VYPER: Vulnerability detection in binary code - Archive ouverte HAL
Article Dans Une Revue Security and Privacy Année : 2019

VYPER: Vulnerability detection in binary code

Résumé

This paper presents a method for exploitable vulnerabilities detection in binary code with almost no false positives. It is based on the concolic (a mix of concrete and symbolic) execution of software binary code and the annotation of sensitive memory zones of the corresponding program traces (represented in a formal manner). Three big families of vulnerabilities are considered (taint related, stack overflow, and heap overflow). Based on the angr framework as a supporting software VulnerabilitY detection based on dynamic behavioral PattErn Recognition was developed to demonstrate the viability of the method. Several test cases using custom code, Juliet test base and widely used public libraries were performed showing a high detection potential for exploitable vulnerabilities with a very low rate of false positives
Fichier principal
Vignette du fichier
vyperV1 (1).pdf (803.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02485434 , version 1 (31-01-2022)

Identifiants

Citer

El Habib Boudjema, Sergey Verlan, Lynda Mokdad, Christèle Faure. VYPER: Vulnerability detection in binary code. Security and Privacy , 2019, 3 (2), pp.e100. ⟨10.1002/spy2.100⟩. ⟨hal-02485434⟩

Collections

LACL UPEC
151 Consultations
825 Téléchargements

Altmetric

Partager

More