20), there may not exist solutions for
any measure. The problem is well understood if g(r) = |r[P~1r. For example,
if p> %, there is no weak solution to the problem

—Au+u=0 in Q
0 1.24
2y lulP~tu = p in D'(09). (124)
On

when p = ad, with a € 9. As in many similar problems, the condition for a
Radon measure in order there exists a weak solution to (1.24) is expressed in

terms of Bessel capacities, presently the capacity C’é’é’/ on the boundary with

/I __ _P
=5



Theorem F. Let Q C RN, N > 2 be a bounded C%. Then problem (1.24) admits
a solution with p € M (0N), necessarily unique, if and only if p vanishes on

Borel set E C 9Q such that Céé’/ (E)=0.

This work is the main part of the PhD thesis of the first author prepared in
the Laboratoire de Mathématiques et Physique Théorique of the University of
Tours under the supervision of the second author.

2 Separable solutions

We recall that the upper hemisphere Sf ~! can be parametrized as follows
Siv_l = {0 = (singo,cos¢): 0’ € SN2, ¢ € [0, 2]}, (2.1)

and we write w(o) = w(o’, ¢)). With this parametrization the Laplace-Beltrami
operator on SV~ endows the form

1
sin? ¢
where A’ is the Laplace-Beltrami operator on S™V~2. The surface measure on
SN=1induced by the Euclidean metric in RY is dS(o) = sin™ 2 ¢dS’(0”)d¢

where dS’(0") is the surface measure on SV =2 induced by the Euclidean metric
in RV-1,

Aw (2.2)

1 . N—
Alw = m (SlnN 2 ¢UJ¢)¢ —+

2.1 Proof of Theorem A

Proof of assertion 1. If p > % then £y, < 0. If w is a solution of (1.6), then

/SN*I (IV'w]? = by pw?) dS +/a lwPtds’ = 0.

N—-1
+ S

Hence w = 0.

Proof of assertion 2. Assume (1.9) holds and w is a positive solution of (1.6).
The function ¢ + cos¢ is the first eigenfunction of —A’ in Hg (Sj_v_l) with
corresponding eigenvalue N-1. Multiplying the equation by cos ¢ and integrating
yields

w cos ¢dS —|—/ wdS =0
asi—t

(EN,p—&-l—N)/

N-—-1
Sy

N-1°
Hopf boundary lemma..

If 1 <p< <Y, then Inyp+1—N >0, hence wLanq: 0, hence w = 0 by

Proof of assertion 3. Assume (1.10) holds. We first prove that any solution
w of (1.6) depends only on ¢ following a method introduced in [34] and it has
constant sign. We set

B 1
1SN Jaw-a

w(¢) w(o’, ¢)dS’ (o").



Then
/ (1ol oo ~ PP 1) (0 ~ ) ' = / (lwP~'w — @P~'B) (w — ) dS',
SN-2 SN-—2
since

/ (|w\1’*1w - |w|Pflw) (w—m)dS’ = (|w|l’*1w - W,Hw)/ (w—®)dS’ = 0.
SN—2

SN-—2

Hence

/SM (|w|P*1w - W) (w—w)dS" > 21*1'/ w — @ ds’.

SN-—2

From the expression (2.2) we get

—/ V' (w — @)2dS + zN,,,/ (w — @)2dS
syt syt

:/ (|w|p*1w7 |w|p*1w) (w — @) dS’
SN—Q

> 21—1’/ w—wPTds’.
SN—2

Since @ is the projection of w onto the first eigenspace of —A’ in H! (Sffl)
and N-1 the corresponding eigenvalue,

—/ |V’(w7w)|2dS§(1fN)/ (w—@)%dS.
syt

syt
Hence
(tnp+1-8) [ w-wpasz2r [ jo-oltas.
syt SN-2
Ifp > %, then ¢y, +1— N < 0. This implies w = w. It follows that w

depends only on the variable ¢ € (0, 7) and thus it satisfies

1 . N— : i
N2y (sin™ 2 ¢w¢)¢ +4enpw =0 in (0,%)
wy(0) =0, (wg + [wP~tw) () =0.

(2.3)

Next we prove that any solution has constant sign. Let us assume that w(0) > 0.
If w vanishes at a first point some ¢ € (0, 5], then it is positive on (0, ¢g) and
we(do) < 0 by Cauchy-Lipschitz theorem. If ¢o = 7, then wg(¢o) = 0 from
(2.3), contradiction. Hence ¢9 < 7. This implies that w is a positive solution
of

1  N—2 .
1 =0 0,
g (ST TP dws) o+ v in (0, o)
wy(0) =0, w(po) = 0.

Thus w is a first eigenfunction of —A’ in H{(Sy,) where

(2.4)

Spp = {0 =(0/,¢) € SN2 (0,¢0)} & SY .



Hence ¢y, > N — 1, contradiction.

Then we prove that there exists at most one positive solution w. Let & be
another positive solution. A straightformard computation yields

No NG
oz/ ( ©_ ~w>(w2—@2)dS
3571 w w

1 1
__/ < 3 +~2> \wVQD—sz’w\Q—/
gN-1 \w w
T

N—-1
asy

(@' — 1) (w? — 5?) dS'.
This implies that w = @.
Finally we prove existence. Set

1

1
J(n) = 7/ V]2 — Ox ) dS + —— P, (2.5)
2 Sf’l( o) p+1Jogv—1

The functional J is defined in
X,.ad(Sf_l) ={ne Hl(SiV_l) N LPH(aSiV_l) : 7 depends only on ¢ € [0, 5]},

and it is lower continuous. If n € X,qq(S} '), then n = n; 419 where no = (%)
and n; € H} (Siv_l). In particular

1
J(n) = i/sm (IV'm|? = tnpni) dS — eN,pno/SMmds
+

¥
P L
2 0 p+1
Since (1.10) holds, 0 < €y, < N — 1; if we take n(¢) = €p € R, then

\770|erl

S 5, 19
2 0 p+1
Hence the infimum of J in X,ad(Sffl) is negative. Since p > %, then
Inp <N —1,and fore=N —1— ¥y, > 0 there holds

€ Iyl SY gN -2
J(n) > §/S'N—1n%ds_EN’pno/SN—lnldS_ NSy 2 | | Nians
+

|7
N 2 p+1

4
J(n) = =2

leo[PT1.

By Young’s inequality J(n) — oo when H’I?HHl(SiV—l) + ||77HL,,+1(85571) — 0.

Therefore J achieves its minimum in de(Sf 71) at some w, which can be

assume to be positive since J(n) = J(|n|). If we denote it by ws, there holds
€ = {ws, —ws, 0}, which ends the proof. O

The value p = % is a bifurcation value as it is shown below.

Proposition 2.1 There exists a C! curve € — (pe,w.) defined in [0, €] with

€ > 0 such that (py,wo) = (57,0) where 1 < pe < 2~ and w, is a nonzero
signed solution of

ANwe+LUypw=0 in SN

0 2.6

aw + |w[Pe~tw =0 in 0SY 1. (2:6)
v



Proof. The linearization of (1.6) at p = %5 and w = 0 yields
A+ (N =1)p =0 in SN
o . N (2.7)
= 0 in 957 L

If RY := {z = (21,...,xy) : ,, > 0}, then for j < N the restriction to S ~*

of the function ¢; : © — x; satisfies (2.7). In order to satisfy the simplicity

requirement, we consider the functions defined on Sf ~! depending only of

the variable x| gv-1. Then 1); is a simple eigenfunction of A’ associated to
+

the eigenvalue N — 1. By the classical Crandall-Rabinowitz theorem[17] there

exists a C! curve € — (p.,w,) starting from (2 ,0) such that w, is a nonzero
solution depending only of the variable x; LSf‘l of the problem

Awe+ Uy pwe =0 in Sffl
Ow ) _ (2.8)
5'1/6 + |welPelwe = 0 in 95Y 1.
Since we depends only on z;| g~-1 and inherits the properties of v, it changes
+
sign. By Theorem A-1-2; p. < %, which ends the proof. O

2.2 Separable solutions in dimension 2
When N = 2, (2.4) endows the form

Wep + ———5w =10 in (0,7
o] (p — 1)2 ( ) .
(—wp + [P~ 'w) (0) = 0 (2.9)
(wo + wP~lw) (m) = 0,
and therefore
w(®) = acos _¢ + bsin ¢
p—1 p—1
for some real numbers a, b. The boundary conditions are the following
: b -1 -1
(7/) _Ifl+|a,|p a:0<:>b:(p—1)|a|1’ a,
(i) L S (L, b cos [ —~
p—1 p—1 p—1 p—1
7r T 7r T -l
+(acos <p_1)+bsin (p—l)) acos <p_1>+bsin <p—1> =0.

Theorem 2.2 If N =2 the set £ is always discrete and more precisely,
1- If ]ﬁ € N*, then 0 is the unique solution to (2.9).

2- If p%l ¢ N*, then (2.10) admits three solutions ws, —ws and zero. Further-
more ws keeps a constant sign if p > 2.



Proof. Because of (2.10)-(i) we can assume a,b > 0. Set X = (p — 1)a?~! and

T T
P(X)=—sin| —— X —_
(X) sm(pl)—i- cos<p1>
+X(cos<7r)+Xsin<7T>> cos( il )+Xsin<ﬂ->
p—1 p—1 p—1 p—1

All the separable solutions with a > 0 (and similarly with a < 0) are obtained

1

p—1

with a?~! = X and b = (pL) ? where Xy is a positive zero of the function ®.

(1) If J75 = § + kn for some k € N, then ®(X) = (—1)**'(1 — X?*!). Hence
there exist only three solutions corresponding to

(a,b) = (0,0)

Ny
N

(2) If ;%5 = km for some k € N, then ®(X) = 2(-1)¥X. Hence the only
solution is (a,b) = (0,0).
(3) It e %’“ for any k € N, then

MX%:X—mn(7T>

p—1
+ X tan T sin T
p—1 p—1
Hence

p—1

(co0 (;75) + ).

cot, (W) + X
p—1
P'(X)=1

-Hm<;¥)gnQ:1) <m(;:)+XV4Gm(¥¥)+@+UX>

If tan (1%) > 0, then ®'(X) > 0 and since ®(0) < 0, ¢ admits a unique root
Xo > 0. Hence there exist only three solutions, ws, —ws, 0.

If tan (ﬁ) < 0, then ®(0) > 0. Moreover
cot (W) +X
p—1

()
(oo (7)) (@ 0 200 (7))

10

p—1

p—1 p—3

@%X)—pmn<p”1)




Hence ®” is negative in the interval (0, —p% cot (ﬁ)), positive in

(—I% cot (zﬁ) , — cot (1%)) and negative in (— cot (ﬁ) ,00). A standard
study shows that ®’ is positive on (0, X,) for some X, > — cot (ﬁ), vanishes
at X, and is negative on (X,,00). Finally, ® is increasing on (—oo, X,) with
a positive maximum and negative on (X,,00). As a consequence ® admits a

unique zero at Xg > — cot (p%l) and there exist again only three solutions

ws, —ws and 0. This ends the proof. O

3 Isolated singularities

3.1 Regularity results

We assume that Q@ ¢ RY, N > 2is a bounded smooth domain such that 0 € 9.
We have the following basic estimate the proof of which is based upon Moser’s
iterative scheme.

Proposition 3.1 Let g: R — R be a continuous function such that rg(r) >0
on R. Then any function u € C*(Q\ {0}) which verifies

—Au=0 mn Q
0 3.1
S+ g(u) =0 in 99\ {0}, (3.1)
satisfies for any a > 1 and some cq > 0,
Ca
Hu||L(x,(QmB§T) < e Hu||La(QmB$) for all v € (0, rg], (3.2)

where 1o > 0 depends on Q. In particular, if u is nonnegative, then for any
€ > 0 there exists ¢ > 0 such that

Ce
R (3.3)

where A € M, (0Q) is the boundary trace of u.

Proof. Let ¢ € CY1(RYN) such that 0 < ¢ < 1, ((z) = 1 if |z| > s, ((x) = 0 if
2| < 7 for some 0 < 7 < s, and |V((z)| < -2x,. (z) where I'} = {z € RV :

r < |z| < s}. For o > 0 we have from (3.1),

/ (Vat, V(| )+ / Cg(u)|ul* uds = 0.
Q o0

11



Then
/Q<Vu‘V(§2|u|“*1u)>dx = (%/
“as 1/ <
/ ‘V|u|

o<+1

T uVu| 2

V{dx

dx

3 2 3
—4a (/ |u|a+1v<|2dx> </ ‘V|u|% <2dx)
1 \Ja Q

Put s .

X = </ [V ) Y = </|ua+1|VC|2dx)

0

and A= [ (?g(u)|u|*tudS, then

o9

2 2 42 a+1
10X~ 40+ DXY + (@ +12A2<0—= X <=y, (34)

The discriminant of this equation in X is necessarily nonnegative, therefore
1
Y < aA? <:>/ Cg(uw)|ul*tuds < —/ lu|* T V¢ |2 da. (3.5)
o0 aJo

a+1

Since (V|u| 2 =V (C\u| a“) lu|“2" V¢, we deduce from (3.4) with the help
of Young’s inequality,

o at1 |2 2 a—1 13 a+1 2
-— 2 < =
(a+1)2/9‘v(<|u| )| dx+/6QC g(w)ul* " udS < a/ﬁw V¢,

which leads to

a+1
(a+ 1 Hd I

2 al
o + [ gt

(3.6)
< = | |ulottve2d H =N
< 2 [ vepan + s e
We first assume N > 3 and set § = % If s—r < 1, we obtain, using

Gagliardo-Nirenberg’s inequality,

2

o a+1 a1y, 4§ < S
(a+1)2 ||u||L9(u+1)(QﬁBg) +/OQmng(U)|U| U S G HUHLQH(QnBr)-

(3.7)
We fix r > 0 and define the sequences for n € N*
Pn = 0pp_1 withpyo=a+1=a>1
rn=1(2-2"") with rg = r

sp=r(2-2"""1),

12



thus s,, — r, = 27"~ 1r. We obtain from (3.7)

pn—1 Pn / _92 Cyn p
— ||ul|5%. v+ g(uw)|ulPr~*udS < ul|7h, ¢y -
p% || ”L” +1(QNBe,) oonpe. ( )| | (pn — 1)(571 —’I’n)2 || ||LP (QNBg )
(3.8)
Therefore
2
2" a4+ 1)\ P
ull ponss @rpe ) < (N lell Lom (2. ) (3.9)
sn ar ™
Because s,, — 2r when n — oo, we obtain by an easy induction
CN,
lull g (@nmg, ) < Tﬂa [ull faonpe) - (3.10)

We notice that we have neglected the boundary integral in (3.8). Indeed, the
same induction yields

/

cy,
HUHL&(OQHB;) < Ta HUHLa(QmBg) : (3.11)
ra
If N =2 we use the interpolation inequality
at1 2 a+1 atl
= < T2 2 . 3.12
e gy = et g 0t gy 02
Combining it with the imbedding inequality
at1 [|? at1
Hqu‘ o) = HCIuI S llwiee) (313

we obtained that (3.7) is replaced by
~2
« a+1 1 a—1 c a+1
m ||U||Lé<a+1>(mgg) + 2/(SQQB§9(U)|U| udS < ﬁ ||U||La+1(mBg)'
(3.14)

with 6 = % Mutatis mutandis, the end of the proof follows easily.

Next we assume that v > 0. Then it admits a boundary trace (see e.g.
[24]) which is a nonnegative Radon A measure on 9 and the Riesz-Herglotz
representation formula in terms of Poisson potential of the measure A holds,

u(z) =P\ = | P9 (x,y)d\(y) for all x € Q, (3.15)
Xe)

where P% is the Poisson kernel defined in € x 0. Furthermore u belongs to

N1
the Lorentz space L%’M(Q) and LY 17 (Q), where p(z) = dist (z, Q) (see
e.g. [20]). Furthermore

el e o ) + HUHL%,&(Q) < ca [ Mo o) - (3.16)

For any € > 0 there exists ¢, > 0 such that

lull | < cellull,

oo —_ N [e5]
LN=1F¢"%°(Q) N-1°°°(Q)
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If we apply (3.11) with a = N_LHE we infer
C/

HUHLW(QOBQT) < TN—Ite ||)\||9n(aQ) : (3.17)

This ends the proof. O

Remark. A natural question is whether (3.3) is valid with ¢ = 0. Notice that
using the standard estimates on the Poisson kernel we have,

c
lull g @,y < N-T [Mlon(ogy  for all 7 >0, (3.18)

where Q, = {z € Q: p(x) > r} and c = ¢(Q) > 0.

3.2 Linear estimates
We assume that © is a bounded smooth domain of RY, N > 2.

Proposition 3.2 Let a > 0 be a constant and A and p be two bounded Radon

measures on €2 and O respectively. Then there exists a unique weak solution
ue LY(Q) of

—Au+au =\ in Q
9u _ U in €. (3.19)
on

Furthermore there exists ¢ = ¢(€2) > 0 such that

ol gy + 1700 e g € (W lamgey + Doy ) + o el
(3.20)
if N > 2 with b, >0, b, >0 ifa =0, and

el ey + 192l ey < ) (IMllamgery + Iiallancon ) + b 1l o
(3.21)
for any r < oo, if N = 2.

Proof. We first consider the case Q = B}, := {x = (2/,z,) € Bg : z,, > 0}.

We set
., u(z',zy) ifx, >0
(e’ zy) = / ;
u(a’,—x,) if xz, <O0.
Then u satisfies
—Aa+aa=X+2HaRW in Bp
%o n 03 @2
on _ MloBr R,

where H__ is the (N-1)-dimensional Hausdorff measure and X and i are defined
+

accordingly to @ by an even reflexion through 8Rf . Then u satisfies locally
(3.20) in the sense that for any 0 < R’ < R there holds

| x + Vi
el e o 5, +IVEL

< ~
LN_TOO(B Nl\llﬁoo((BR/) =€ (H)\HW(BR) + ”/“‘HDJI(BB;,)> ’

(3.23)
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when N > 2, with straightforward modification if N = 2. This implies

NI () =¢ (H)\HE)JI(BR) + ”Ml|9ﬁ(33§)> ;

(3.24)
For a general domain €2, consider a point a € 0f). There exists r, > 0 such
that we can perform an even reflexion though 9QN B, (a) following the normal
vector to O as in [6, Lemma 2.4], with the modification that we use an even
reflection and not the odd one which is therein adapted to zero boundary data.
If we denote by @ the reflected function defined in B, (a), it satisfies

Jull,

(g2 + [ Vull,

0 = - O .
- zj: %Aj (x, Vi) +att = X+ 2Hory in B,,(a), (3.25)

where the A; are C' functions satisfying the standard ellipticity and bounded-
ness conditions. The local regularity theory yields

NI (8, @y~ © (HAHM(B @ il oz, W”)'

(3.26)
for any 0 < r/, < rq, where ¢ depends on £ and r, — r,. We obtain (3.20)
by a compactness argument. The proof of (3.21) is similar. Uniqueness is
straightforward. |

|

i o IV,

Remark. These results are not new. However they show that the estimates are
local which will be useful later on in the sense that for any compact set K C €2
and any e > 0 there holds

||uHLNAi?’m(K)—i_ ||V11||L lel"°°(K)§ ¢ (H)\Hzmmm(e)—i_ ||N||m(anKE)>, (3.27)

where K, = {z € RY : dist (2, K) < €} and where c is a positive constant
depending on 2, K €.
Remark. A more general global statement of existence and regularity with a
more involved proof can be found in [26, Theorems 1, 2]. The same estimates
holds up to replacing ba ||ull 11 (q) by ba llullf1 90y n (3.20)-(3.21) if (3.19) is
replaced by

—Au= )\ in Q

3.28

% +au=p in Q. ( )
Lemma 3.3 Let A € L'(Q), p € L*(09) and u € L*(Q) be the weak solution
of (3.19). Then we have for all ¢ € C(R?), ¢ >0,

/\u|(fAC+aC)d:v < //\Csigno(u)der/ p¢signg (u)dS (3.29)
Q Q o0

where Signg = Xy 00y = X(—s.0ys @04

/u+(—AC + al)dx < /)\Csigng(u)dx —|—/ u¢signg (u)dS (3.30)
Q Q a9

where signy = X (0,00 -
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Proof. We first assume that u is a smooth function. Let {7z} C C§°(R) be a
sequence of nonnegative functions such that 0 < v, < 1, v, = 0 on (—o0,0],
Y >0, 9 =1on [k~! 00), and let ¢ € C(Q2), ¢ > 0. Then

| ORIV + 260V, 96) dir+ 0 [ e
Q

Q

— [w(werds + [ (winds.
Q o0

Set jik(r) = [y vk (s)ds, then

/Q<Vj;€(u), V()d + a/

Q

wnlwde < [ (s + [ (s,

o0

Since ¢ € C(§2),

[ Cinwac+ am)ds < [ s+ [ ua)uds. (331)
Q Q o0

Letting k — oo, we infer

/ (—AC+ a) uydr < /sign+(u)C/\da: +/ signy (u)CudS.
Q Q lo)
In the same way, we prove

/(—A(—i—a() lu|dz < /sign(u)C)\dx—l—/ sign(u)CpdsS.
Q Q

[2}9)

In the general case, let {\;}, {y¢} be two sequences converging in L'(Q) and
L'(09Q) to A and p respectively. Then the sequence of solutions {us} of

—Aup +aug = Ny in Q
Oug .y o (3.32)
on

converges to the solution u of (3.32) in L%’OO(Q) (any L™(2) with 1 < r < 00
N

if N =2) and {Vu,} converges to Vu in (L NIXI’OO(Q)) . This implies that

(3.31) holds, hence (3.29) and (3.30) follow. O

The following general regularity result proved in [28, Theorem 6] will be
used later on.

Proposition 3.4 Let a > 0 be a constant and u be the weak solution of (3.19)
with A =0 and p € L™(0Q), m > 1. Let q € [m,00]. The following regularity
results hold:

1-If X — % < w7, then u € L9(9Q).

2-If L — ﬁ < 5, then u € L1().
3-1If o — (vomyg <0, then u € Whi(Q).
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Remark. In each case of the above proposition there holds

lully < cllllLmaq) + ba llullprq) » (3.33)

where X is either L(99) either L(2) or W4(2) and b, > 0 is as in Proposi-
tion 3.2. From this result we obtain higher regularity according to the regularity
of the boundary data.

Proposition 3.5 Let a > 0 be a constant and u be the weak solution of (3.19)
with A = 0. If p € WH™(9Q), m > 1. Let q € [m, ] be such that %—ﬁ <
0. Then u € W29(Q). Moreover

HU”Wz,q(Q) < CHN”wLm(aQ) + ba Hu”Ll(Q) : (3.34)

Proof. For the sake of simplicity we assume that Q = B;, the unit ball in RY.
In spherical coordinates u satisfies

N-1 1 1, : N-1
— U — " Uy — T—QA u=20 in (0,1) xS (3.35)
ur(1,.) = p() in SN-1,

where A’ is the Laplace-Beltrami operator on SV ~1. Let A be a skew-symmetric
matrix in R, X; := exp(tA) the group of isometries that it generates and L 4
the Lie derivative defined by

Law(o) = %w(XtU) Lo

Since L4 commutes with A’, the function (r,0) — v(r,0) = Lau(r, o) satisfies

N -1 1
= 0, — A =0 in (0,1) x SN-1
r r
ve(1,.) = Lap(.) in SN-1,

We deduce

||”||W1,q(9) <c ||LA#||Lm(aQ) + ba ||U||L1(Q) <c ”/U'HWL’”((’?Q) + ba ||UHL1(Q) :

This implies firstly that

HV/U”WLG(Q) <d ||H||W1,m(a§z) + Nb, Hu”Ll(Q) )

which is an estimate for all the tangential derivatives of v and we obtained the
final estimate with the normal derivative using the equation. ]

Interating this method and using interpolation techniques, we obtain

Proposition 3.6 Let a > 0 be a constant and u be the weak solution of (3.19).
If p € Wktsm(90), m > 1, k € N*, s € (0,1). Let q € [m, 00| be such that
LN 0. If N € WE1H59(Q) then v € WFH+59(Q) and

m ~ (N—-1)q

lullnsrenay < € (lallipnsm ooy + INlws-1soney) + ba lullioy - (3:36)
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The next local version of the previous results will be used later on.

Proposition 3.7 Let a > 0 be a constant, N C 02 be compact and u be a
nonnegative weak solution of (3.19) with A = 0 and p € W™ (9Q\N), m > 1,

loc

ke N*, s€(0,1). Let g € [m,o0] be such that = — ﬁ < 0. If fore >0
small enough we set N, = {x € Q : dist (z, N) < €}, then u € WFH1s9(Q\ N,)

and

||U||Wk+l+s,q(Q\N25) <c ||H||Wk+s,m(aQ\NE) + ba Hu”Ll(Q\NE) y (337)

with ¢ = c(e) > 0.

Proof. Let ¢ € Cg°(RY), ¢ > 0, vanishing in a neighborhood of N and v = (u,

then
—Av = (A 4+ uA¢ + 2(Vu, V() in Q

ov ¢ ) (3.38)
e Cp— ua—n in 02
Since u is positive harmonic, it belongs to L= = (Q) and |Vu| € L™(Q) for
any m € (1, :2=). Then (A + uA( + 2Vu.V¢ € L™(2). Combining the trace

P N—1
m(N—1)
N

= (09).

m

wm(90) C L

theorem and Sobolev imbedding theorem, ug—fl ew
Since the solution w of

—Aw = (A + uAl + 2(Vu, V() in Q
%%:o in 90
with zero average belongs to W2™(Q) C WL 5% it follows from Proposi-

tion 3.4 that v € WH4(Q) for any ¢ < A’,”f]\fn We iterate this process by setting

1 1 1 1 n
d —= - —=——— forneN"
-1 an My M1 N mg N orn

mo=m <

If n* is the largest integer smallest than %, then v € Whmn+177(Q) for
any 7 > 0, hence v € WhHmw+1=7(Q) C W*°°(Q) for some s € (0,1). By
Proposition 3.6, v € W1T$°(Q). Iterating this method we obtain the claim.

O

Remark. The sign assumption on v may look unusual, but it must be noticed
that the problem is by essence non-local. The only local aspect is the one
dealing with the local properties of nonnegative harmonic functions and the
solutions of elliptic equations with measure data. If we want to get rid of it, we
need Vu € L%’M(K) for all compact set K C Q\ N as a starting point of
the proof of Proposition 3.7.

An important application deals with nonlinear boundary value such as

—Au=0 in ©

du , (3.39)
n +g(u)=0 in 09,
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where g : Ry — R, is a C**! function. Putting 4 = g(u) and iterating
Proposition 3.7 we obtain

Hu||Wk+1+S,OO(Q\N2€) <c ||uHL°°(8Q\N€) + ba HUHLI(Q\NE) . (3.40)

Lemma 3.8 Let 1 < p < % and u be a nonnegative solution of (1.12) such
that |x\ﬁu(x) is bounded, then |m|Ti1+e|D€u(x)| is also bounded for £ =1,2,3.

Proof. For k € (0,1] we set ug(z) = Tx[u](z) = k‘ﬁu(k‘x) where Ty, is already
defined in (1.4). Then uy, satisfies (1.12) in QF := k1. Since u(z) < clz| 77
in Q, uy, satisfies the same estimate with the same constant in QF. Let r > 0
such that % < r < 8k. By Proposition 3.7 we have

HukHwi’.,oo(kaF::;i) <c ||uk||Loo(3anF‘j;£k) + ba ||uk||L1(QkﬂFi;£k) )

where T® = {z € RY : a < |z| < b}. Since the curvature of QF is bounded
independently of k, the constant c is independent of k£ too. Furthermore

/ u(r)dr = k17N+P%1/ u(y)dy
QkArS7/k QNrer

r/k
1-N4-L i
<ck P ly|~»—Tdy
Qnrer

1 6’,‘ 1
zchk17N+ﬁ/ sNTE e s,
s
This last term is bounded as we have chosen % < r < 8k. Since Dzuk(x) =
kﬁHDku(k‘x), we take k = r and deduce
|Dfu(x)| < ol 7T 4

which ends to proof. (I

3.3 Proof of Theorem B

We denote by (z,2) — Nq(x, z) be the kernel function defined in Q x 9Q with
Neumann boundary data §,, that is the solution of v = v, of

—Av+v=0 in ©
@ =9, in O0) (3.41)
on

It is known that

|z — 2>~V ifN>3
No(z,z) ~ 3.42
a(,2) { —In|z — z| it N=2. (842)
Furthermore, if 1 € 9M(0N) the solution of
—Av+v=0 in
9 =u in 00 (343)
on
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is expressed by
v(z) = BQNQ (z,y)du(y). (3.44)

Let j : R — R, be a C? nondecreasing convex function, vanishing on
(—00, 0], such that 0 < j'(r) <1 on (0,00). For € > 0 set w. = j(u—eNg(.,0)),
then

—Aw, = —eNg(.,0)5' (u — eNa(.,0)) — 5" (u — eNa(.,0))|V(u — eNa(.,0))]* < 0.

Since w, vanishes in a neighborhood of 0,

/\Vw€|2—|—/ weg(u)dS < 0.
Q 09

As g(u) has the sign of u, it is nonnegative on the support of w.. Hence Vw, = 0.
This implies that j(u—eNq(.,0)) is equal to some consatnt ¢, which is decreasing
with e. Letting € — 0 we infer that u is constant. Similarly u_ is constant and
such is u. Notice that for this constant u, g(u) = 0. O

3.4 Proof of Theorem C

3.4.1 Straightening the boundary

If p > £=1, then u(z) = O(|x\_vlf1) = o(|z[* ") and u = 0 by Theorem B.
Therefore we can assume 1 < p < % in the sequel. The basic technique is to
straighten the boundary and transform the study near the singular point into
a problem in a infinite cylinder. We abridge the proof since the details of the
method (initialy introduced in [20] ) can be found in [16]. We assume that the
orthonormal basis ey, ...,e, is RY is such that at 0, n = —e,, and that 99 is
locally the graph of a C? function 6 defined in Brr = Bgp N {z : z,, = 0} and
satisfying 0(0) = 0, DA(0) = 0. Putting

yj=2;=0,() if j=1,.,N—1 and y, =z, — 0(z') = O (2),
then © = (04, ...,0,) is a local diffecomorphism near 0. We set u(z) = t(y) =

a(r,o) = r_ﬁu(t,a) with ¢ = Inr. Performing a lengthy computation we
derive that v satisfies

2
(I+e)vp+ (N - gfpl +e v+ (Unp+es)v+Av+ (Vi ey)

+ (V'ug, €5) + <VI<V/U,EN>, 66> =0

(3.45)

in (—o0o,Tp] x SY " and

1 , , L
(vt - p— 11}) (68 - <C7eN>€7) - <v v7eN>67 + <V 'U,V> +vP =0 (346)

in (—oo,Tp] x 855‘1, where ¢ = ﬁ and the ¢; satisfy

l€(t, )+ lej et ) + Ve (1, )] < ce, (3.47)

as a consequence of the fact that |6(z’)| = 0(|]2’|?) near 0. Furthermore the
quantities vg, vy, vy and V9w are uniformly bounded on (—oo, Th] x Siv -1
if |a| + 8 <3 and T} < Tp by Lemma 3.8.
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Lemma 3.9 There holds
T
/ /N (v + vE + |[V'v)?) dSdt < oo. (3.48)
—o0 SJr -1

Proof. We multiply the first equation (3.45) by v, integrate on S iv ~1 and obtain

1d ) 2
- /¢ 2 _ 1,012 ds — —— p+1ds/
S [ / o Ot = oyas = 2 [

2
+ (Np+€2) /N 111t2d5+771(t)+772(t):0’
SN -

p—1
(3.49)
where

m(t) = / (e1vee + €30 + (V'v,e4) + (V'vg, e5) + (V/(V'v, e, ), €6)) v:dS,
S 1

N—
+

= / ((vt _ v) ({c,ey)er —€s) + (V’U,eN>67> v dS'.
asN 1 p—1

By (3.47), |n;(t)| < ce’. The fact that v; and V'v are uniformly bounded and
N—%#Oasp#%,weinfer

Ty
/ / v2dSdt < oo. (3.50)
—oo 5571

Since vvy = (vvg)y — v? and (V'v, V'vuy) = ((V'v, V'v))e — |[V'0¢]?, we obtain
by multiplying (3.45) by vy and integrating on Sf -1

a / N_p v+ Uy povy — V0.V, | dS —/ |v[P~tvvd S’
dt SiV—l 2 p—1 i 85_]*_\]_1

+ /sfl(l + €1) (v} — Unpvf + [V'v[?) dS —l—p/asN71|U|p_1”thS/

+

~—

n2(t

+71(t) +72(t) =0,
(3.51)
where

v (t) = /N (€20t + €30 + (V'v, €4) + (V'vp, 65) + (V (Vv e,,), €6)) v1:dS,
syt

1
Ya(t) = / (Ut — lv) ({c, V'v)er — €g) v1:dS'.
asy ! b=

Again |v;(t)| < ce’ by (3.47). Since vt, voy, V'0.V'v; and |[v[P~ v} are uniformly
bounded on (—oo,T1] X Sf‘l we infer

T
/ /N (vf + [V'vy|*) dSdt < oo,
—oo S+71

which ends the proof. O
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3.4.2 Strong singularities

Because the functions v, vy and V'vy are uniformly continuous on (—oo, 7] X
S¥~1 we deduce easily from (3.48) that

lim (v} + v, + [V'v¢|*)(t,.) =0 uniformly on SY~'. (3.52)
t—o0
The negative trajectory of ¢ ~— v(t,.) in C?(SY 1) is T_[v] := Ui<p, {o(t, )}
By Lemma 3.8, 7_[v] is bounded in C3 (Siv ~1), hence it is relatively compact
in C2(Si\' ~1) by the Arzela-Ascoli theorem. Therefore, the alpha-limit set of
T_[v] defined by

AT o] = () dogagsy—, | Ufv(r, )} (3.53)

t<Ty <t

is a non-empty compact connected set in C’Q(Sf_l). Using (3.50) and letting
t — —oo in (3.45), we conclude that if w € A[T_[v]], then

ANw+lypw=0 in SY!

(V'w,v) +wP =0 in 95y,
hence A[T_[v]] C &;.

If p= &=L then p%l =N —2 and £ = {0}. Hence v(¢,.) — 0 when t — —o0,

equivalently

(3.54)

lim |z|Y ~2u(z) = 0. (3.55)

x—0
By Theorem B it implies that u = 0.
If A <p< &=L, &, is discrete. Then either v(t,.) — ws of v(t,.) — 0 when
t — —oo. In the first case it is equivalent to

o7 u(@) = wa(E)(1+0(1)) as z — 0, (3.56)
and in the second case .
iii% |x| P~Tu(z) = 0. (3.57)

3.4.3 Weak singularities
In the sequel, we assume N > 2, the proof in the case N = 2 can be carried out
by the same techniques with minor technical modifications.
Proposition 3.10 If (3.57) holds we claim that there exists § > 0 such that
u(z) < clz|’ "7, (3.58)
near x = 0 for some ¢ > 0.
We proceed by contradiction, set p(t) = ||v(t, ')HCO(Sf‘l) and assume that

for any € > 0,
limsup e “p(t) = oo. (3.59)

t——o0

The following lemma proved in [14] is the key for starting the proof of the
decay of the solution.
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Lemma 3.11 There exists a function n € C*((—o0,T1]) satisfying

(7’) n>05nt>07tl}111 n(t):O7
t
(44) 0 < limsup Pl < 00,
t——o0 n(t)
- —et _
(#i1) t_l}r_nooe n(t) =00 foralle >0, (3.60)
(iv) Dt and <77t> are bounded and integrable on (—oo,T1],
n N/
. My 1 e _
0 w0 (B0

Proof of Proposition 3.10. Define w(t,.) = n~(t)v(t,.). Then w is bounded
and satisfies

2
(14 e)we + (N — ]fjjl +e+2(1+ €1)m> wy + A'w
2
+ (EN,p +es+ (1+ el)@ + <N . S 62) m) w (3.61)
n p—1 7
V', eq + %e5> + (V'wy, €5) + (V/ (V'w, e, ), e6) = 0

in (—oo,Tp] x Siv_l and

S R P Lt S

in (—oo, Tp] X 65’1\[—1. Since w is bounded, a standard adaptation of Lemma 3.8
shows that wy, wes, wer and V*9ysw are uniformly bounded on (—oo, T3] x Siv*l
whenever |a] + 8 < 3 and T} < Ty. The negative trajectory of t — w(t,.) in
C?(SY1) is defined by 7_[w] := Ui<r, {w(t,.)}. By the previous statements,
7_[w] is bounded in C3(SY 1), hence it is relatively compact in C2(SY ") by
the Arzela-Ascoli theorem. Therefore, the alpha-limit set of 7_[w] defined by

AT_[w] == ) cloga(gy-1) J{w(r, )} (3.63)

t<Ty <t

is a non-empty compact connected set in C?(S iv 71). The integrability assump-
tions on 7 allows us to prove

Lemma 3.12 There holds

T
/ /N ) (wf + wi + [V'wy|?) dSdt < oo. (3.64)
—ooJ ST
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Proof. We multiply equation (3.61) by w; and integrate over Siv -1

2np71

lw|P1ds!
pH+1Jagh1

/ (wt2 + N pw? — |V’w\2) dS —
syt

1d
2 dt
+ (N_2p+62+2(1+61)77t>/ w2dS + ay(t) + as(t) =0,
p—1 n/ Jsy-t
(3.65)
where a7 and aq are defined by

2

Oél(t): €1 Wt + E2Wy + 63+(1+€1)@+ N77p+62 & w
syt n p—1 U
+

+H(V'w, €4 + %65> + (V'wy, e5) + (V/(V'w, ey ), 6@} wydS,

SO A (R CRE B I

-1
—(V'w,e,)er — i_l_lwp“npl?;] wedS'’.

Using the estimates on €; and (3.60), we obtain that

Ty
/ / w?dSdt < .
—00 Sﬂr\771

Multiplying equation (3.61) by wy;, integrating over Sivfl and using (3.60) yield

Ty
(wi, + |V'wy|?) dSdt < o0,
—ooJ SN
X

which ends the proof. O
End of the proof of Proposition 3.10. Since w; and wy; are uniformly continuous

on (—o0,T1] x S¥ ! we infer from (3.64) that

lim wt(t, ) = tlggloo ’tht(t, ) = 07 (366)

t——o0

uniformly on S&~'. Therefore A[T_[w]] is a subset of the set of nonnegative

solutions of

Al +Unpp=0 in SY! (367
(V'$,v) =0 in 951, '

and by (3.60)-(ii) it contains a positive element. Since ¢y, > 0 this is a con-
tradiction and (3.59) does not hold. This ends the proof of Proposition 3.10.
|

Step 1. We claim that

u(z) < ¢|lz|>~Y  in a neighborhood of 0. (3.68)
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If§ > 13 +2— N, (3.68) is a consequence of (3.58). In what follows we assume
that

1
0<d< ——+2—N. (3.69)
p—1

We set vs = e v. Then vs is bounded in (—oo, T}] x Siv_l and, as in the proof
of Proposition 3.10, the quantities Oyvs, Oy vs, Ogrvs and V0O, svs are uniformly
bounded on (—oo,T] X Sf ~!. Furthermore there holds

2
(1 + 61)U6tt + (N — fpl + €9 + 2(1 + 61)5) Vst + A’Ug

2
+ <€N,p+63+(1+61)52+ (Np—lerQ) 5) vs (3.70)
+ <VIU5a €4+ 565) + <v/’05t, €5> + <v/<v/1)67eN>’ 66> =0

in (—oo,Tp] x Sf_l and

(o (- 1)) o+ @nen)) -

1
+ (v(;t + <6 — 1> v5> €g + (V’v57 1/} + e(pfl)tvép =0
p

in (—o0, Tp] x9S} ~*. We denote by s the projection of v onto H := [ker(—A’)]*,
the operator being defined in Hl(Sivfl), and by Py the corresponding projec-
tion operator. Then

- 2 ~ ~
V54t + <N— pfpl —|—25> Vs + A'Ug

3.72
2 NN . (3.72)
+ (v + 8+ (N =22 ) 8] 55+ F =0

where
F:=P [elv(m + (€2 + 2€10)vs¢ + (€3 + €162 + €26)vs
+H(V'v,e4) + (Vg e5) + (V/(V'v,e,), 66)] = O(e?).
We multiply (3.71) by @5, integrate over Sf ~! and use the boundary condition

and the fact that N — 1 is the first eigenvalue of —A’ in H. We deduce that
Xs(t) := ||vs(t, .)||L2(Si\r71) satisfies in the sense of distributions in (—oo, T}),

- 2 -

XU+ (N— p+25> X
p—1
2 3 (3.73)
+ (€N7p+52—|— <N— 1) 0+1 —N) X5 > —c*e™.
p—

where m = inf{1, p—1}, for some constant ¢* > 0. Note that the nonlinear term
on 08 f ~!is at the origin of the term e(?~1*. The characteristic polynomial of

(3.73) is

2 2
P5(§)=€2+(N—ppl+25)£+€]v,p+62+(N—ppl>5+1_N_
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It is noticeable that its discriminant is N2, independent of §, and as a conse-
quence its roots are expressed easily by

Cls=—L —6>m and &s=—L— —N-6<0, (3.74)
p—1 p—1

since (3.69) holds. Therefore Ps(m) < 0. For a,v, e > 0 set
X (t) = aet ot 4 eet1ot 4 ye™,

Then
2p
X"+ N——/— 42§ ) X'
p—1

+ (€N$p+52 + <N— 2pl> o+1 —N) X = yPs(m)e™.
D

We can choose « such that yPs(1) > —c* and a = ||05(T1, .)”Lg(sf—l) e~tueTy
By the maximum principle X5(t) < X(t) for t < Ty and all € > 0. This implies

125(, lzasyy < 185(T1, )l agsyy 50T et for ¢ < T

(3.75)
Using standard regularizing effect for elliptic equations, we can improve (3.75)
and obtain a uniform estimate

I35 M sty < A1, | gagsy—s) 45T e for t < Ty — 1.
(3.76)
Next we denote by X the projection of vs onto ker(—A’) (i.e. the average
on SY™1), then
" 2p / 2 2p
(3.77)
where

1
F = |SN_1|/ [elv(m + (€2 + 2€18)vss + (€3 + €162 + €26)vs
¥ syt
+H(V'v,€4) + (Vg e5) + (V(V'v,e,), €6)] dS = O(e™).

The characteristic roots of the equation

2 2
y”+(N—p+25>y’+(eNp+52+<N—p)5>y:o
p—1 ’ p—1

are 01 5, 02 5. They can easily be computed and for 4 > 0 small enough
1 1
is=———0>N-2>1>05=——+2—N 0. (3.78)
Top—1 Top-1

The solution of (3.77) admits the general expression

1 I
/ F(s) (e(t_s)‘gl"s — e(t_s)‘%"s) ds (3.79)
t

X&(t) = a€t91,6 _|_bet92,,; s
01,5 — 02,5
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Since m < 6 5, it is easy to see that there exists ¢ > 0 such that, when ¢t — —oo,
there holds

Xs(t) = etnfir=1.025} (¢ 4 o(1)), (3.80)
if p—1+# 65 and

X5(t) = (=)' P~V (e + (1)), (3.81)

if p—1 = 605. We consider only the case p — 1 # 655, the case of equality
requiring only some technical modifications of the proof.
Case 1: Assume 055 < p — 1. Then X;(t) = €25} (c + o(1)). Since &5 > 1
and m > 6, 5, we infer from (3.76) and (3.78) and the definition of vs that

0 < v(t,o) = e!®+%25)(c + 0(1)) when ¢ — —oo, uniformly on S .

(3.82)
for some constant ¢ > 0. This implies not only (3.68) but also (1.14).
Case 2: Assume 1 > 63 5 > p—1=m. Then
0 <v(t,o) < ce®+P=Dt forall t € (—oo,Ty] x SY . (3.83)

Then we restart the previous construction, replacing 6 by 6, := §+p—1. After
a finite number j of iterations of this construction and setting d; := 6+ j(p—1)
we finally obtain

0<w(to)= et(5j+92>5j)(c +0(1)) when t = —o0, uniformly on Sivfl.
(3.84)
which again implies not only (3.68) but also (1.14). O

Remark. The results of Theorem C can be extended to signed solutions u of
(1.12) provided they satisfy not only the same a priori estimates |u(z)| <
c\x|7p+1 but also |D%u(x)| < c|x|7ﬁ7‘a| for |a] = 1,2,3. If this holds,
the energy method applies and we infer that the limit set of the trajectory

A[T_[v]] is a connected subset of the set £. In particular, if p > X=% then

A[T_[v]] = {0} and by Theorem B it implies that u = 0. If &~ < p < X=%
with N > 2, then A[T_[v]] C {ws, —ws,0}. If N = 2 and ﬁ is an integer,
then A[T_[v]] = {0} and u = 0 by Theorem B, while if p%l is not an integer
then A[T_[v]] C {ws, —ws,0}. Furthermore, if A[T_[v]] = {0} and ¢y, is not
an eigenvalue of —A’ in H*(SY ') it is possible to adapt the method devel-
oped in the proof of Proposition 3.10 and obtain that ¥ =2+*y(r .) converges
to a nonzero eigenfunction of —A’ in H'(SY ') for some k € N such that
N-2+4+Fk< p—il. The method for such a task is an adaptation of the ideas
introduced in [14, Theorem 2.1] and [20, Theorem 5.1]. Note that the assump-
tion Iy p ¢ o (—A’, Hl(S_I‘_Vfl)) is fundamental to prove and estimate of type

(3.58), which is the starting point of the proof.

4 Measure boundary data

Let w and v two solutions of (1.1) with the same data . By Lemma 3.3

/ o — o] (—AC + ¢) di + / signg(u — v)(g(w) — gW)CdS <0 (4.1)
Q o0

for all ¢ € C(Q), ¢ > 0. Since g is nondecreasing, we take ( = 1 and get u = v.
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4.1 Proof of Theorem D

In this section we assume N > 3. Let {ux} be a sequence of smooth functions
on 0f2 and uy, the solution of

—Aup +up =0 in Q
P 12
% + g(ur) = in 09, (4.2)
obtained by minimization. By Lemma 3.3
/ g d + / lg(un)|dS < / ] dS. (4.3)
Q o0 o0
Hence
/
Il ey e+ V0l e g €€ kS < il (40)

by Proposition 3.2.

Therefore there exist a function u € L%"’O(Q) verifying Vu € L™ Q)
and a subsequence {uy,} such that ug, — u a.e. in Q and in L'(Q). By [31]
the boundary trace of a function v € L%’OO(Q) such that Vv € L%’OO(Q)
belongs to the fractional Besov-Lorentz space B %’%’OO(E)Q) and there holds

< . .
0108l gy € (100, im0l )+ (45)
Using Sobolev imbedding theorem for Besov-Lorentz spaces, classicaly obtained
by the real interpolation method [23] from the same indexed Sobolev spaces [31],
we obtain

||’ULasz||Lg:;,oo(m) < C||”Lasz||Bﬁ,N1!1,x(m) . (4.6)
Therefore
lur Lol w=t e ) < €lilloncon) » (4.7)

and uy, [a0— u|aq a.e. in 9. In order to prove the convergence of {g(u;) a0}
to {g(u)|sa} we use Vitali’s theorem. Let E C 99 be a Borel set and |E|,_, =
H,_n (E) is its the (N-1)-Hausdorff measure on 9); for any A > 0,

+

/ lg(ux, S = 9k, IS + / l9(ux,)|dS
E Em{\ukj |<A} Eﬂ{Iukj [>A} (4.8)
< IBle, (600 — g(=N) + / g, )|dS.

{lu; Lloal>A}

We set Ax(ug;) = {z € 02 : |ug, [aa(w)] > A} and ag;(N) = [Ax(ug;)|y_,-
Since (4.7) holds,

_N-1
o, (A) < ellpllapony A2
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Using Cavalieri’s formula [13],

[ tatulas = [ gts)aen (9
TAESY A
< c% HM”sm(aQ) //\ (g(s) —g(—s)) s~ N2 (s.

Combining (4.8) and (4.9), we can choose A large enough and deduce that
lg(ux,;)|dS — 0 when |E|,_, — 0, uniformly with respect to k;. Hence
E
g(u,)loa— g(u)|oq in L'(8Q). If £ € C(Q), there holds

/ukj (—AE+9) dx—i—/ g(ukj)gdS:/ Epn, dS. (4.10)
Q o0 o9

Letting k; — oo, we infer that (1.18) holds. Actually, the whole sequence {uy}

converges and we denote by u,, its limit. Notice also that by the monotonicity

of g, p > p' implies u,, > w,. O

Remark. 1f g(r) = |r|P~1r with p > 0, condition (1.20) is satisfied if and only if
N-1

P< §y—-

4.2 Proof of Theorem E

In this section we assume N = 2.

Proof of assertion 1. As in the proof of Theorem D, we denote by uy the solution
of (4.2). Estimate (4.3) is valid and (4.11) is replaced by

[unll Loy + 1VUrll L2 @) < Cf,-,/mlukIdS < ¢ lpllanany  for all ¢ € [1,00).

(4.11)
By an extension of Moser’s inequality to Lorentz spaces [36, Theorem 3.1] , there
exist constants c¢*, ¢’ > 0 depending on 2 such that for any function v € L?(99)
such that (—A)zv € L2°(99) (equivalently v € B2:2°°(9Q)), there holds

sup / e I@lgs < ¢
H(_A)%UH <1 /o0 (4.12)
12,00

*

Using (4.11), (4.12) we deduce, with ¢ = £,

clug (a)]
/ e Tl dS < . (4.13)
o0

This implies that {(ug,ur|sq)} is compact in L(£2) x L1(99Q) for any g < oo
and up to a subsequence {uy, } converges a. e. and in L9(Q) x L9(09) to some
u such that Vu € L?°°(Q) and therefore u|go€ LI(0N). Thus u|pq satisfies
(4.13). As a consequence problem (1.1) admits a solution if |g(r)]| < ¢1|r]|? + ¢2
for some g € (0,00) and c¢1,co > 0. We have actually a more general result if
we assume that a4 (g) = a_(g) = 0. From (4.13) there holds for A > 0,

.. __ex
e Tellon o, ()\) < e o, < e Mellon (414)
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where Ay (ug;) and ag; (M) are defined in the proof of Theorem D. If E C 09 is
a Borel set,

/ l9(ur,)|dS < 1B (g(N) — g(—N) + / 9(ur,)ldS
E

ﬂ“kﬂ[asz]’

< EL(g(N) - g(-A) — / (9(5) — g(—s))do, (5)

/

& o __es
< IEL(G0) = 9(-N) + o= [ (als) — g(-9))e” s
[l 4llo Jx
(4.15)
Since -
| (6o = gt-9pesds < oo
A
for any a > 0 the result follows as in Theorem D. |
Remark. Actually we have a stronger result since we only use
/ (9(s) —g(—s))e” Tl ds < oo. (4.16)
A

Therefore the assumption a4 (g) = a—(g) = 0 can be replaced by ||ulloy < ¢4
where

/:0(9(8) — g(—s))e %5 ds < 0. (4.17)

However the constant c is not explicitely known.

k
Proof of assertion 2. Set = Z a;dq,. For £ > 0set g¢(r) = min{g(¢),sup{g(—£), g(r)}}.
j=1
Since a4 (g¢) = a—(ge) = 0, there exists a weak solution to

—Au+u=0 in Q

9] 4.18
6% +ge(u) =p on 0f2, (4.18)
and this solution denoted by wug, is unique since g, is nonnecreasing. Put
Jy={j=1,.,k:a; >0}, J_:={j=1,..,k:a; <0} and denote by ug,,
(resp. wuyg,,_) the solution of

—Au+u=0 in ©
(4.19)

ou
n +ge(u) = py (resp. = p_) on 09,

with /1+:Z a;jdq; (resp. /,L,:Z @;jdq;). Then ug,, >0 (vesp. ug,_ <0)

JjEJ+ jeEJ-

and
Y aiNa(oay) Sueps Sugy Sury, <) aiNal,ag).
jeJ_ jey
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Thus
g Z aiNo(a;) | < ge(wepu ) < geluey) < ge(wepu,) <g Z a;jNa(.,ay)
jeJ_ jed,

Since .
ajNo(z,aj) = % In <|x—a3|) (1+o(1))as z — ajy,

for any € > 0, there exists K, > 0 such that
O[j — € 1
Y g In — Ke < g0 (uepu) < ge(ue,)
, ™ |z — a;]
jeJ_
o+ € 1
< < J 1 K..
<o) < 3o (g2 +

JeJy

We take € > 0 small enough such that

™

inf aj —e<0< sup a; +e< .
a_(g) jer- "’ jeds a+(9)

This implies that {g, (uz,ui)}g and {gy (Ug7u+)}g are uniformly integrable in
L' (09). Consequently {gs (us,,,)}e is also uniformly integrable in L' (99). Let-
ting £ — oo we deduce that up to a subsequence, uy; ,, converges to the unique
weak solution u = u, of (1.12). ' O

Remark. By adapting the construction in [32] (see also [33] for a slightly simpler
proof), it can be proved that when N = 2 the problem (1.12) can be solved with
any measure on 0} with Jordan decomposition y = p, + p, where p,. is the
diffuse part and p, = Z?zl a;0,; is the atomic part, provided the «; satisfy
(1.23). In particular no assumption on p, is required.

4.3 The supercritical case: proof of Theorem F

Let P be the Poisson operator for —A—+1 in ) and Dg, the Dirichlet to Neumann
operator for —A + I. Thus if n € M(ON), v = Pq[n] if

—-Av+v=0 in Q
v=" on 0, (4.20)
and 5 5
v
=—=— . 4.21
Dols] = 5o = = _Fals] on 09 (421)
Let N be the Neumann operator from 9 to €2 defined by v = Nq[u] where
—Av+v=0 in Q
4.22
P =U on 0f), (422)
On

and some results of regularity of Ng are recalled in Proposition 3.4.

31



Lemma 4.1 Letl < ¢ < oo and p is a distribution in RN with support included
in 0Q. Then the following assertions are equivalent:

(i) No[u] € L1(09),
(i) u € W*Lq(c’?Q).
Furthermore there exists ¢ > 0 such that

¢t ||ﬂ||W*1~<1(8§2) < HNQ[M]HLq(E)Q) < CHMHWﬂ,q(m) (4.23)

Proof. We recall that by Calderon’s theorem the operator Dg is an isomorphism
from L7(9€) to W4(9Q) (see e.g. [1, Theorem 1.2.3]) and in particular for
any ¢ € (1,00),

¢t ||77HW1#1(8S2) < ||DQ[7I]HLq(aQ) sc ||77||W1,q(aﬂ) : (4.24)
This follows from the fact the following identity holds if v = Ng[y]

o) = [ Na(e.) 5o )asw) = [ Nale,w)dn(y)
o o2

and that N satisfies (3.42). In the flat case it is exactely the Calderon-Zygmund
theory as it is shown in [30, Theorem V-3].

Let v = Ng[u], £ € C%(Q) and ¢ = Pq[¢], then

0
1.6 = [ lmgeds = [ Nalipaigas.

Using (4.24 ), we see that if No[u] belongs to L2(9), then
{1 1 < [N 1]l La o) Delélll e aa) < ¢lNalulllLaoa) 1Elwra @o)

which implies that & — (i,&) is a continuous linear map on W14(9Q), thus
belongs to W~1:9(9Q) and there holds

1l w10 g00) < clNelllLaoa) - (4.25)

Conversely, if y € W=14(9Q) and £ € C%(09), we set ¢ = Ng[u] and w = Dg[€].
Then, using (4.24)

/OQNQ[MLBQ]DQK]‘ = [{, O < [l -1.0000) I€llwr.e (50
< ¢ Hullw-1.0(a0) IPalélll Le a0) -

By density, it implies that

/ QNQ[MLaQ]h‘ < e plly ooy Wl oy
Hence Nq[u|aa] € L1(092) and

INe w1l Laa0) < ¢t el —1.a00) - (4.26)
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Lemma 4.2 Assume p € W=19(0Q) N M (09Q), then problem (1.24) admits
a weak solution.

Proof. We denote by uy the solution of

—Aup +up =0 in Q

o (4.27)

a—nk + min{u}, k’} = p on 09,
the existence of which comes from Theorem D. Then 0 < ug < Nu], and the
sequence {ug} is nonincreasing and bounded from above by Nq[u]. Then it
converges to some nonnegative harmonic function v in Q. Since min{uf, ¥} <
(N[u])P and N[u] € LP(99), it implies that min{u}, kP} converges to u? a.e. in
9Q and in L'(99Q). Then u satisfies (1.24). O

Corollary 4.3 Let {um} be an increasing sequence of nonnegative measures
on 99 belonging to W—1P(9Q) and converging to a measure p in M(Q). Then
problem (1.24) with boundary data p admits a weak solution.

Proof. Let u,, be the solution of

— AUy, + Uy, =0 in

4.2
5(;&7:_’_“%:”7“ on 01, (428)

The sequence {u,,} is increasing. For any ¢ € C(£2), there holds

/Qum (=ACH+ Q) dx + AﬂufnCdS = /89(d,um (4.29)

If we take in particular ( = 1, then

/umder/ ufndS:/ dumg/ dp.
Q o0 o0 o0

Then u,, is bounded in L%’OO(Q) (or any L(Q2) if N = 2) and Vu,, is bounded
in L%’OO(Q). By the monotone convergence theorem {u,, } converges in L!(£2)
to some u and {um, |sa} converges in LP(0) to u|sq. Letting m — oo in (4.29)
we obtain

Jut-ac+oar+ [ weas= [ can

Q o0 a0

which ends the proof. (]
In the next result we denote by C}i}’\%il the Bessel (or Sobolev) capacity on 92

associated to W1+’ (RN=1). The corresponding capacity Cé’g; " on the boundary
is defined by local charts and the zero-capacity property does not depend on
the charts.

Proposition 4.4 Let pp € M (0Q) such that problem (1.24) admits a weak
solution, then p vanishes on Borel set E C 0§ satisfying C’é’é’ (E)=0.
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Proof. Without loss of generality we can assume that F C 9 is a compact set.
Because of uniqueness, u is nonnegative. Let n € C2(9) ) such that 0 <n <1,
n =1 in a neighborhood of E and v, = Pq[n]. If ¢ € C*(Q) we have

__ [ 9,
/Qu(—A(—l—C)da:+/6\Qu”CdS— /man as+ | Cdu.

For k > 1 we take ( = vf], then

/u (=k(k = 1)oi 2|V, > + (1 — k)of) dx —|—/ uPvfdS
Q a0

= —k/ nk_lDQ[n]udS—i—/ n*du.
o9 o0

Since vy > 0, we obtain

/ upv,’;dS—l— k/ 0" HDa[n][udS > u(E).
a0 o9

Furthermore.

/ n“IDQ[n]udSS( / nkupds)p
o0 o

Taking k£ = p’ and using (4.24), we infer

1
7

([ ' patir'as)” .

1
P
/ upvf;dS'—i—cp’ (/ nkupdS’) [nllwe a0y = H(E). (4.30)
o9 a0

If C;;’é)/(E) = 0, there exists a sequence {n,,} C CZ(99) such that 0 < n,, <1,
n =1 in a neighborhood of E and |[nuly1.0(g0) — 0 when m — oo. This
implies that v,,, — 0 in L*(), hence the left-hand side of (4.30) tends to 0,
and finally p(E) = 0. O

We end the proof of Theorem F with the sufficient condition which follows
from a general result due to Feyel and de la Pradelle [18].

Proposition 4.5 Let ;1 € 9, (0Q) such that p(E) = 0 for any Borel set E C
00 satisfying C’é’g (E) = 0. Then there exists an increasing sequence {p,} C
M, (0Q) NWLP(0Q) converging to p.

Remark. If 1 < p < =3, WL (9Q) ¢ C(09). Therefore the only set with
N—1

Z€ro C’é’g—capacity is the empty set. If p > 5=5, a single point has zero Cé’é’/-
capacity. Since d,(a) =1 for any a € 99 there is no solution of problem (1.24)
with u = dg.

As a consequence we have a non-removability result.

Corollary 4.6 Let Q be a smooth bounded domain of RN . Then any compact

subset K C 0 with positive Cél,gl—capacity is mon-removable in the sense that
there exists a nonnegative non-trivial function ux € C1(Q\ K) satisfying

—Au+u=0 m Q

4.31
@+|u|p_1u:0 in 0Q\ K. (4.31)
on
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Proof. By [1, Theorem 2.5.3] there exists a positive measure, called the capac-
itary measure px with support in K and such that ux € W17 (Q2). For such
a measure there exists a positive solution to (1.24), hence u satisfies (4.31).

O

Remark. We conjecture that the condition C’é’é’/ (K) = 0 is also a sufficient
condition for a compact set K C 92 to be removable. This is even not known
if K is a singleton.

References

[1]

D.R. Adams, L.I. Hedberg. Function Spaces and Potential Theory,
Grundlehren der mathematischen Wissenschaften 31, Springer-Verlag
(1996).

A. Alvino, V. Ferone, G. Trombetti. Moser type inequaliies in Lorentz
spaces, Potential Anal. 5, 273-299 (1996).

P. Baras, M. Pierre. Singularités éliminables pour des équations semi-
linéaires, Ann. Inst. Fourier (Grenoble) 34 (1984), 185-206.

Ph. Bénilan, L. Boccardo, T. Gallouét, R. Gariepy, M. Pierre, J. L.
Vézquez. An L-theory of existence and uniqueness of solutions of nonlin-
ear elliptic equations. Ann. Scuola Norm. Sup. Pisa ClL. Sci. (4) 22 (1995),
241-273.

L. Boccardo, T. Gallouét. Nonlinear elliptic and parabolic equations in-
volving measure data, J. Funct. Anal. 87 (1989), 149-169.

R. Borghol, L.Véron. Boundary Singularities of N-Harmonic Functions,
Com. Part. Diff. Eq. 32, (2007) 10011015.

H. Brezis, M. Marcus, A.C. Ponce. Nonlinear elliptic equations with mea-
sures revisited. Mathematical aspects on nonlinear dispersive equations,
Ann. Math. Studies 163 (2007), 55-110.

H. Brezis, A.C. Ponce. Reduced measures on the boundary, J. Funct. Anal.
229 (2005), 95-120.

H. Brezis, A.C. Ponce. Kato’s inequality up to the boundary. Comm. Con-
temp. Math. 10 (2008), 1217-1241.

H. Brezis, L. Véron. Removable singularities of some nonlinear elliptic
equations, Arch. Rational Mech. Anal. 75 (1980), 1-6.

H. Brezis. Analyse Fonctionnelle, Masson, Paris (1983).

L. Caffarelli, L. Silvestre. An extention problem related to the fractional
Laplacian, Comm. Part. Dif. Equ. 32 (2007), 1245-1260

B. Cavalieri. LO SPECCHIO VSTORIO OVERO Delle Settioni Coniche,
In Bologna, preffo Clemente Ferroni, con licenza de’ Superiori (1632).

X. Y. Chen, H. Matano, L. Véron. Anisotropic Singularities of Solutions
of Nonlinear Elliptic Equations in R?, J. Funct. Anal. 83 (1989), 50-97.

H. Chen, L. Véron. Semilinear fractional elliptic equations involving mea-
sures, J. Diff. Eq. 257 (2014), 1457-1486.

35



[16]
[17]

[18]

[19]

[20]

[21]

H. Chen, L. Véron. Schrodinger operators with Leray-Hardy potential sin-
gular on the boundary, J. Diff. Eq., in press, doi.org/10.1016/j.

M.G. Crandall, P. H. Rabinowitz. Bifurcation from simple eigenvalues, J.
Funct. Anal. 8 (1971), 321-340.

D. Feyel and A. de la Pradelle. Topologies fines et compactifications as-
sociées certains espaces de Dirichlet, Ann. Inst. Fourier (Grenoble) 27
(1977), 121-146.

D. Gilbarg, N.S. Trudinger. Elliptic Partial Differential Equations of Sec-
ond Order. Grundlehren der mathematischen Wissenchaften 224, Springer-
Verlag (2001).

A. Gmira, L. Véron. Boundary singularities of solutions of some nonlinear
elliptic equations. Duke Math. J. 64 (1991), 271-324.

J. Kauhanen, P. Koskela, J. Maly. On functions with derivatives in a
Lorentz space. Manuscripta Math. 100, 87-101 (1999).

J.B. Keller. On solutions of Au = f(u). Comm. Pure Appl. Math.10,
503-510 (1957).

J.L. Lions, J. Peetre. Sur une classe d’espaces d’interpolation. Pub. Math.
LH.E.S. 19 (1964), 5-68.

M. Marcus, L. Véron. Nonlinear Second Order Elliptic Equations Involv-
ing Measures. De Gruyter Series in Nonlinear Analysis and Applications.
Volume 21 (2013).

O. Mendez, M. Mitrea. Complex Powers of the Neumann Laplacian in
Lipschitz Domains. Math. Nachr. 223 (2001), 77-88.

J. Merker, J. M. Rakotoson. Very weak solutions of Poisson’s equation
with singular data under Neumann boundary . Calc. Var. Part. Dif. Eq. 52
(2015) pp. 705-726.

R. Osserman. On the inequality Au > f(u). Pacific J. Math. 7, 1641-1647
(1957).

P. Quittner, W. Reichel. Very weak solutions to elliptic equations with
nonlinear Neumann boundary conditions. Calc. Var. Part. Diff. Eq. 32
(2008), 429-452.

N. Saintier, L. Véron.Nonlinear elliptic equations with measure valued ab-
sorption potential. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), to appear.

E.M. Stein. Singular Integrals and Differentiability Properties of Functions,
Princeton University Press, Princeton, New Jersey, 1970.

H. Triebel. Interpolation Theory, Function Spaces, Differential Operators,
North Holland (1978).

J.L. Vazquez. On a semilinear equation in R? involving bounded measures,
Proc. Roy. Soc. Edinburgh 95A (1983), 181-202.

L. Véron. FElliptic equations involving measures. Stationary Partial Dif-
ferential Equations Vol. 1. Handbook of Differential Equations. North-
Holland, Amsterdam, (2004).

36



[34] L. Véron. Geometric invariance of singular solutions of some nonlinear
partial differential equations, Indiana University Mathematics Journal, Vol.
38, 75-100 (1989).

[35] L. Véron. Singularities of solutions of second order quasilinear equations,
Pitman Research Notes in Math. Series, 353, 1996.

[36] J. Xiao, Zh. Zhai. Fractional Sobolev, Moser-Trudinger, Morrey-Sobolev
inequalities under Lorentz norms, J. Math. Sci. 166 357-376.

37



