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GLOBAL WEAK SOLUTIONS OF A HAMILTONIAN REGULARISED

BURGERS EQUATION

BILLEL GUELMAME, STÉPHANE JUNCA, DIDIER CLAMOND AND ROBERT L. PEGO

Abstract. Inspired by a recent nondispersive conservative regularisation of the shallow
water equations, a similar regularisation is proposed and studied here for the inviscid Burgers
equation. The regularised equation is parametrised by a positive number `, the inviscid
Burgers equation corresponding to ` = 0 and the Hunter�Saxton equation being formally
obtained letting ` → ∞. The breakdown of local smooth solutions is demonstrated. The
existence of two types of global weak solutions, conserving or dissipating an H1 energy,
is also studied. The built dissipative solution satis�es (uniformly with respect to `) an
Oleinik inequality, as do entropy solutions of the inviscid Burgers equation. The limit (up
to a subsequence) of the dissipative solution when ` → 0 (respectively ` → ∞) satis�es the
Burgers (resp. Hunter�Saxton) equation forced by an unknown remaining term. At least
before the appearance of singularities, the limit satis�es the Burgers (resp. Hunter�Saxton)
equation.

AMS Classi�cation: 35B65; 35B44; 35Q35; 35L67.

Key words: Inviscid Burgers equation; regularisation; Hamiltonian; conservative and
dissipative solutions; Oleinik inequality.
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1. Introduction

The dispersionless shallow water equations, also called the Saint-Venant equations, admit
shock-wave solutions. Recently, a Hamiltonian regularisation of this system (rSV), has been
proposed which approximates these discontinuous waves by less singular ones [10, 11]. The
rSV system can be written

ht + [hu ]x = 0, (1a)

[hu ]t + [hu2 + 1
2 g h

2 + εRh2 ]
x
= 0, (1b)

R def= h (u2
x − uxt − uuxx ) − g (hhxx + 1

2 h
2
x ) , (1c)

where ε is a small positive parameter, h is the total water depth and u is the velocity. The
classical Saint-Venant equations can be obtained letting ε→ 0. This regularisation is Galilean
invariant, non-dispersive, non-di�usive, and conserves energy for regular solutions. It also
admits regularised shock-wave weak solutions which have the same wave speed and which
dissipate energy at the same rate as shocks in the classical Saint-Venant (cSV) equations,
[18].
Some mathematical results on rSV were obtained by Pu et al. [18] and Liu et al. [17], but

several natural questions remain open, such as the existence of global weak solutions. In
the present work we consider such questions for an analogous but simpler model equation,
namely a Hamiltonian regularisation of the inviscid Burgers equation ut + uux = 0. Indeed,
the Burgers equation being scalar, it is more tractable than the rSV system of equations.
Inspired by the rSV and the dispersionless Camassa-Holm [8] equations, in section 2 we

derive a regularised Burgers equation (rB) in the form

ut + uux = `2 (utxx + 2ux uxx + uuxxx) , (2)

where ` ⩾ 0 is a parameter. The main purpose of the present paper is to study the existence
of local smooth solutions, the blow-up time, global weak solutions of the regularised Burgers
equation (2), and also to study the limiting cases `→ 0 and `→ +∞.
Some mathematical results on (2) are already known. For a generalisation of the Camassa�

Holm equation [21], including rB as special case, the existence of local smooth solutions has
been proved ([21], see also Theorem 1 below). The existence of global weak solutions in H1

has also been proved using vanishing viscosity [20, 9]. Note that Bressan and Constantin
[6, 7] have proved global weak solutions of the Camassa�Holm equation (8) in H1, using an
equivalent semi-linear system.
In this paper, we rewrite (2) into an equivalent system, analogous to the treatment of the

Camassa-Holm equation in [6, 7], without asking the initial datum to be in H1. We prove the
existence of a so-called conservative [6] global weak solution (Theorem 3). This conservative
solution conserves the energy, but it does not satisfy the Oleinik inequality, which is an
important condition for entropic shock waves. To avoid this problem, the equivalent system
is slightly modi�ed in order to obtain another type of solutions called dissipative [7] (see
Theorem 4 below), which satis�es an Oleinik inequality given in (85). This inequality is well
known to obtain uniqueness for entropy solutions of the Burgers equation. The dissipative
solutions of rB can also be called �entropy solutions� because they satisfy an Oleinik inequality.
However, the uniqueness for the dissipative solutions of rB remains an open problem.
The equivalent system, and the Oleinik inequality, are used to obtain a uniform BV estimate

independent of the parameter ` for the dissipative solutions (Lemma 1), which is a key point
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to prove the compactness when ` → 0 and ` → +∞. When ` → 0, a dissipative solution
converges (up to a subsequence) to a function u that satis�es the Burgers equation with a
remaining term (103) (see Theorem 5 below). If the remaining term is zero, then the entropy
solutions of Burgers is recovered. We prove that this term is zero for smooth solutions of
Burgers equations (see Proposition 3). However, the disappearance of the remaining term in
general remains an open problem. Similar results are obtained when `→ +∞, where the limit
is a solution of the Hunter�Saxton equation, at least before the appearance of singularities1

(Theorem 6 and Proposition 4 below).
This paper is organised as follow. A heuristic derivation of the rB equation is given in

section 2. Section 3 is devoted to study the existence of local smooth solutions. In Section
4, proofs of existence of both global conservative and dissipative solutions are given. Section
5 studies the limiting cases ` → 0 and ` → +∞ for dissipative solutions. The optimality of
the requirement that ux ∈ L2

loc for weak solutions is shown in section 6, where we prove in
particular that when a smooth solution breaks down, ux may blow up in Lploc for all p > 2.

2. Heuristic derivation of a regularised Burgers equation

In order to introduce a suitable regularisation of the inviscid Burgers equation with similar
features as the rSV system (1), we note �rst that the rSV equations yield the momentum
equation

ut + uux + g hx + ε (hRx + 2Rhx ) = 0. (3)

When h is constant, this equation (with the de�nition of R) becomes

ut + uux = `2 [uxxt − ux uxx + uuxxx ] , (4)

where `
def= h

√
ε ⩾ 0 is a constant characterising a length scale for the regularisation.

After the change of independent variables (t, x) → (t/`, x/`), which leaves the inviscid
Burgers equation invariant, equation (4) becomes

ut + uux = uxxt − ux uxx + uuxxx. (5)

Equation (5) belongs to the three-parameter family (for a, b, c ∈ R) of non-dispersive equations
ut − uxxt = auux + bux uxx + cuuxxx. (6)

In this family, we look for an equation that has Galilean invariance and conservation of energy
(at least for smooth solutions). A famous equation in the family (6) is the dispersionless
Camassa�Holm (CH) equation [8]

ut + 3uux = uxxt + 2ux uxx + uuxxx. (7)

This can be rewritten, by applying the inverse of the Helmholtz operator 1 − ∂ 2
x , as

ut + uux + [G ∗ (1
2 u

2
x + u2)]

x
= 0, G(x) def= 1

2 exp(−∣x∣), (8)

where ∗ denotes the convolution product. The family (6) covers other equations, such as the
Degasperis�Procesi (DP) equations [12] and the Benjamin�Bona�Mahony (BBM) equation
[1]. It is well known that the Camassa�Holm conserves the H1 energy [8], but is not Galilean
invariant.
In order to obtain a Galilean invariant regularisation of the Burgers equation, one must

take c = −a = 1 in (6). The special case b = 0 was studied by Bhat and Fetecau [2, 3, 4], who

1 "Singularity" is used here to describe the blow-up of derivatives which corresponds to shocks of the classical
Burgers equation. Contrary to the Burgers case, the solutions of rB remains continuous at the singularities.
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proved the existence of the solution and the convergence to weak solutions of the Burgers
equation in the limit corresponding to ` → 0. The limit fails to satisfy the entropy condition
for the Riemann problem with uleft < uright [4]. For this regularisation, no energy conservation
equation is known.
In the present paper, we consider c = −a = 1 (to ensure Galilean invariance, as in [2]) and,

in order to maintain conservation of the H1 norm at least for smooth solutions, we take b = 2
(as in the Camassa�Holm equation). With this done, equation (6) becomes

ut + uux = utxx + 2ux uxx + uuxxx, (9)

Introducing the scaling (t, x) ↦ (` t, ` x), we obtain

ut + uux = `2 (utxx + 2ux uxx + uuxxx) , (10)

that is a formal approximation of the Burgers equation for small `. Equation (10) is the
regularised Burgers (rB) equation studied in this paper.
It can be shown that the equation (10) has Hamiltonian and Lagrangian structure (we omit

the details), and that smooth solutions satisfy the following energy conservation law:

[ 1
2 u

2 + 1
2 `

2 u2
x ]

t
+ [ 1

3 u
3 − `2 u2 uxx − `2 uuxt ]x = 0. (11)

Applying the inverse Helmholtz operator (1 − `2 ∂2
x)

−1
, the rB equation (10) can be rewritten

ut + uux + `2 Px = 0, P
def= G ∗ 1

2 u
2
x ⩾ 0, G

def= (2`)−1 exp(−∣x∣/`), (12)

to be compared with the Camassa�Holm equation in its form (8). Di�erentiating (12) with
respect to x, and using that P − `2Pxx = 1

2u
2
x, one obtains the Riccati-like equation

[ut + uux ]x + P = 1
2 u

2
x. (13)

Note that P goes formally to zero as ` → +∞, whence one obtains the Hunter�Saxton (HS)
equation [14, 15]

[ut + uux ]x = 1
2 u

2
x. (14)

Note also that by taking ` → +∞ formally in (10), we obtain the derivative of (14) with
respect of x.
In this section, we have heuristically derived a regularised Burgers equation, by imposing

the important physical requirements of Galilean invariance and energy conservation. We have
also related this equation with well-known equations. In the rest of the paper, we perform a
rigorous mathematical investigation of solutions of this regularised Burgers equation.

3. Existence and breakdown of smooth solutions

This section is devoted to showing the local existence and breakdown of smooth solutions
for the Cauchy problem (12) with u(0, x) = u0(x). The form (12) of the regularised Burgers
equation is more convenient for studying smooth solutions than (10), because it involves fewer
derivatives.
Usually, one needs an equation for ux to study the life span of smooth solutions. Equation

(13) can be written

uxt + 1
2 u

2
x + uuxx + P = 0. (15)
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Multiplying (12) by u and multiplying (15) by `2 ux, we obtain

[ 1
2 u

2 ]
t
+ [ 1

3 u
3 + `2 uP ]

x
= `2 ux P, (16)

[ 1
2 `

2 u2
x ]t + [ 1

2 `
2 uu2

x ]x = − `2 ux P, (17)

which implies an energy conservation law for smooth solutions; i.e., we have the (conservative)
energy equation

[ 1
2 u

2 + 1
2 `

2 u2
x ]t + [ 1

3 u
3 + `2 uP + 1

2 `
2 uu2

x ]x = 0. (18)

For a class of equations including rB as special case, Yin [22, 21] has proven the following
local existence result.

Theorem 1 (Yin [22, 21]). For an initial datum u0 ∈ Hs(R) with s > 3/2, there exists a
maximal time T ∗ > 0 (independent of s) and a unique solution u ∈ C([0, T ∗[,Hs) of (12) such
that (blow-up criterium)

T ∗ < +∞ Ô⇒ lim
t↑T ∗

∥u(t, ⋅) ∥Hs = +∞. (19)

Moreover, if s ⩾ 3, then

T ∗ < +∞ Ô⇒ lim
t↑T ∗

inf
x∈R

ux(t, x) = −∞. (20)

Furthermore, the solution given in this theorem satis�es the Oleinik inequality:

Proposition 1. (Oleinik inequality) Let u0 ∈Hs(R) with s ⩾ 2 and let M = supx∈R u
′
0(x).

Then, for all t ∈ [0, T ∗[ the solution given in Theorem 1 satis�es

ux(t, x) ⩽ 2M
M t+2 ⩽ M. (21)

Proof. Let x0 ∈ R and let the characteristic η(t, x0) be de�ned as the solution of the Cauchy

problem ηt(t, x0) = u(t, η(t, x0)), with the initial datum η(0, x0) = x0. With H(t, x0) def=
ux(t, η(t, x0)), the equation (15) can be rewritten

Ht + 1
2 H

2 + P = 0. (22)

Since P ⩾ 0, it follows that Ht ⩽ −1
2H

2 which implies that H(t, x0) ⩽ 2H(0,x0)
H(0,x0)t+2 ⩽ 2M

Mt+2 . �

Remark 1. The Oleinik inequality (21) is valid only when the solution u is smooth. In the
theorem 4 below, we show that this inequality holds for all times also for a certain type of
weak solutions (called dissipative) such that u ∈H1 (and, possibly, for M = +∞).

Unfortunately, the solution given in theorem 1 does not exist globally in time for all non
trivial initial data [21]. Since Yin [21] studied a general family of equations including rB,
his result is not optimal for rB. In the following Proposition, this result is improved with a
shorter proof.

Proposition 2. (An upper bound on the blow-up time) Let u0 ∈Hs(R) with s ⩾ 2. If
there exists x0 ∈ R such that u′0(x0) < 0, then T ∗ ⩽ −2/ inf u′0.

Proof. From the proof of the previous proposition, we have

H(t, x0) ⩽ 2H(0, x0)
tH(0, x0) + 2

, t < T ∗. (23)
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If T ∗ > −2/ inf u′0 then H(0, x0) < 0 implies

lim
t→−2/H(0,x0)

H(t, x0) = −∞,

and for a suitable x0 this contradicts u ∈ C([0, T ∗[,Hs). �
A uniform (with respect to `) lower bound on T ∗ is needed, in order to prove in section 5

below the convergence of smooth solutions (see Proposition 3 and Proposition 4).

Theorem 2. (A lower bound on the blow-up time) Let u0 in Hs be non-trivial with
s ⩾ 2 and let

m(t) def= inf
x∈R

ux(t, x) < 0 < M(t) def= sup
x∈R

ux(t, x), t < T ∗.

If ∣m(0)∣ ⩾M(0) then

− 1/inf u′0 ⩽ T ∗ ⩽ −2/inf u′0. (24)

If ∣m(0)∣ < M(0) then, there exists t∗ such that 0 < t∗ ⩽ −m(0)−1 −M(0)−1 and m(t∗) =
−M(t∗). Therefore

t∗ + 1/supu′0 ⩽ T ∗ ⩽ −2/inf u′0. (25)

Remark 2. Note that the blow-up time T ∗ is uniformly (with respect to `) bounded from
below by 1/ sup ∣u′0∣.
Proof. Since u ∈ Hs, ux → 0 when x goes to ±∞, and ux is not the zero function, so m(t) =
minx∈RH(t, x) < 0 < M(t) = maxx∈RH(t, x). The equation (22) implies that m and M are
decreasing in time, so ∣m∣ = −m is increasing. So, if ∣m(t0)∣ ⩾ M(t0), then for all t > t0 we
have ∣m(t)∣ ⩾ M(t).
The inequality (23) shows that for t < T ∗

0 < M(t) ⩽ 2M(0)
M(0) t + 2

, m(t) ⩽ 2m(0)
m(0) t + 2

< 0, (26)

which implies that, if ∣m(0)∣ < M(0), there exists t∗ ⩽ −(m(0) +M(0))/(m(0)M(0)) such
that ∣m(t∗)∣ =M(t∗).
If δ > 0 is small enough, since the function H(t + δ, ⋅) has a minimum, then there exists xδ

such that m(t + δ) =H(t + δ, xδ). Inspired by Junca and Lombard [16] one gets

m(t + δ) = H(t + δ, xδ) = H(t, xδ) + ∫
t+δ

t
Ht(s, xδ)ds

⩾ m(t) − ∫
t+δ

t
(1

2 H(s, xδ)2 + P (s, xδ)) ds. (27)

Since m(⋅) < 0 and δ is arbitrary small, we have m(s) ⩽ H(s, xδ) ⩽ 0 then m(s)2 ⩾ H(s, xδ)2,
implying that

m(t + δ) −m(t)
δ

⩾ − 1

δ
∫

t+δ

t
(1

2 m(s)2 + sup
x∈R

P (s, x))ds. (28)

De�ning the generalized derivative

ṁ(t) def= lim inf
δ→0+

m(t + δ) − m(t)
δ

, (29)

one can show that
ṁ(t) + 1

2 m(t)2 ⩾ − sup
x∈R

P (t, x). (30)



REGULARISED BURGERS EQUATION 7

Using the de�nition of P from (12) and using that ∥G∥1 = 1, one obtains

sup
x∈R

P (t, x) ⩽ 1
2 ∥ux(t, ⋅) ∥2

∞ ⩽ max{1
2 M(t)2, 1

2 m(t)2} . (31)

and the Riccati-like inequality (30) becomes

ṁ(t) + m(t)2 ⩾ 0 t > t∗. (32)

Then T ∗ − t∗ ⩾ −1 /m(t∗) = 1 /M(t∗), and with (26), one obtains

T ∗ ⩾ t∗ + 1/supu′0. �

4. Global weak solutions

Note that Proposition 2 shows that, for s ⩾ 2, we have limt↑T ∗ infx ∈R ux(t, x) = −∞ which
implies that

lim
t↑T ∗

∥u(t, ⋅) ∥Hs = +∞.

Hence the space Hs with s ⩾ 2 is not the right space in order to obtain the global existence
of the solution.
Bressan and Constantin [6, 7] have proved the existence of two types of global solutions

for the Camassa�Holm equation (8) in H1. Using the formal energy equation (18), a similar
proof (of global existence of conservative and dissipative solutions in H1) for rB can be done
following [6, 7]. Another proof of existence of a dissipative solution, using the vanishing
viscosity method, is given by Chen and Tian [9], Xin and Zhang [20].
In this paper, the existence theorem will be developed for solutions not vanishing as ∣x∣ → ∞.

Note that a major di�erence between the rB (12) and the Camassa�Holm (8) equations is
that u2 does not appear in the non-local term of rB. This allows us to get global existence
for rB without asking u to be in L2(R). Moreover, in Theorem 7 below, we show that asking
ux ∈ L2 is optimal.
These remarks lead us to assert in the following the existence of two types of solutions of

rB: conservative and dissipative.

4.1. Global existence of conservative solutions. We start this subsection by de�ning a
conservative solution.

De�nition 4.1. A function u is called a conservative solution of rB if

● The function u belongs to Lip([0, T ], L2
loc) ∩L∞([0, T ], Ḣ1) for all T > 0.

● u satis�es the equation (12), with an initial data u(0, x) = u0(x).
● u satis�es (18) in the sense of distributions.

It means that it is a weak solution conserving the energy, as smooth solutions.

Remark 3. The regularity ux ∈ L∞([0, T ], L2) ensures that (16) is satis�ed. Thence, the
equalities (17) and (18) are equivalent.

Introducing the homogeneous Sobolev space Ḣ1(R) = {f ∶ ∥f ′∥2 < +∞}, we can state the
theorem:

Theorem 3. Let u0 ∈ Ḣ1(R) ∩ L∞(R). If there exists a Lipschitz function φ such that
φ′ ∈ L1(R) with u0 − φ ∈ H1(R), then there exists a global conservative solution u of (12),
such that u(t, ⋅) − φ ∈H1(R) for all t > 0. In addition, for all T > 0

lim
t↑T

inf
x∈R

ux(t, x) = −∞ Ô⇒ lim
t↓T

sup
x∈R

ux(t, x) = +∞, (33)
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and if u0 ∈H1, then for all t > 0

∫
R
[u(t, x)2 + `2 ux(t, x)2 ]dx = ∫

R
[u0(x)2 + `2 u′0(x)2 ]dx. (34)

Remark 4. This theorem covers also some solutions that do not have a limit when ∣x∣ → ∞,
such as φ(x) = u0(x) = cos ln(x2 + 1).
Remark 5. Note that (33) implies that the Oleinik inequality (21) cannot hold after the
appearance of singularities.

In the special case u0 ∈ H1(R), the proof can be done following Bressan and Constantin
[6]. In the general case, the energy is modi�ed as

E(t) = ∫
R
[u(t, x) − φ(x)]2 + `2 ux(t, x)2 dx, (35)

and the proof is done in steps as follows.

Step 1: Formal energy estimate on the x-variable. Let ũ(t, x) = u(t, x) −φ(x). The
equation (12) can be rewritten

ut + uux + `2 Px = ũt + uux + `2 Px = 0. (36)

Multiplying (36) by ũ, one gets

[ 1
2 ũ

2 ]
t
+ [ 1

3 u
3 − 1

2 φu
2 ]
x
+ 1

2 φx u
2 + `2 uPx − `2 φPx = 0. (37)

Adding (37) and (17), we obtain

1
2
[ũ2 + `2 u2

x]t + [1
3u

3 + 1
6φ

3 − 1
2φu

2 + 1
2`

2uu2
x + `2uP ]

x
= `2φPx − 1

2φx (ũ
2 + 2φũ) . (38)

Integrating over the real line, one gets (exploiting the triangular inequality)

1
2 E

′(t) ⩽ ∫
R
( `2 ∣φPx∣ + 1

2 ∣φ′∣ (2 ũ2 + φ2 ))dx. (39)

The Young inequality implies that

∥P (t) ∥p ⩽ 1
2 `2

∥G ∥pE(t) ∀p ∈ [1,∞], (40a)

∥Px(t) ∥p ⩽ 1
2 `3

∥G ∥pE(t) ∀p ∈ [1,∞]. (40b)

Using (39) and (40b), we obtain

E′(t) ⩽ ( `−1 ∥φ ∥∞ + 2 ∥φ′ ∥∞ )E(t) + ∥φ ∥2
∞ ∥φ′ ∥1. (41)

Then the Gronwall lemma ensures that E(t) does not blow up in �nite time.

Step 2: Equivalent system. As in [6], let ξ ∈ R and let y0(ξ) be de�ned by

∫
y0(ξ)

0
(1 + u′0

2 )dx = ξ, (42)

and let y(t, ξ) be the function2 de�ned by the equation

yt(t, ξ) = u(t, y(t, ξ)), y(0, ξ) = y0(ξ). (43)

Let also v = v(t, ξ) and q = q(t, ξ) be de�ned as

v
def= 2 arctan(ux), q

def= (1 + u2
x ) yξ, (44)

2It will turn out that y(t, ξ) is the characteristic of rB corresponding to y0(ξ), with speed u(t, y(t, ξ)).
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where ux(t, ξ) = ux(t, y(t, ξ)). Notice that

1

1 + u2
x

= cos2(v
2
) , ux

1 + u2
x

= sin(v)
2

,
u2
x

1 + u2
x

= sin2(v
2
) , ∂y

∂ξ
= q cos2(v

2
) . (45)

Integrating the last equality in (45), one obtains

y(t, ξ′) − y(t, ξ) = ∫
ξ′

ξ
q(t, s) cos2(v(t, s)

2
)ds. (46)

Using (45) and the change of variables x = y(t, ξ′), (46), P and Px can be written in the new
variables as

P (t, ξ) = 1

4 `
∫
R

exp(−∣y(t, ξ) − x∣
`

)u2
x(t, x)dx

= 1

4 `
∫
R

exp(−1

`
∣∫

ξ′

ξ
q(t, s) cos2(v(t, s)

2
)ds∣) q(t, ξ′) sin2(v(t, ξ

′)
2

)dξ′, (47)

Px(t, ξ) = 1

4 `2
(∫

+∞

y(t,ξ)
−∫

y(t,ξ)

−∞
) exp(−∣y(t, ξ) − x∣`)u2

x(t, x)dx

= (∫
+∞

ξ
−∫

ξ

−∞
) exp(− ∣∫

ξ′

ξ
q(t, s) cos2(v(t, s)

2
) ds

`
∣) q(t, ξ′) sin2(v(t, ξ

′)
2

) dξ′

4 `2
.

(48)

Then, a system equivalent to the rB equation is given by

yt = u, y(0, ξ) = y0(ξ), (49a)

ut = −`2 Px, u(0, ξ) = u0(y0(ξ)), (49b)

vt = −P (1 + cos(v)) − sin2(v/2), v(0, ξ) = 2 arctan(u′0 (y0(ξ))) , (49c)

qt = q (1
2 − P ) sin(v), q(0, ξ) = 1. (49d)

In order to prove Theorem 3, we prove �rst the global existence of the solution of the initial-
value problem (49), then we infer that this solution yields a conservative solution of rB.

Step 3: Local existence of the new system. Our goal is to prove that the system of
equations (49) is locally well-posed. The proof given in [6] for the Camassa�Holm equation
is slightly simpli�ed here.
We �rst solve a coupled 2x2 subsystem instead of a 3x3 subsystem in [6]. Let u0 be a

function such that u0 − φ ∈ H1, then y0 is well de�ned in (42). Note that the right-hand side
of (49) does not depend on y. Since P and Px depend only on v and q, the right-hand sides
of equations (49b), (49c) and (49d) do not depend on u. Also, the equations (49c) and (49d)
are coupled. Thus, we are left to show that the system of two equations

vt = −P (1 + cos v) − sin2 v

2
, v(0, ξ) = v0(ξ) = 2 arctanu′0 (y0(ξ)) , (50a)

qt = q (1
2 − P ) sin v, q(0, ξ) = q0(ξ) = 1. (50b)

is well de�ned in the space X
def= C([0, T ], L∞(R,R2)).
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Let U = (v, q), and let D ⊂X be the closed set satisfying U(0, ξ) = U0(ξ) and
1 /C ⩽ q(t, ξ) ⩽ C ∀(t, ξ) ∈ [0, T ] ×R, (51a)

∣{ξ, sin2 v(t,ξ)
2 ⩾ 1

2}∣ ⩽ C ∀t ∈ [0, T ], (51b)

where C > 0 is a constant. Then, for ξ1 < ξ2, we get from equations (51)

∫
ξ2

ξ1
q(ξ) cos2 v(ξ)

2
dξ ⩾ ∫

{ξ∈[ξ1,ξ2], sin2 v(t,ξ)
2 ⩽ 1

2}

C−1

2
dξ ⩾ [ξ2 − ξ1

2
− C

2
]C−1. (52)

Let Γ be de�ned as

Γ(ζ) = min{1, exp( 1

2 `
− ∣ζ ∣

2 `
C−1)} . (53)

Then, for (v, q) ∈D, the exponential terms in (47) and (48) are smaller than Γ(ξ − ξ′).
Let P (ξ, v, q) be de�ned by (47). If (v, q) ∈ D then, using Young inequality, ∂vP and ∂qP

are bounded, i.e., for {U, Ũ} ∈D we have

∥P (ξ,U) − P (ξ, Ũ) ∥X ≲ ∥U − Ũ ∥X , (54)

where the symbol ≲ means �less or equal� with a constant depending only on C and `. Then,
for T small enough, the Picard operator

(P(U))(t, ξ) def= U0 + ∫
t

0
(−(1 + cos v)P − sin2 v

2
, q (1

2 − P ) sin v) dτ, (55)

is a contraction from D to D. The local existence of the solution of the Cauchy problem (50)
follows at once.

Step 4: Global existence for the equivalent system. After proving the local existence
of the solution of system (50), an estimate of the quantity

∥ q(t) ∥∞ + ∥1 / q(t) ∥∞ + ∥ sin2 (v(t) /2) ∥
1
+ ∥ v(t) ∥∞, (56)

is needed to ensure that the solutions exist for all time. Let u be de�ned as

u(t, ξ) def= u0(y0(ξ)) − ∫
t

0
`2 Px(s, ξ)ds, (57)

and let y be the family of characteristics

y(t, ξ) def= y0(ξ) + ∫
t

0
u(s, ξ)ds, (58)

and, �nally, let φ(t, ξ) def= φ(y(t, ξ)). Our task here is to show that the modi�ed energy

Ẽ(t) = ∫
R
[(u − φ)2 cos2 v

2
+ `2 sin2 v

2
] q dξ (59)

does not blow-up in �nite time.
The system (49) implies that

(q cos2 v

2
)
t
= 1

2 q sin v, (q sin2 v

2
)
t
= qt − 1

2 q sin v = − q P sin v, (60)

while the equations (47) and (48) imply that

Pξ = q Px cos2 v

2
, `2 (Px)ξ = q P cos2 v

2
− 1

2 q sin2 v

2
. (61)
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From (49), (57) and (61), we have

(uξ − 1
2 q sin v)

t
= 0,

and, for t = 0, we have from (44) and (45)

uξ − 1
2 q sin v = ux

∂y
∂ξ − 1

2 sin v = 0.

Thus, as long as the solution of (49) is de�ned, the equality

uξ = 1
2 q sin v (62)

holds. Therefore, the equations (60), (61), (62) yield

[(u2 cos2 v

2
+ `2 sin2 v

2
) q ]

t
+ [2 `2 uP − 1

3 u
3 ]
ξ
= 0, (63)

which expresses conservation of energy in the (t, ξ)-variables when u+ = u− = 0, i.e., for φ = 0.
From (60), (62) and (58), we have

(q cos2 v

2
)
t
= uξ = (∂y

∂ξ
)
t

,

implying that the equality
∂y

∂ξ
= q cos2 v

2
, (64)

holds for the (t, ξ)-variables (note that the equality is true for t = 0 from (45)). Then, using
(58) and (64), we get

φt(t, ξ) = d

dt
φ(y(t, ξ)) = uφ′, φξ(t, ξ) = q cos2(v

2
)φ′, (65)

so, using (57), (49), (65) and (60), we obtain

[(φ2 − 2uφ) q cos2 v

2
]
t
+ [1

2 φu
2 + 1

2 φ (u − φ)2 − 1
6 φ

3 ]
ξ
=

2 `2 Px φq cos2 v

2
− 2uφξ (u − φ) + 1

2 φξ u
2 + (φ2 − 2uφ)uξ

+ φuuξ + 1
2 φξ (u − φ)2 + φ (u − φ)ξ(u − φ) − 1

2 φ
2φξ

= − φξ(u − φ)2 + 2 `2 Px φq cos2 v

2
− 2φφξ(u − φ). (66)

Adding (63) and (66), with the trivial relation 2φ (u − φ) ⩽ φ2 + (u − φ)2, then integrating
the result with respect of ξ, we get

Ẽ′(t) ⩽ ∫
R
(2 `2 ∣φPx∣ q cos2 v

2
+ ∣φξ ∣ (2 (u − φ)2 + φ2)) dξ. (67)

Using (64) and (65) with the change of variables x = y(t, ξ), then expoiting (40), one obtains

Ẽ′(t) ⩽ ∫
{ξ,cos v≠−1}

(2 `2 ∣φPx∣ + ∣φ′∣ (2 (u − φ)2 + φ2)) q cos2 v

2
dξ

= ∫
R
(2 `2 ∣φPx∣ + ∣φ′∣ (2 (u − φ)2 + φ2)) dx

⩽ ( `−1 ∥φ ∥∞ + 2 ∥φ′ ∥∞ )E(t) + ∥φ ∥2
∞ ∥φ′ ∥1,

where Px in the second equation is de�ned as Px = 1
2 Gx ∗ u2

x.
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From (35) and (59), and using the change of variables x = y(t, ξ), one can show easily that

E(t) = ∫
{ξ,cos v≠−1}

[(u − φ)2 cos2 v

2
+ `2 sin2 v

2
] q dξ ⩽ Ẽ(t). (68)

Thence, the uniform estimate of Ẽ(t) on any bounded interval [0, T ] follows by using Gronwall
lemma.
We can show now that the quantity (56) does not blow up in �nite time. Using Young

inequality, (47), (48) and (53), one obtains

∥P (t)∥p ⩽ 1
4 `3

∥Γ∥p Ẽ(t) ∀p ∈ [1,∞], (69a)

∥Px(t)∥p ⩽ 1
4 `4

∥Γ∥p Ẽ(t) ∀p ∈ [1,∞]. (69b)

The inequalities (69) are the identical estimates as (40), but in the (t, ξ)-variables. Using
(49d) and (69), we get

∣qt∣ ⩽ (1
2 + 1

4 `3
E(t)) q, (70)

implying that ∥q(t)∥∞ + ∥1 / q(t)∥∞ does not blow-up in �nite time. The equation (49c) and
(69) imply that ∥v(t)∥∞ remains bounded on any �nite interval [0, T ]. Also, the boundedness
of the energy Ẽ(t) and ∥1 / q(t) ∥∞ implies that ∥ cos2 (v(t) /2) ∥

1
remains bounded on any

interval [0, T ]. This completes the proof of the global existence.

Step 5: Global existence of a conservative solution. Here, we show that the global
solution of the equivalent system (49) yields a global solution of the rB equation.
Let u and y be de�ned by (57) and (58), respectively. We claim that the solution of rB

can be written as

u(t, x) = u(t, ξ), y(t, ξ) = x. (71)

Using (62), (65) and the change of variables x = y(t, ξ) with (64), one obtains

∣u(t, ξ) − φ(t, ξ)∣2 ⩽ 2 ∫
R
∣u − φ∣ ∣uξ − φξ ∣dξ

⩽ 2 ∫
R
∣u − φ∣ q (sin

v

2
cos

v

2
+ φ′ cos2 v

2
) dξ

⩽ 2E(t) + ∥φ′∥2
2,

implying that ∥u(t)∥∞ is uniformly bounded on any bounded interval [0, T ]. Therefore, from
(58), we get

y0(ξ) − ∥u(t)∥∞ t ⩽ y(t, ξ) ⩽ y0(ξ) + ∥u(t)∥∞ t, (72)

and thus

lim
ξ→±∞

y0(t, ξ) = ±∞. (73)

The equation (64) implies that the mapping ξ ↦ y(t, ξ) is non-decreasing and, if for ξ < ξ′

we have y(t, ξ) = y(t, ξ′), then sin(v) = 2 cos(v/2) sin(v/2) = 0 between ξ and ξ′ (see eq. 64).
Integrating (62) with respect to ξ, one obtains that u(t, ξ) = u(t, ξ′), so u is well-de�ned in
(71).
Proceeding as in [6, section 4], we can prove that for each interval [t1, t2] there exists a

constant C = C(`, t2) such that, ∀t ∈ [t1 , t2 − h],

∫
R
∣u(t + h,x) − u(t, x)∣2dx ⩽ C h2, (74)
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and then u satis�es
d

dt
u(t, y(t, ξ)) = −Px(t, ξ). (75)

The inequality (74) implies that u belongs to Lip([0, T ], L2
loc). Straightforward calculations

show that, for x = y(t, ξ) and for cos(v(t, ξ)) ≠ 1, we have

ux(t, x) = tan(v(t, ξ)
2

) = sin(v(t, ξ))
1 + cos(v(t, ξ)) . (76)

Using the change of variables x = y(t, ξ) with (64), one can show that u is a global solution
of rB.
In order to prove (17), let ψ be a test function and let ψ̃(t, ξ) = ψ(t, y(t, ξ)). Multiplying

(60b) by ψ̃ and integrating the result with respect to ξ, one obtains

0 = ∫
+∞

0
∫
R
[(q sin2 v/2)

t
+ q P sin v] ψ̃ dtdξ,

= ∫
+∞

0
∫
R
[−ψ̃t q sin2 v/2 + ψ̃ q P sin v]dtdξ + ∫

R
ψ̃(0, x) sin2 v(0, ξ)/2 dξ,

= ∫ ∫
{cos v>−1}

[−ψ̃t q sin2 v/2 + ψ̃ q P sin v]dtdξ + ∫
{v0>−π}

ψ̃(0, x) sin2 v(0, ξ)/2 dξ,

+ ∫ ∫
{cos v=−1}

−q ψ̃t dtdξ + ∫
{v0=−π}

ψ̃(0, x)dξ. (77)

It is clear from (49c) that

∣{ξ, cos v(t, ξ) = −1}∣ = 0 for almost all t ⩾ 0. (78)

Using that ψ̃t = ψt + uψx and the change of variables x = y(t, ξ), the equation (17) follows in
the sense of distributions.
Finally, let u0 ∈H1. The equation (63) implies that

d

dt
∫
R
(u2 cos2 v(t,ξ)

2 + `2 sin2 v(t,ξ)
2 ) q(t, ξ)dξ = 0, (79)

hence Ẽ(t) = Ẽ(0). In addition, using the change of variables x = y(t, ξ) with (64) and (76),
one obtains

∫
R
u(t, x)2 + `2 ux(t, x)2 dx = ∫

{ξ, cos v(t,ξ)>−1}
(u2 cos2 v(t,ξ)

2 + `2 sin2 v(t,ξ)
2 ) q(t, ξ)dξ.

(80)
Using (78), the conservation of the energy (34) follows.
We end this demonstration with the proof of the property (33). The equation (49c) im-

plies that v is decreasing in time. Further, if v(T, ξ) = −π (corresponding to an in�nite value
of ux, see (76) above) then vt(T, ξ) = −1, meaning that the value of v(t, ξ) crosses −π and
v(t, ξ) < −π for all t > T . Then, (33) follows using (76). �

4.2. Global existence of dissipative solutions. We start this subsection by de�ning dis-
sipative solutions, this kind of solutions being very important for applications. We note in
passing that when ` goes to zero, we expect to recover the entropy solution of the Burgers
equation. However, in section 5, we show that the limit (up to a subsequence) is a solution
of the Burgers equation with a remaining forcing term.

De�nition 4.2. A function u is called a dissipative solution of rB if
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● The function u belongs to Lip([0, T ], L2
loc) ∩L∞([0, T ], Ḣ1) for all T > 0;

● u satis�es the equation (12), with an initial data u(0, x) = u0(x);
● u satis�es the inequality

[ 1
2 u

2 + 1
2 `

2 u2
x ]t + [ 1

3 u
3 + `2 uP + 1

2 `
2 uu2

x ]x ⩽ 0, (81)

in the sense of distributions.
● There exists a constant C such that u satis�es the Oleinik inequality

ux(t, x) ⩽ C / t ∀t, x.
Remark 6. Following [7], we construct in Theorem 4 a dissipative solution of rB with C = 2.
The entropy solutions of the classical Burgers equation satisfy the Oleinik inequality with
C = 1.

As mentioned above, when v crosses the value −π, ux jumps from −∞ to +∞, which means
that the Oleinik inequality cannot be satis�ed. Thus, to enforce the Oleinik inequality, the
value of v is not allowed to leave the interval [−π,π[. For that purpose, the system (50) is
modi�ed (as in [7]) to become

ut = −`2 Px, (82a)

vt =
⎧⎪⎪⎨⎪⎪⎩

−P (1 + cos v) − sin2(v/2), v > −π,
0 v ⩽ −π,

(82b)

qt =
⎧⎪⎪⎨⎪⎪⎩

q (1
2 − P ) sin(v), v > −π

0 v ⩽ −π.
(82c)

and P and Px are also modi�ed as

P (t, ξ) = 1

4 `
∫
R

exp{−1

`
∣ ∫

ξ′

ξ
q̄(t, s) cos2

v(t, s)
2

ds∣} q̄(t, ξ′) sin2 v(t, ξ′)
2

dξ′, (83)

Px(t, ξ) = 1

4 `2
(∫

+∞

ξ
−∫

ξ

−∞

) exp{−1

`
∣ ∫

ξ′

ξ
q̄(t, s) cos2

v(t, s)
2

ds∣} q̄(t, ξ′) sin2 v(t, ξ′)
2

dξ′, (84)

where q̄(t, ξ) = q(t, ξ) if v(t, ξ) > −π and q̄(t, ξ) = 0 if v(t, ξ) ⩽ −π. The system (82) is the key
tool to prove the following theorem.

Theorem 4. Let u0 ∈ Ḣ1(R) ∩ L∞(R). If there exist a Lipschitz function φ such that
φ′ ∈ L1(R) and with u0 − φ ∈ H1(R), then there exists a global dissipative solution u of the
equation (12), such that u(t, ⋅) − φ ∈H1(R) for all t > 0. In addition, for all t > 0

ux(t, x) ⩽ 2 / t (t, x) ∈ R+ ×R, (85)

and if u0 ∈H1, then for all t > 0

∫
R
[u(t, x)2 + `2 ux(t, x)2 ]dx ⩽ ∫

R
[u0(x)2 + `2 u′0(x)2 ]dx. (86)

Remark 7. Due to the loss of the Oleinik inequality (cf. Remark 5), the system (49) is
slightly modi�ed to (82) in order to obtain dissipative solutions of rB that satis�es the Oleinik
inequality (85).

Remark 8. In general, if the initial datum satis�es u′0 ⩽ M ∈ R ∪ {+∞}, then the Oleinik
inequality (85) can be improved as

ux(t, x) ⩽ 2M / (Mt + 2) (t, x) ∈ R+ ×R, (87)
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as shown in (97) below.

The idea of the proof is similar to Theorem 3 above and it is done in several steps:

Step 1: Existence of a solution. As in the proof of Theorem 3, it su�ces to show
that (82b) and (82c) are locally well posed in the domain D ⊂X, D being de�ned below and

X
def= C([0, T ], L∞(R,R2)).
Note that if v is near −π the right-hand side of (82b) is discontinuous. To avoid this

discontinuity, the system (82) is replaced, as in [7], by

Ut(t, ξ) = F (U(t, ξ)) + G(ξ,U(t, ⋅)), U = (v, q), (88)

with

F (U) def=
⎧⎪⎪⎨⎪⎪⎩

(− sin2 v
2 ,

1
2 q sin v) v > −π

(−1,0) v ≤ −π.
, G(U) def=

⎧⎪⎪⎨⎪⎪⎩

(−P (1 + cos v),−P q sin v) v > −π
(0,0) v ≤ −π.

.

Note also that, as long as the solution to (88) is well de�ned, replacing v by max{−π, v}
gives a solution of the equations (82b) and (82c). In the rest of this step, our aim is to show
that the system (88) is locally well-posed. Let δ ∈]0, 2π

3 ] and let Λ be de�ned by

Λ
def= { ξ, v0(ξ) ∈ ] − π, δ − π] }. (89)

The equation (88) implies that, if v ∈ ] − π, δ − π] ⊂ ] − π, −π3 ], then vt ⩽ −
1
2 . Let D ⊂ X

satisfy U(0, ξ) = U0(ξ) and
1 /C ⩽ q(t, ξ) ⩽ C ∀(t, ξ) ∈ [0, T ] ×R, (90a)

∣{ ξ, sin2 (v(t, ξ) /2) ⩾ 1
2
}∣ ⩽ C ∀t ∈ [0, T ], (90b)

∥U(t) − U(s) ∥∞ ⩽ C ∣t − s∣ ∀t, s ∈ [0, T ], (90c)

v(t, ξ) − v(s, ξ) ⩽ − t−s
2 ∀ξ ∈ Λ, 0 ⩽ s ⩽ t ⩽ T, . (90d)

Taking (v, q) ∈ D and using (69), one gets that the right-hand sides of (82b) and (82c) are
bounded. However, the inequality (54) is no longer true and we have instead

∥P (U) − P (Ũ)∥∞ ≲ ∥U − Ũ∥∞ + ∣{ ξ, (v(ξ) + π)(ṽ(ξ) + π) < 0}∣ , (91)

which implies that
∥F (U) − F (Ũ))∥∞ ≲ ∥U − Ũ∥∞ , (92)

∥G(U) − G(Ũ))∥∞ ≲ ∥U − Ũ∥∞ + ∣{ξ, (v(ξ) + π)(ṽ(ξ) + π) < 0}∣. (93)

In order to estimate the second term of the right-hand side of the last equation, the crossing
time τ is de�ned as

τ(ξ) def= sup {t ∈ [0, T ], v(t, ξ) > −π}. (94)

Note that the equation (90c) implies that ∣v(t, ξ) − v0(ξ)∣ ⩽ C t. So, if ξ ∉ Λ then

min{τ(ξ), τ̃(ξ)} ⩾ δ /C.
Taking T small enough (T < δ/C) and using (90d), one obtains

∫
T

0
∣{ξ, (v(τ, ξ) + π)(ṽ(τ, ξ) + π) < 0}∣ dτ ⩽ ∫

Λ
∣τ(ξ) − τ̃(ξ)∣ dξ

⩽ 2 ∣Λ ∣ ∥U − Ũ∥∞ .
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Now, the Picard operator

(P(U))(t, ξ) = U0 + ∫
t

0
[F (U) + G(U)] dτ, (95)

satis�es

∥P(U) − P(Ũ)∥∞ ⩽ K (T + ∣Λ ∣) ∥U − Ũ∥∞ , (96)

where K depends only on C and `. Since sin2 v0
2 ∈ L1, by choosing δ > 0 small enough, one

can make ∣Λ∣ arbitrary small. Choosing also T small enough, one obtains the local existence
of the solution of the system (88), yielding a solution of (82). The rest of the proof of the
existence can be done following the proof of Theorem 3.

Step 2: Oleinik inequality and the dissipation of the energy. The equation (82b)
implies that if v(0, ξ) ⩽ 0, then for all t ⩾ 0 v(t, ξ) remains in [−π,0]. If v0(ξ) ∈]0, π[ then, as
long as v is positive, the following inequality holds

[arctan
v

2
]
t
⩽ −1

2 arctan2 v

2
.

This implies that, if arctan
v0(ξ)

2 ⩽M , then

ux = arctan
v(t, ξ)

2
⩽ 2M

Mt + 2
. (97)

The Oleinik inequality (85) follows taking M = +∞ and using (76).
In order to prove the dissipation of the energy (81), let ψ be a non-negative test function,

then we follow the same computations in the proof of Theorem 3. Since (78) is no longer true
for the system (82), one can obtain from (77) that

∬
[0,+∞[×R

[−u2
xψt − uu2

xψx + uxP ] dtdx −∫
R

u′20 (x)ψ(0, x)dx

= − ∫
{τ(ξ)<+∞}

q(τ(ξ), ξ)ψ̃(τ(ξ), ξ)dξ ⩽ 0,

where τ(ξ) is the crossing time de�ned as τ(ξ) def= sup {t ⩾ 0, v(t, ξ) > −π}. Since (16) is
satis�ed (see Remark 3), the dissipation of the energy (81) follows.
If u0 ∈ H1, as in the last step of the proof of Theorem 3, one can show that (79) and

(80) hold for the solution of (82), while the measure in (78) is not always zero. Then, the
dissipation of the energy (86) follows. �

5. The limiting cases `→ 0 and `→ +∞ for dissipative solutions

Taking formally ` = 0, the rB equation becomes the classical Burgers equation, and letting
` → +∞ it becomes the Hunter�Saxton equation. In this section, we study the compactness
of the dissipative solutions when taking `→ 0 and `→ +∞.

Let the initial datum u0 be taken in H1, with u′0 ∈ L1 and M
def= supx∈R u

′
0(x) < +∞. Let

also u` be the dissipative solution of the rB equation given in Theorem 4. In order to take
the limit, an estimate on the total variation of u` is needed. For that purpose, the following
Lemma is given
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Lemma 1. [BV estimate] If u′0 satis�es the conditions of Theorem 4 with u′0 ∈ L1 and
u′0(x) ⩽M ∀x, then for all t ∈ R+

TVu`(t, ⋅) = ∥u`x(t, ⋅)∥1
⩽ ∥u′0∥1

(Mt + 2

2
)

2

. (98)

Proof. We commence this proof by a formal computation on ∥u`x(t, ⋅)∥1. Multiplying (15) by

s
def= sgn(u`x) we have ∣u`x∣t + (u`u`x)xs = (u`x

2/2 − P) s. Due to Saks' lemma [19], the integral

∫R(u`u`x)xsdx equals to zero. Using that P − u`x
2/2 = `2Pxx and the Oleinik inequality (85)

one obtains

d

dt
∫
R
∣u`x∣dx = ∫

R
(1

2 u
`
x

2 − P ) s dx

= ∫
{u`x ⩾ 0}

(1
2 u

`
x

2 − P )dx + ∫
{u`x < 0}

(P − 1
2 u

`
x

2)dx

= 2 ∫
{u`x ⩾ 0}

(1
2 u

`
x

2 − P )dx + `2 ∫
R
Pxx dx

⩽ 2M

Mt + 2
∫
R
∣u`x∣ dx. (99)

Thus, the result follows by Gronwall's lemma.
The Saks lemma is used for smooth solutions. If u is not smooth enough, the same estimates

can be done on the ξ−variable in the system (82). For v ∈] − π,π[, the equation (62) implies

s̃
def= sgn(u`ξ) = sgn(sin(v`)) = sgn(sin(v

`

2
)), cos(v

`

2
) ⩾ 0. (100)

Note that tan(v`/2) ⩽ tan(v0/2) = 2M/(Mt + 2) from (97). Di�erentiating (82a) w.r.t ξ,
multiplying by s̃ � and using (61), (62) and sin v = 2 sin(v/2) cos(v/2) � one gets

d

dt
∫
R
∣u`ξ ∣ dξ = −`2∫

R
s̃ (Px)ξ dξ

= −`2∫
{s̃ > 0}

(Px)ξ dξ + `2 ∫
{s̃ < 0}

(Px)ξ dξ

= −2 `2 ∫
{s̃ > 0}

(Px)ξ dξ + `2 ∫
R
(Px)ξ dξ

= −2 ∫
{s̃ > 0}

(q` P cos2 v
`

2
− 1

2q
` sin2 v

`

2
) dξ

⩽ ∫
{s̃ > 0}

q` sin
v`

2
cos

v`

2
tan

v`

2
dξ

⩽ 2M

Mt + 2
∫
R
∣u`ξ ∣ dξ. (101)

Gronwall lemma then implies that

∥uξ∥1 ⩽ ∥(u0)ξ∥1 (Mt + 2

2
)

2

. (102)

Note that the last inequality is on the ξ−variable. Using that the application ξ ↦ y(t, ξ) is

not decreasing for all t and using that TVf = ∥f ′∥1 for smooth solutions (f ∈W 1,1
loc ), the result

follows. �
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5.1. The limiting case ` → 0. The goal of this subsection is to show that when ` → 0, the
dissipative solution u` converges (up to a subsequence) to a function u satisfying the Burgers
equation with a source term:

ut + 1
2
[u2]

x
= −µx, (103)

where µ is a measure such that 0 ⩽ µ ∈ L∞([0,+∞[,M1). In the proposition 3 below, we
show that the measure µ is zero before the appearance of singularities. The question whether
or not µ is zero after singularities is open, in general. The following theorem can be stated

Theorem 5. Let u0 ∈ H1, such that u′0 ∈ L1 and u′0(x) ⩽ M ∀x, then there exists u ∈
L∞([0, T ], L1(I)) ∩ L∞([0, T ],BV (R)) for all T > 0, where I ⋐ R, such that there exists a
subsequence of u` (also noted u`) such that

u`
`→0ÐÐ→ u in L∞([0, T ], L1(I)), (104)

u satisfying the equation (103). Moreover, u satis�es the Oleinik inequality

ux(t, x) ⩽
2M

Mt + 2
in D′(R). (105)

Remark 9. If µ = 0 then, due to the Oleinik inequality, u is the unique entropy solution of
the Burgers equation.

In order to prove Theorem 5, the following de�nition and lemma are needed:
Let I ⊂ R be a bounded interval and let

W (I) def= {f ∈ D′(I), ∃F ∈ L1(I) such that F ′ = f} , (106)

where the norm of the space W (I) is given by

∥f∥W (I)
def= inf

c ∈R
∥F + c ∥L1(I) = min

c ∈R
∥F + c ∥L1(I). (107)

Lemma 2. The space W (I) is a Banach space and the embedding

L1(I) ↪ W (I), (108)

is continuous.

Proof. Let (fn)n∈N be a Cauchy sequence in W (I) and let Fn be a primitive of fn. From

the de�nition of the norm (107), there exists a constant cn such that (F̃n − cn)n∈N (where

F̃n = Fn + cn) is a Cauchy sequence in L1(I). Let F̃ be the limit of F̃n in L1(I). Then
∥fn − F̃ ′∥W (I) ⩽ ∥F̃n − F̃ ∥L1(I), (109)

implying that W (I) is a Banach space. Now, the continuous embedding can be proved.
If f ∈ L1(I), then F (x) − F (a) = ∫ xa f(y)dy for almost all x, a ∈ I. Therefore,

∥f∥W (I) ⩽ ∫
I
∣F (x) − F (a)∣ dx ⩽ ∣I∣∫

I
∣f(y)∣ dy, (110)

which ends the proof. �
The previous lemma and Helly's selection theorem imply that

W 1,1(I) ↪ L1(I) ↪ W (I), (111)

where the �rst embedding is compact and the second is continuous.
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Proof of Theorem 5: Let the compact set [0, T ] × I ⊂ R+ ×R. Supposing that ` ⩽ 1 then,
from (86), the dissipative solutions of rB satis�es

∥u`∥2
2 ⩽ ∥u0∥2

H1 , `2∥P ∥1 = 1
2 `

2 ∥u`x∥2
2 ⩽ 1

2 ∥u0∥2
H1 , (112)

implying that u` is uniformly bounded on L∞([0, T ], L2(R)). Subsequently, it is also uni-
formly bounded on L∞([0, T ], L1(I)). Because Lemma 1 yields that u` is bounded on

L∞([0, T ],W 1,1(I)), and the equation (112) implies that 1
2u

` 2 + `2P is uniformly bounded

on L∞([0, T ], L1(I)), then since u`t = −(1
2u

` 2 + `2P)
x
, (107) implies that u`t is bounded on

L∞([0, T ],W (I)). Then, using the Aubin theorem, the compactness follows.
The quantity `2P is non-negative and bounded in L∞([0,+∞[, L1(R)), implying the ex-

istence of a non-negative measure µ ∈ L∞([0,+∞[,M1(R)) such that `2P converges (up to
a subsequence) weakly to µ. The equation (103) follows taking the limit ` → 0 in the weak
formulation of (12). Finally, taking the limit in the weak formulation of (87), we can prove
that ux(t, x) ⩽ 2M/(Mt + 2). �
The question whether or not µ = 0 is open. The following proposition shows that when

`→ 0 for smooth solutions (i.e., before appearance of singularities), u` converges to the unique
solution u of the classical Burgers equation.

Proposition 3. If u0 is in Hs ∩BV with s ⩾ 3, then for t < 1/ supx ∣u′0(x)∣ we have

µ = 0. (113)

Proof. From Theorem 2 and Remark 2, we can �nd a uniform upper bound on u`x in the space
L∞([0, T ], L∞(R)) with T < T ∗, which implies that `2P → 0. �

5.2. The limiting case `→ +∞. The goal of this subsection is to show that, when `→ +∞,
the dissipative solution u` converges (up to a subsequence) to a function u that satis�es:

[ut + 1
2(u

2)x]x = ν, (114)

where 0 ⩽ ν ∈ L∞([0,+∞[,M1). In proposition 4 below, we show that before the appearance
of singularities, the measure ν = u2

x/2. The question whether or not ν = u2
x/2 in general is

posed. We have the following theorem:

Theorem 6. Let u0 ∈ H1 such that u′0 ∈ L1 and u′0(x) ⩽ M ∀x, then there exists u ∈
C([0, T ], L1(I)) ∩ L∞([0, T ],BV (R)) for all T > 0, where I ⋐ R, such that there exists a
subsequence of u` (noted also u`) and such that

u`
`→+∞ÐÐÐ→ u in C([0, T ], L1(I)), (115)

u satisfying the equation (114). Moreover, u satis�es the Oleinik inequality

ux(t, x) ⩽
2M

Mt + 2
in D′(R). (116)

Remark 10. If ν = 1
2u

2
x then u is a dissipative solution of the Hunter�Saxton equation [5].

Proof. Let the compact set [0, T ] × I ⊂ R+ ×R. Supposing that ` ⩾ 1 then, from (86), the
dissipative solution of rB satis�es

∥P ∥1 = 1
2 ∥u`x∥2

2 ⩽ 1
2 ∥u0∥2

H1 . (117)
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Using Lemma 1, one gets that u` is bounded in L∞([0, T ] ×R) and

∫
R
∣u`(t, x + h) − u`(t, x)∣dx ⩽ ∥u′0∥1

(MT + 2

2
)

2

∣h∣. (118)

Integrating (12) between t1 and t2, one obtains

u`(t1, x) − u`(t2, x) = ∫
t2

t1
(u` u`x + `2 Px ) dt. (119)

Using Lemma 1, inequality (117) and

∥Px∥∞ ⩽ 1
4 `

−2 ∥u`x∥2
2,

we can show that there exists B = B(T,I) such that

∫
I
∣u`(t2, x) − u`(t1, x)∣dx ⩽ B ∣t2 − t1∣. (120)

The compactness follows using Theorem A.8 in [13].

The quantity 1
2 u

`
x

2
is non-negative and bounded in L∞([0,+∞[, L1(R)), which implies

that there exists a non-negative measure ν ∈ L∞([0,+∞[,M1(R)) such that P converges (up
to a subsequence) weakly to ν. The equation (114) follows by taking the limit `→ +∞, in the
weak formulation of (15). Finally, taking the limit in the weak formulation of (87), we can
prove that ux(t, x) ⩽ 2M

Mt+2 . �
The question whether or not the equality always holds ν = u2

x/2 is open. The following
proposition shows that, when ` → +∞ for smooth solutions (before appearance of singulari-
ties), u` converges to a dissipative solution u of the Hunter�Saxton equation [5].

Proposition 4. If u0 is in Hs ∩BV with s ⩾ 3, then for t < 1/ supx ∣u′0(x)∣ we have

ν = 1
2 u

2
x. (121)

Proof. From Theorem 2 and Remark 2, we can �nd a uniform upper bound on u`x in the space
L∞([0, T ], L∞(R)) with T < T ∗, which implies that the convergence u`x to ux is strong. Thus,

u`x
2 → u2

x. �

6. Optimality of the Ḣloc space

In the previous sections (see Proposition 2, Theorem 2 and Theorem 4), we have shown,
on the one side, that even if the initial datum u0 is smooth, there exists a blow-up �nite time
T ∗ > 0 such that

inf
x∈R

ux(t, x) > −∞ ∀t < T ∗, inf
x∈R

ux(T ∗, x) = −∞. (122)

On the other side, the Oleinik inequality (85) shows that, even if the initial datum is not
Lipschitz, the derivative of the solution becomes instantly bounded from above, i.e.

sup
x∈R

u′0(x) = +∞, sup
x∈R

ux(t, x) < +∞ ∀t > 0. (123)

Remark 11. If the derivative of the initial datum is bounded from below and not from above,
it will be instantly bounded from both sides 3 and, after T ∗, it will be bounded from above and
not from below.

3Note that the gain of regularity (123) is instantaneous, while the loss of regularity (122) needs some time.
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This remark is important to prove that the space Ḣ1
loc is the best space to obtain global

(in time) solutions, the optimality being in the following sense:

Theorem 7. Let g be a non-negative and locally bounded function, such that g(u) → +∞
when ∣u∣ → +∞. Then there exist u0 ∈ H1 ∩W 1,∞, T > 0 and a compact K, such that there
exists a solution u of (12) satisfying

∫
R
u′0(x)2 g(u′0(x))dx < +∞, ∫

K
ux(T,x)2 g(ux(T,x))dx = +∞. (124)

Thus, we cannot expect that u belongs to W 1,p for p > 2 for all time. In other words, the
space H1 =W 1,2 is optimal for the equation (12).
Before proving Theorem 7, let u0 ∈ Hs with s big enough, and let u be a solution of rB

with u(0, x) = u0(x). The main quantity is the following integral

∫
K
u2
x(T,x) g(ux(T,x))dx, (125)

where T > 0 and K is a compact set. Using the change of variable x = y(T, ξ), one gets

∫
K
u2
x(T,x) g(ux(T,x))dx = ∫

K′
q sin2(v /2) g(tan(v /2))dξ, (126)

where K′ is another compact. From previous sections, the quantity q is always bounded, which
implies that if g is bounded then (125) is bounded. If g is not bounded (see the conditions of
Theorem 7), then the quantity (125) depends on the behaviour of the derivative ux at time T .
The proof of Theorem 7 is done by building u(T, ⋅) as a function of g, such that the quantity
(125) is in�nite. Then, we use a backward system to go back in time and �nd a Lipschitz
initial datum.

Proof of Theorem 7: Let g satisfy the conditions of Theorem 7 and let x0 ∈ R, then there
exists a function ū ∈H1(R) ∩ C∞(R/{x0}) such that

∫
V(x0)

ū′(x)2 g(ū′(x))dx = +∞, ū′(x) ⩽ C, (127)

where V(x0) denotes a neighbourhood of x0.
The idea of the proof is to use a backward (in time) system such that u(T,x) = ū(x). The

initial datum u0 is the unknown. To simplify the presentation, the conservative system (49)
is used. With this system, we will obtain a local (in time) Oleinik inequality, which is enough
for our construction. A similar proof can be used with the dissipative system (50) with a
global Oleinik inequality. The built solution in the interval [0, T [ is Lipchitz, so both systems
(49), (50) yield the same solution.
In order to build u0, we use the forward existence proof given in Section 4. One can use

the change of variable t→ −t. The conservative system (49) becomes then

yt = −u, y(−T, ξ) = ȳ(ξ), (128a)

ut = `2 Px, u(−T, ξ) = ū(ȳ(ξ)), (128b)

vt = P (1 + cos(v)) + sin2(v/2), v(−T, ξ) = 2 arctan(ū′ (ȳ(ξ))) , (128c)

qt = − q (1
2 − P ) sin(v), q(−T, ξ) = 1, (128d)

where t ∈ [−T,0] and ȳ is de�ned as in (42), replacing u0 by ū.
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The proof of a local existence of solutions can be done as in Section 4. Due to the change
of variable t→ −t, the Oleinik inequality becomes

ux(t, x) ⩾ 2/(t + T ) (129)

for t > −T and t close enough to −T . The proof of this Oleinik inequality proceeds as in Section
4 using the equation (128c), which implies that the derivative of the solution is bounded from
below. As in Remark 11, since ū′ = ux(−T, ⋅) ⩽ C, the derivative of the solution remains
bounded from above for t > −T and t close enough to −T . Taking T > 0 small so the solution
is Lipschitz until t = 0, and thus

∫
R
ux(0, x)2 g(ux(0, x)′)dx < +∞.

The result follows directly by using the change of variable t→ −t. �

7. Conclusion

In this paper, we have studied a regularisation of the inviscid Burgers equation (12). For
a smooth initial datum, the regularised equation (12) has a unique smooth solution locally
in time. After the blow-up time, the solution is no longer unique, nor smooth. At least
two types of solutions exist: conservative and dissipative solutions. We �nd that the built
dissipative solutions are more interesting because they satisfy an Oleinik inequality (85),
which plays an important role in showing that solutions converge (up to a subsequence) when
` → 0 and when ` → ∞ (` the regularising positive parameter). Before the appearance of
singularities, the limit when ` → 0 (respectively ` → ∞) is a smooth solution of the inviscid
Burgers (resp. the Hunter�Saxton) equation. After the breakdown time, it remains open to
determine whether the Burgers (resp. the Hunter�Saxton) equation holds in the limit without
a remaining forcing term.
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Appendix A. Comments on the conservative and dissipative solutions

As shown above, the major di�erence between the conservative system (49) and the dissi-
pative system (82) is that the system (49) allows v to cross the value −π, causing a jump of
ux from −∞ to +∞ (see eq. (76)), which implies (33), thence the loss of the Oleinik inequality
(Remark 5). But, the value v = −π is a barrier that cannot be crossed for the system (82).
It follows that if v(t, ξ0) = −π at a time t, then v(τ, ξ0) = −π for all times τ ⩾ t (see �gure 1).
This property is important to obtain the Oleinik inequality (85), which yields the dissipation
of the energy (86).
The �gure 1 shows the domains where v = −π for the systems (49) and (82).

Note that the dissipative solution of rB has similar properties (85) and (86) as the entropy
solution of the classical inviscid Burgers equation that are

ux(t, x) ⩽ 1/t, ∥u∥2 ⩽ ∥u0∥2 . (130)

Because of this similarity, the dissipative solutions of rB are more likely to converge to the
entropic solution of the Burgers equation when `→ 0, but this result remains to be proven.
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v < −π

v = −π
v > −π

System (49) (conservative solution)

T ∗

ξ

t

T ∗

t ξ+ξ−

v = −π

v > −π

System (82) (dissipative solution)

ξ

t

Figure 1. Regions where v = −π.

References

[1] T. B. Benjamin, J. L. Bona, and J. J. Mahhony. Model equations for long waves in
nonlinear dispersive systems. Phil. Trans. R. Soc. Lond. A, 272:47�78, 1972.

[2] H. S. Bhat and R. C. Fetecau. A Hamiltonian regularization of the Burgers equation. J.
Nonlinear Sci., 16(6):615�638, 2006.

[3] H. S. Bhat and R. C. Fetecau. Stability of fronts for a regularization of the Burgers
equation. Quart. App. Math., 66(3):473�496, 2007.

[4] H. S. Bhat and R. C. Fetecau. The Riemann problem for the Leray�Burgers equation.
J. Di�. Eq., 246:3957�3979, 2009.

[5] A. Bressan and A. Constantin. Global solutions of the Hunter-Saxton equation. SIAM
J. Math. Anal., 37(3):996�1026, 2005.

[6] A. Bressan and A. Constantin. Global conservative solutions of the Camassa�Holm
equation. Arch. Rat. Mech. Anal., 183(2):215�239, 2007.

[7] A. Bressan and A. Constantin. Global dissipative solutions of the Camassa�Holm equa-
tion. Anal. & Appl., 5(1):1�27, 2007.

[8] R. Camassa and D. D. Holm. An integrable shallow water equation with peaked solitons.
Phys. Rev. Lett., 71(11):1661�1664, 1993.

[9] L. Chen and L. Tian. On the weak solution to the general shallow water wave equation.
Int. J. Nonlin. Sci., 2:194�200, 2009.

[10] D. Clamond and D. Dutykh. Non-dispersive conservative regularisation of nonlinear
shallow water (and isentropic Euler) equations. Comm. Nonlin. Sci. Numer. Simul., 55:
237�247, 2018.

[11] D. Clamond, D. Dutykh, and D. Mitsotakis. Conservative modi�ed Serre�Green�Naghdi
equations with improved dispersion characteristics. Comm. Nonlin. Sci. Numer. Simul.,
45:245�257, 2017.

[12] A. Degasperis and M. Procesi. Asymptotic integrability. In Symmetry and Perturbation
Theory, pages 23�37. World Scienti�c, 1999.

[13] H. Holden and N. H. Risebro. Front Tracking for Hyperbolic Conservation Laws, volume
152 of Applied Mathematical Sciences. Springer-Verlag, Berlin Heidelberg, 2nd edition,
2015.

[14] J. K. Hunter and R. Saxton. Dynamics of director �elds. SIAM J. Appl. Math., 51(6):
1498�1521, 1991.

[15] J. K. Hunter and Y. Zheng. On a completely integrable nonlinear hyperbolic variational
equation. Physica D, 79(2�4):361�386, 1994.



24 GUELMAME ET AL.

[16] S. Junca and B. Lombard. Analysis of a Sugimoto's model of nonlinear acoustics in an
array of Helmholtz resonators. hal-02186692.

[17] J.-L. Liu, R. L. Pego, and Y. Pu. Well-posedness and derivative blow-up for a disper-
sionless regularized shallow water system. Nonlinearity, to appear. arXiv:1810.06096,
2019.

[18] Y. Pu, R. L. Pego, D. Dutykh, and D. Clamond. Weakly singular shock pro�les for
a non-dispersive regularization of shallow-water equations. Comm. Math. Sci., 16(5):
1361�1378, 2018.

[19] S. Saks. Theory of the integral. Warsaw, 1937.
[20] Z. Xin and P. Zhang. On the weak solutions to a shallow water equation. Comm. Pure

Appl. Math., 53(11):1411�1433, 2000.
[21] Z. Yin. On the blow-up scenario for the generalized Camassa�Holm equation. Comm.

Partial Di�. Eqns., 29(5-6):867�877, 2004.
[22] Z. Yin. On the Cauchy problem for the generalized Camassa�Holm equation. Nonlinear

Analysis: Theory, Methods & Applications, 66(2):460�471, 2007.

(Billel Guelmame) Université Côte d'Azur, CNRS, Inria, LJAD, France.
Email address: billel.guelmame@unice.fr

(Stéphane Junca) Université Côte d'Azur, CNRS, Inria, LJAD, France.
Email address: stephane.junca@unice.fr

(Didier Clamond) Université Côte d'Azur, CNRS, LJAD, France.
Email address: didierc@unice.fr

(Robert L. Pego) Department of Mathematical Sciences and Center for Nonlinear Analysis,
Carnegie Mellon University, Pittsburgh, Pennsylvania, PA 12513, USA.

Email address: rpego@cmu.edu


	1. Introduction
	2. Heuristic derivation of a regularised Burgers equation
	3. Existence and breakdown of smooth solutions
	4. Global weak solutions
	4.1. Global existence of conservative solutions
	4.2. Global existence of dissipative solutions

	5. The limiting cases 0 and + for dissipative solutions 
	5.1. The limiting case 0
	5.2. The limiting case +

	6. Optimality of the loc space
	7. Conclusion
	Acknowledgments
	Appendix A. Comments on the conservative and dissipative solutions
	References

