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Abstract. This paper presents a method for exploitable vulnerabilities
detection in binary code with almost no false positives. It is based on the
concolic (a mix of concrete and symbolic) execution of software binary
code and the annotation of sensitive memory zones of the correspond-
ing program traces (represented in a formal manner). Three big families
of vulnerabilities are considered (taint related, stack overflow and heap
overflow). Based on the angr framework as a supporting software Vyper
was written to demonstrate the viability of the method. Several test cases
using custom code, Juliet test base and widely used public libraries were
performed showing a high detection potential for exploitable vulnerabil-
ities with a very low rate of false positives.
Keywords
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1 Introduction

Building robust and secure software free from vulnerabilities is becoming a major
concern of the IT community. Programming errors committed at the develop-
ment stage are the main source of vulnerabilities and security holes. Different
strategies [13], [9], [10], methods [5], [8], tools [14], [16], [18] have been and are
being developed to detect these programming errors or to prevent them from
happening. Software code analysis is one of these methods aimed to detect vul-
nerabilities early in software life cycle. This method has many drawbacks. We
cite the problem of “false positives” where the analysis tool detects vulnerabili-
ties, which in fact are not existing. Software security analysts will have a harsh
task to sort true and false positives especially for large and complex software,
and they may miss severe true vulnerabilities.

In this paper we propose a method that describes how to detect exploitable
vulnerabilities with almost no false positive. The given solution also permits to
a software analyst to easily confirm the vulnerability by providing him an input
sample that can trigger it. Our solution can also be used to automatically sort
true and false positive vulnerabilities obtained from other software analysis tools.

The proposed method is a 3-stages process that first computes program traces
by a concolic (a mix of concrete and symbolic) execution of the software binary
code. Next, for each state of the computed trace(s) an annotation of sensitive
memory zones is computed. Finally, for each state, a predicate based on this



annotation and the result of the symbolic execution allows to verify if a vulnera-
bility can be triggered in the corresponding state (giving the necessary input as
well). The use of binary code instead of source code is motivated by the fact that
it contains all the necessary details to accurately find exploitable vulnerabilities.
Such approach best responds to the objective of generating no false positive.
We concentrated on three classes of vulnerabilities: taint related, stack overflow
and heap overflow and we gave corresponding descriptions of the annotation and
detection functions.

Concolic execution is a software analysis technique that performs symbolic
execution, a classical technique that treats program variables as symbolic vari-
ables, along a concrete execution (testing on particular inputs). It was introduced
by Godefroid et al.[6] where it was used to assist random testing to cover a max-
imum numbers of execution paths. This method is also used by KLEE [2] for
their unassisted high coverage testing. In their tool AEG (Automatic Exploit
Generation) Avgerinos et al.[1] were interested in automatically generating an
exploit by combining source analysis to find the exploitable vulnerability and
binary analysis to produce the exploit. In our work we focus more on finding
different classes of vulnerabilities, we do not generate a completely working ex-
ploit but only the inputs necessary to trigger the first stage of the vulnerability.
The same difference exits between our approach and Mayhem [3] that is able to
automatically find a vulnerability and generate an exploit based only on binary
analysis. Different tools and methods were developed since the introduction of
concolic execution. Shoshitaishvili et al.[7] describes almost all state of art tech-
niques used in binary analysis based on concolic execution and other techniques
that they implemented in the open source angr framework [12].

To demonstrate the viability of our approach we developed a real testable tool
Vyper (VulnerabilitY detection based on dynamic behavioral PattErn Recogni-
tion) that uses angr framework. The tool can be used in “search mode” to search
for vulnerabilities. In what we call “refine mode” the tool is used to check if a
given vulnerability is real or not and to produce the input that permits to con-
firm it. We tested Vyper on several custom test cases, Juliet test suites [17] and
some widely used open source libraries (openssl, libpng and libtiff). The results
are very promising: in the first two cases most exploitable vulnerabilities were
detected with almost no false positive (2% versus 20% when using other tools),
while in the last case several previously unknown vulnerabilities were detected.

The paper is organized as follows: we define what is meant by exploitable
vulnerabilities in Section 2. We give the formalization of the proposed solution
in Section 3.1. Where in Section 3.2 we show how this formal model can be
applied on examples of exploitable vulnerabilities. The Sections 4 and 5 detail
the implementation and evaluation of Vyper. We conclude and discuss the future
works in Section 6.



2 Exploitable vulnerabilities

In this paper we consider exploitable vulnerabilities, i.e. vulnerabilities that al-
low an attacker to execute an arbitrary code or read data at an arbitrary memory
location. Executing an arbitrary code means that an external application user
is able only via input vectors (command line arguments, environment variables,
file system, network sockets) to hijack the application control flow and execute
code fed as input to the application. Reading data at an arbitrary location allows
an external user to obtain via the application output confidential information
(passwords, encryption keys etc) or gain knowledge about the memory layout
(stack and heap addresses, dynamic library loading addresses). This knowledge
can help an attacker to bypass some efficient application protection mechanisms
such as the ASLR (Address Space Layout Randomization) or DEP (Data Ex-
ecution Protection), allowing him to exploit software running on recent and
hardened operating systems. Others vulnerabilities such as application crashing
or interference with application logic etc. will not be covered in the paper.

We focused our study on the most commonly exploited vulnerabilities in
wild. We consider the following classes of vulnerabilities:

1. Taint related vulnerabilities:
Format string, or command injection vulnerabilities, that are caused by
calling some dangerous functions (printf, syslog, system, execlp) with a
tainted attacker supplied argument. These vulnerabilities are exploitable if
the tainted argument has not been sanitized at all or has been incorrectly
sanitized.

2. Stack overflow :
A stack overflow occurs when data is written or read at a location that is
beyond the stack buffer maximum size. A stack overflow will be exploitable
if the return value stored on the stack is erased with an attacker supplied
value allowing him to hijack the control flow into a desired location. Note
that not all stack overflows are exploitable, for example if we erase only few
stack memory locations and we do not reach the stored return address [19],
the caused stack overflow is not exploitable. The Fig. 1 depicts a case of an
exploitable stack overflow on an X86 64 machine running on Unix based OS.

3. Heap overflow :
When a heap buffer is allocated the dynamic memory allocator adds different
control data before and after the buffer. Exploitable heap buffer overflow
occurs when a heap is written beyond its size with a user supplied value
(value derived form the input). Because the erased control data will confuse
the memory allocator, this can potentially allow the attacker to execute
arbitrary code. A use-after-free vulnerability occurs when a freed buffer is
accessed and can be exploited in the same manner. Double freeing a heap
buffer can also allow an attacker to obtain a control hijack and execute
an arbitrary code. Exploiting a heap buffer overflow is less easy than stack
overflow. It needs a deep knowledge of heap meta-data and heap allocator
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0x00000000

Stored return address

int c; //  4 bytes

char buf[10]; 
//10 bytes + padding 

Tainted Data

Program stack
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int x(char *s){
  int c;  
  char buf[10]; 
  strcpy(buf,s);
  ...
}
int main(){
  ...  
  x(external_string);
  ...
} 

Program

Fig. 1. Exploitable stack overflow : external string containing 24 bytes of tainted data
is written to the buffer erasing the return address

algorithms. In practice heap overflow exploits are probabilistic and use some
techniques such as heap spraying [15] and heap layout information leak to
make the exploits more reliable. The Fig. 2 depicts a case of an exploitable
heap overflow where a tainted is written to buf1 and the write operation
overflows and erases the metadata of the following buffer buf2 leading to an
exploitable heap overflow situation.

3 Exploitable vulnerabilities detection

From the examples above we observe a general pattern shown in the Fig. 3:
a vulnerability is exploitable into a control hijack, if some sensitive memory
zones (function argument, stored return address, heap buffer start and end) are
accessed (read, write) in some special situations (with data derived from input
or with data not correctly sanitized). By searching for this pattern in analyzed
applications we will be able to locate exploitable vulnerabilities. Finding these
exploitable vulnerabilities is done in 3 steps:

– Program traces construction: computed using concolic execution, that guar-
antees the propagation of initial symbolic inputs along the generated traces
with path formulas expressed within these inputs. We note that we construct
all traces of a maximum fixed length to guarantee the termination of this
computation.

– Sensitive memory annotation: in this step we will construct sensitive memory
zones that will be used for checks.

– Vulnerability detection: in this step we will check if the operation we are
executing in the corresponding program state cause a sensitive memory zone
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Fig. 2. Exploitable heap overflow : Overflowing buf1 will erase ”metadata buf2” and
allow an arbitrary code execution

to be written with data coming form input vectors (symbolic data). As result
the corresponding vulnerability information is reported as well as the input
data that will trigger this vulnerability (if possible).

In what follows we will present the formalization of the concept of the pro-
gram and sensitive memory and next we will describe the detection of vulnera-
bilities presented in Section 2 in terms of that model.

3.1 Formalization

Below, we present a formalization of the method detecting and reporting ex-
ploitable vulnerabilities based on their general behavioral pattern.

To detect an exploitable vulnerability in a given program we propose a
method based on the annotation of program traces states’ space. As in model
checking methods, we will construct reachable program states and keep the ex-
ecution traces. After that, for each trace we will annotate each state by a list
of sensitive memory zones, based on the executed instructions. Finally, for each
state we will report vulnerabilities based on checks and constraint resolution
done on the program state, execution trace and the constructed annotation con-
taining sensitive memory zones.

We notice that for our goal we do not need to distinguish between memory
locations and registers, so we can assume that the starting addresses of the
memory correspond to the registers.

We will abstract the real computer program and the concrete machine model
by random-access machine (RAM) model [4] enriched with additional instruc-
tions.
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Fig. 3. Exploitable Vulnerability pattern : (1) Sensitive memory is erased with tainted
data; (2) sensitive memory is partially erased; (3) sensitive memory is not erased. The
vulnerability is exploitable only in case 1.

In order to be closer to the reality we consider two restrictions on the RAM
model: first we assume that the number of registers (the memory) is finite and of
size M ; second we consider that each register (memory cell) can hold a bounded
integer value – at most 2n. Hence, the memory can be defined as a vector of
size M : Memory ∈ INT (n)M , where INT (n) = {0, . . . , 2n − 1} be the set of
numbers that can be represented with at most n bits in the binary notation.

Next, we augment the RAM model with additional instructions. An instruc-
tion is defined by the operation and the list of its arguments that are indexes
of memory locations on which the operation is executed. We remark, that we
consider instructions using constant values as new types of instructions. So, let
OP be the set of all possible operation codes, then an instruction is a tuple
I = (op, a1, . . . , ak), where op ∈ OP and k and ak depend on op: k is the number
of operands of op and ak are the corresponding operands. The set of all instruc-
tions will be denoted as INS ⊆ OP × NK , where K is the maximal number of
arguments for any instruction.

A program P = I1, . . . , In is an ordered list of instructions: P ∈ INS∗.

A state of the machine is given by the contents of the memory and by the
current instruction index: Sj = (ij ,Mj), 1 ≤ ij ≤ n, Mj ⊆ INT (n)M . Suppose
that an execution of an instruction Iij allows to pass from state Sj to Sj+1:

Sj
Iij
==⇒ Sj+1, where the memory contents is updated accordingly.

A trace (an execution) of length n is the following sequence starting in the
initial state S0

π : S0

Ii0==⇒ S1

Ii1==⇒ . . .
Iin−1
====⇒ Sn.



We annotate each state Si of trace π. We denote by Aπi the corresponding an-
notation. An annotation is a list of triples (memLocation, size, attribute), where
memLocation, size are respectively the address and the size of the annotated
memory. The attribute value is used to keep the type of the corresponding mem-
ory zone (RETURN ADDRESS,HEAP METADATA,
CALL ARGUMENT, etc.). Hence Aπi ∈ (N×N×Attribute)∗. We will omit the
superscript π if π can be deduced from the context.

For each state Si of π we consider the detected vulnerabilities information
denoted V πi , which is a list of couples (codeLocation, V ULN INFO), where
codeLocation is the instruction offset in the code and V ULN INFO is a struc-
ture that contains the name of the vulnerability, the corresponding CWE [11]
identifier and the context (call stack, input values, etc). Hence, V πi ∈ (N ×
V Info)∗. As above, we will omit the superscript π if it can be deduced from the
context.

We use a concolic execution of the program. One of the major advantages
of such method is that it keeps track of the input data called symbolic data, so
it is possible to distinguish if a value of a memory location is computed using
external data. As we could see above, the input data plays a major role to make
a vulnerability exploitable.

Another important point is that we limit the execution traces to a certain
length. The idea behind this limitation is that we would like to detect vulnera-
bilities in a reasonable time, implying that the execution of the program will be
stopped after some number of steps. The drawback of this approach is that the
vulnerabilities requiring a higher number of steps for the detection will not be
found. From the other point of view, the tool we use for the concolic execution
already has similar limitations.

Hence, we will consider execution traces of length at most L and we will
denote the corresponding set by ΠL. We would like to remark that below we
will consider that ΠL is already computed (by making all corresponding runs).
However, in the implementation we have chosen another approach where at each
step we keep track of all traces and we evolve them in parallel. While this leads
to the same final result, conceptually, it is easier to suppose that the set of traces
is already computed.

For every program trace π : S0 =⇒ . . . Sn of size n we will populate the list
Ai, 0 ≤ i ≤ n as follows:

A0 = ∅
Ak+1 = Annotate(Sk, Ak, Iik), 1 ≤ k ≤ n.

The function Annotate will permit to store the access to sensitive memory
zones and this information will be further used for the detection of different
kind of vulnerabilities. Based on the general behavioral pattern of a vulnera-
bility some special memory locations have an important role, for example the
return addresses stored in the stack frame or the buffer meta-data stored on the
heap. When these memory locations are written, corresponding states need to
be annotated for a future search for a vulnerability.



Next, we compute all Vk, 0 ≤ k ≤ n as follows:

V0 = ∅
Vk+1 = Detect(Sk, Ak, Iik , Vk), 1 ≤ k ≤ n.

The function Dectect checks for different vulnerabilities. The check is based
on the annotated list for each state. Given the behavioral pattern of a vulnera-
bility and the previous annotations on the execution path the Dectect function
will check if the conditions to have an exploitable vulnerability are met. In the
positive case, it stores the information about the found vulnerability in Vk+1.
For example if a memory location is annotated as being a stored return address
in a function stack frame and it is written with tainted (symbolic) data, then we
signal this as exploitable stack overflow.

The introduced model allows to describe a general detection framework based
on the annotation of used memory locations. In the next section we describe how
this framework can be applied for the classes of vulnerabilities we are interested
by.

3.2 Formal model application on exploitable vulnerabilities

For practical reasons we will group program instructions into functional groups
(i.e. memory access, subroutine call), as for many instructions the Annotate and
Detect functions are almost identical. These groups are closely related to the
functioning of angr framework [12] and especially to event based breakpoints
that can be fired, e.g. on a memory/register access or a function call. The used
part of [12] will be detailed in Section 4.3. However, it should be clear that it
makes no particular difficulty to unroll the corresponding definitions and give
them for concrete instructions.

So, below we present the functions Detect and Annotate used for the detec-
tion of the 5 types of vulnerabilities discussed in this paper.

– Taint vulnerabilities (printf, system):
• Function Annotate:

It is the identity function so the annotation list Ai will be always empty.
• Function Detect:

If the current operation is a call to taint related function, and the format
argument is pointing an symbolic area then report a vulnerability.

– Stack overflow:
• Function Annotate:

If the current operation is a function call, then add the triplet
(stack pointer, reg size, STACK) to the list Ai. If it is a ret operation
subtract the corresponding stack pointer element from Ai.

• Function Detect:
If the current operation is a memory write and the destination argument
is within Ai and marked as STACK and the source is symbolic then
report an exploitable stack overflow vulnerability.



– Heap overflow:
• Function Annotate:

if the current operation is a call to a memory allocation function then
add the triplet (malloc ret value,mallo arg,HEAP ) to Ai

• Function Detect:
If the current operation is a memory write, and the data is written
beyond the size of a buffer annotated as a HEAP element and the source
buffer is symbolic then report an exploitable heap overflow vulnerability.

– Double free:
• Function Annotate:

When free is called, the passed argument is annotated as being already
freed buffer.

• Function Detect:
When free is called, we check if the passed argument is in our sensitive
memory zones and marked as freed. In the positive case we report an
exploitable vulnerability.

– Use after free:
• Function Annotate:

When free is called, the passed argument is annotated as being already
freed buffer.

• Function Detect:
When a heap buffer is accessed we check if it is in the set of sensitive
memory zones marked as already freed. If so, we report an exploitable
vulnerability.

4 Implementation of VYPER

As stated before we built a tool called Vyper that implements the above be-
havior. Its implementation needs a good concolic execution engine. The imple-
mentation of a concolic engine from scratch is a hard task, which is not in our
research scope. For this reason Vyper uses the angr framework [12] for program
loading and states exploration. This allows to accelerate the development and
permits us to focus more on vulnerability detection task. Another important
point is that angr is actively developed and continuously improved, so our tool
will benefit from further improvements of the framework.

4.1 A brief description of angr framework

angr is an open-source framework available to the security community. It is
a binary analysis framework that implements a number of analysis techniques
that have been proposed in the past. This allows researchers to use them without
wasting their effort reinventing the wheel(s). We just cite some techniques imple-
mented and documented in angr framework: binary loader for different OSes and
architectures, control flow graph (CFG) computation, data flow graph (DFG)
computation, value-set analysis (VSA), symbolic execution using execution path
explorers, event-based breakpoints.



4.2 VYPER specification

Vyper can be specified as follows:

– Input: the binary program, the entry point function, analysis mode (optional,
default:detection), vulnerability class (optional, default:all).

– Output: Vulnerability report containing for each reported vulnerability: vul-
nerability CWE identifier, location information, input values, call stack.

– Requirements:
• Load the binary file and initialize the initial state as specified with a

special input file if any.
• Activate the requested checkers by setting the corresponding breakpoints

that are used for the annotation and detection purposes.
• Launch and control the concolic execution.
• If an annotation breakpoint is hit, trigger callback function that will

store the annotation information.
• If a detection breakpoint is hit, trigger callback function that will check

if the executed code is vulnerable, and store vulnerability information if
a vulnerability is present.

• If the symbolic execution is stopped (after a timeout) or finished, collect
all the reported vulnerabilities and output it in the requested format.

4.3 VYPER implementation details

The tool contains about 600 lines Python code. Each vulnerability checker is
implemented in a separate function and can be activated via command line
arguments. We also implemented functions to pretty print the control graph
flow of the analyzed application for debugging purposes. Due to some missing C
library functions stubs in the framework, about 10 functions were implemented.
The Fig. 4 shows the general algorithm followed by Vyper. In the following
paragraphs we will explains the internals of each box.

1. Load the program. The binary of the analyzed program which is given as an
argument is loaded by calling the angr.Project class. The option auto load libs
is set to false. This will disable loading system libraries. All called system
functions must be stubbed to have a correct analysis.

2. Generate the CFG (Control Flow Graph). CFG is generated based on the
previously loaded program. We make use of CFGFast class of angr.

3. Prepare program’s initial state. Before launching the analysis we initialize
the analyzed program state by giving the following information:
– Analyzed program parameters (argvs) and environment variables: they

can be concrete values, symbolic values or a mix of both. All this infor-
mation is specified in a file given as an argument to Vyper, or set to
default values if no file is given.

– Standard input, files, network sockets: to be initialized as specified by
the user, or set to default symbolic values. The angr framework gives
the possibility to use a concrete file system and directly interact with
real files.
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– The program entry point: if we analyze a whole program and not only
a part of it, this argument must not be set, letting angr guessing auto-
matically the entry point directly from the binary headers.

4. Initialize checkers.
Initializing checkers is done by inserting breakpoints, that, when hit, will
trigger the convenient check routine, thus detecting the vulnerability and
collecting necessary reporting information. For example, to detect a tainted
argument we will insert a breakpoint that fires when a call to a vulner-
able function (printf, fprintf etc) is performed. This breakpoint will call
check tainted arg that will report a format string vulnerability. Checkers are
all deactivated by default and activated only via the corresponding Vyper
argument. This structure allows Vyper to be easily extended for new vul-
nerability checks by adding a breakpoint that will launch checks on program
state and report the vulnerability if these checks pass. Since the checks can
be activated or deactivated, the analysis can be faster if we are interested
only in special category of vulnerabilities checked by Vyper. The detec-
tion procedure corresponding to vulnerabilities considered in this paper is
depicted on Fig. 5

5. Start symbolic execution. In this step the symbolic execution is launched,
and continued until all the CFG is covered. This is done via the PathGroup
class of angr framework.

6. Report vulnerabilities. When vulnerabilities are detected they are not directly
reported (only a small notification is emitted in the execution log). The found
vulnerabilities and their related data (location, call stack, input values etc)
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Fig. 5. The detection procedure for classes of vulnerabilities considered in this paper.

are stored in memory and reported in the requested format (txt,xml,html
etc) at the end of the analysis.

7. Refine mode.
Vyper can be used in check mode to find exploitable vulnerabilities or in
refine mode to refine vulnerability reports obtained by some other tools in
order to eliminate false positives. The corresponding reports are fed as input
along with the program to analyze. This feature can allow an application
auditor to specify vulnerabilities that should not occur at some code location,
e.g. searching for exploitable stack overflows in authentication related code
can be very useful to grant the security of the whole application.

8. Reach vulnerable function
This part is executed when Vyper is running in refine mode. Using the Path-
Group class of angr framework, the analyzed program is explored without
any checker activated until the execution reaches the vulnerable function.

5 Testing and validation

To evaluate our implementation of the proposed method we used 3 types of test
cases:

– Custom test cases: During the development, we built a test base that was
used to test the detection of some simple cases of vulnerable code. This base
was also used for debugging and non-regression purposes.



Table 1. Results on custom tests.

Vulnerability CWE-ID Comment

tainted format 134 The code contains a vulnerable call to
printf conditioned with input values.

stack overflow 121 The code contains 2 stack overflows: one
with a loop and an index the other with a
call to strcpy.

double free 415 The test calls 2 times “free” in 2 different
functions on the same buffer pointer

use-after-free 416 The test code tries to access a memory lo-
cation of a freed buffer. The test is reported
as a heap overflow.

heap overflow 122 A C++ program that allocates an array of
objects and causes a write overflow.

– Synthetic test cases: This testing was done using publicly available Juliet
test base [17] that contains thousands of test cases specially written to test
static analysis software.

– Real applications: We used some well known applications and libraries
that are available in open-source to test our tool on real life code.

5.1 Testing on custom test cases

Table 1 summarizes the different test objectives. All tests were run in detec-
tion mode and all of the introduced vulnerabilities were detected and reported
correctly. For example, one of these custom tests makes several calls to printf
function. All calls except one use valid constant format specifiers. The remaining
call use a tainted format string and is only called if the input from argv has a
special value. The vulnerable call was correctly detected and the needed input
value was precisely reported.

5.2 Testing on Juliet test base

Juliet [17] is a collection of test cases written in C/C++ languages. It con-
tains examples for 118 different CWEs [11]. A test case contains at least a
vulnerable code (flaw) and the same code with the vulnerability fixed (fix).
Flawed or fixed code can be activated using compiler macros. For each CWE,
test cases are created using the simplest form of the flaw as well as other
cases testing the same flaw with added control or data flow complexity. For ex-
ample CWE134 Uncontrolled -Format String char connect socket snprintf 01.c
test case will test the CWE 134 with tainted data source from “connect socket”
and a sink vulnerable function “snprintf”. The suffix ”01.c” means that this test
is the simplest case of this flaw. A more complex version of this test case has the



name CWE134 Uncontrolled Format String char connect socket snprintf 11.c
and is testing the same vulnerability but with more complex control or data
flow, i.e. using intermediate variables or function calls crossing multiple files etc.

For our testing we have developed scripts that will compile test cases into
binary code, launch Vyper with all checkers activated. These scripts also collect,
normalize and synthesize the analysis results. The results are summarized in
Fig. 6 and Table 2. We can notice that generally a good rate of false positives
is obtained (FP = 100− TN): from 0 to 2%, which is in correspondence to our
objective to build a method with a very low false positive rate. Also, we remark
that for the CWE 121 (stack overflow) we detected 0% exploitable vulnerabilities.
This is due to the fact that the flawed code does not permit to completely erase
the return address and cause an arbitrary code execution. In other words the
CWE 121 test cases present in the Juliet test base are not exploitable. For the
CWE 122, the low rate of detected vulnerabilities is caused by the fact that some
heap overflows occur when reading heap buffers. The read access overflow is not
considered exploitable in our definition because no heap metadata can be erased
with such an access.

We equally tested several commercial and proprietary tools on the same test
cases and we found that they have a mean value of false positive (FP) rate
of about 20%. Hence, our tool performs well on the corresponding vulnerability
classes. One explanation of such performance is that considered commercial tools
are not tuned for exploitable vulnerabilities search and also they usually rely on
techniques inherently generating a high rate of false positive alerts.
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Fig. 6. Result of the analysis of a part of Juliet test suite. The charts present the anal-
ysis time, the number of test cases, the ratio of flaws correctly identified as vulnerable
and the ratio of fixes correctly not identified as vulnerable.



Table 2. Result of the analysis of a part of Juliet test suite.

Type CWE Time1 Number2 %TP in Flaw3 %TN in Fix4

taint related 134 1h 100 100% 100%
taint related 78 36m 80 73% 100%
stack overflow 121 2h 232 0% 99%
heap overflow 122 1h 136 14% 98%
double free 415 4m 12 100% 100%

1 total analysis time
2 the number of analyzed test cases
3 the ratio of flaws correctly identified as vulnerable
4 the ratio of fixes correctly not identified as vulnerable

5.3 Testing on real applications

Testing our tool on real applications is an important step to show its effective-
ness. Thousands of applications are now available in open-source. However, the
intrinsic limitations of the angr framework allow us to perform the tests only
on small or medium size applications. Another problem when dealing with open
source code is how to state if the found vulnerability is correct or not automat-
ically. We tested Vyper on the following of open source software:

– Udhcp server : udhcp-0.9.8 is a program running on a variety of devices
(routers, modems, set-top boxes, IP cameras etc). We inserted into the source
code a vulnerable printf call at udhcp-0.9.8/dhcpd.c:102. Vyper was able to
correctly detect this vulnerability in about 3 minutes. This result shows the
effectiveness of the tool for continuous testing of these types of (embedded)
programs.

– Widely used libraries: We tested Vyper on OpenSSL-1.1.0f (libssl.so), libpng-
1.5.20 and tiff-3.8.1. To test these libraries we launched the tool directly on
the “.so” file and changed the entry point to each of the exported func-
tions. We fixed the timeout to 300 seconds to be able to analyze a maximum
number of functions in a reasonable time. The results are summarized in
Fig. 7 and Table 3. As it can be seen several potential vulnerabilities were
discovered.

6 Conclusion

In this study we have shown that using state-of-art binary-code analysis frame-
work it is possible to effectively detect exploitable vulnerabilities. The method
we propose tries to recognize the common patterns present in the application
behavior allowing successful exploits. These patterns are searched using con-
colic execution engine provided by the angr framework. The implemented tool
VYPER performs well on synthetic test cases as well as on real life applications.
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Fig. 7. Detection of vulnerabilities in widely used libraries. The charts present the
binary size, the number of library functions and the number of functions on which the
program reached a timeout.

Table 3. Detection of vulnerabilities in widely used libraries.

Library name Src size Bin size # f1 # tf2 Entry function:CWE id

OpenSSL-1.1.0f
(libssl)

246 Kloc 1.2 MB 786 33

SSL add dir cert subjects:CWE-122
SSL check private key:CWE-121
SSL CTX set ct validation:CWE-121
SSL CTX use PrivateKey:CWE-121

libpng-1.5.20 33 Kloc 452 KB 235 50

png destroy struct:CWE-415
png do unpack:CWE-122
png free default:CWE-415
png info init 3:CWE-415
png push process row:CWE-121
png safecat:CWE-121

tiff-3.8.1 44 Kloc 1.1 MB 215 13

TIFFCreateDirectory:CWE-415
TIFFCreateDirectory:CWE-122
TIFFGetConfiguredCODECs:CWE-122
TIFFInitCCITTFax3:CWE-122
TIFFReadEXIFDirectory:CWE-415
TIFFReadEXIFDirectory:CWE-121

1 Number of functions
2 Number of time-outed functions: the execution of the program reached a timeout

without providing any results.

The results of running Vyper on these various test cases show its effectiveness
and its ability to correctly detect and report exploitable vulnerabilities. The very
low false positive rate is granted by the precise tracking of the vulnerable code
behavior at binary level, where all the necessary details are available.

One of the major drawbacks of the developed method is its low speed with
respect to other methods. Moreover, at the time of writing it does not scale very
well for large applications.

The refine mode of VYPER can be used to check for potentially introduced
vulnerabilities when application code is modified. This can be done by targeting
the newly added lines of code and specifying the vulnerabilities to be checked.

In the future we plan to enhance the refine mode in order to have a better
detection of newly added vulnerabilities. We also plan to concentrate on on the
speed and the scalability of the tool in order to accept larger programs. Finally,
we plan to explore other vulnerability patterns, in particular those related to
race conditions and parallel executions.
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