Global weak solutions of a Hamiltonian regularised Burgers equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Global weak solutions of a Hamiltonian regularised Burgers equation

Résumé

Inspired by a recent nondispersive conservative regularisation of the shallow water equations, a similar regularisation is proposed and studied here for the inviscid Burgers equation. The regularised equation is parametrised by a positive number $\ell$, the inviscid Burgers equation corresponding to $\ell=0$ and the Hunter--Saxton equation being formally obtained letting $\ell\to \infty$. The breakdown of local smooth solutions is demonstrated. The existence of two types of global weak solutions, conserving or dissipating an $H^1$ energy, is also studied. The built dissipative solution satisfies (uniformly with respect to $\ell$) an Oleinik inequality, as do entropy solutions of the inviscid Burgers equation. The limit (up to a subsequence) of the dissipative solution when $\ell\to 0$ (respectively $\ell \to \infty$) satisfies the Burgers (resp. Hunter--Saxton) equation forced by an unknown remaining term. At least before the appearance of singularities, the limit satisfies the Burgers (resp. Hunter--Saxton) equation.
Fichier principal
Vignette du fichier
Burgeregularised.pdf (489.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02478872 , version 1 (14-02-2020)
hal-02478872 , version 2 (10-03-2022)

Identifiants

  • HAL Id : hal-02478872 , version 1

Citer

Billel Guelmame, Stéphane Junca, Didier Clamond, Robert L Pego. Global weak solutions of a Hamiltonian regularised Burgers equation. 2020. ⟨hal-02478872v1⟩
521 Consultations
334 Téléchargements

Partager

More