Optimal Subgroup Discovery in Purely Numerical Data - Archive ouverte HAL Access content directly
Conference Papers Year :

Optimal Subgroup Discovery in Purely Numerical Data

Alexandre Millot
Rémy Cazabet
Jean-François Boulicaut


Subgroup discovery in labeled data is the task of discovering patterns in the description space of objects to find subsets of objects whose labels show an interesting distribution, for example the disproportionate representation of a label value. Discovering interesting subgroups in purely numerical data-attributes and target label-has received little attention so far. Existing methods make use of discretization methods that lead to a loss of information and suboptimal results. This is the case for the reference algorithm SD-Map*. We consider here the discovery of optimal subgroups according to an interestingness measure in purely numerical data. We leverage the concept of closed interval patterns and advanced enumeration and pruning techniques. The performances of our algorithm are studied empirically and its added-value w.r.t. SD-Map* is illustrated.
Fichier principal
Vignette du fichier
PAKDD_HAL.pdf (384.62 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02483379 , version 1 (18-02-2020)
hal-02483379 , version 2 (27-01-2021)



Alexandre Millot, Rémy Cazabet, Jean-François Boulicaut. Optimal Subgroup Discovery in Purely Numerical Data. Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), May 2020, Singapore (on line), Singapore. pp.112-124, ⟨10.1007/978-3-030-47436-2_9⟩. ⟨hal-02483379v2⟩
174 View
274 Download



Gmail Facebook Twitter LinkedIn More