The divergence equation with $L^\infty$ source - Archive ouverte HAL
Article Dans Une Revue Annales de la Faculté des Sciences de Toulouse. Mathématiques. Année : 2022

The divergence equation with $L^\infty$ source

Résumé

A well-known fact is that there exists $g\in L^{\infty}(\mathbf{T}^{2})$ with zero integral, such that the equation \begin{equation} div f=g \tag{$\ast$} \end{equation} has no solution $f=(f_{1},f_{2})\in W^{1,\infty}(\mathbf{T}^{2})$. This was proved by Preiss (1997), using an involved geometric argument, and, independently, by McMullen (1998), via Ornstein's non-inequality. We improve this result: roughly speaking, we prove that, there exists $g\in L^{\infty}$ for which ($\ast$) has no solution such that $% \partial_{2}f_{2}\in L^{\infty}$ and $f$ is "slightly better" than $L^{1}$. Our proof relies on Riesz products in the spirit of the approach of Wojciechowski (1998) for the study of ($\ast$) with source $g\in L^{1}$. The proof we give is elementary, self-contained and completely avoids the use of Ornstein's non-inequality.
Fichier principal
Vignette du fichier
AFST_2022_6_31_2_491_0.pdf (735.57 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-02472332 , version 1 (10-02-2020)
hal-02472332 , version 2 (29-11-2024)

Licence

Identifiants

Citer

Eduard Curcă. The divergence equation with $L^\infty$ source. Annales de la Faculté des Sciences de Toulouse. Mathématiques., 2022, 31 (2), pp.491-499. ⟨10.5802/afst.1700⟩. ⟨hal-02472332v2⟩
94 Consultations
65 Téléchargements

Altmetric

Partager

More