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The divergence equation with L™ source (*)

EpuarD CURcA (V)

ABSTRACT. — A well-known fact is that there exists g € L°°(T?) with zero inte-
gral, such that the equation

divf=g (*)
has no solution f = (f1, fo) € WH°°(T?2). This was proved by Preiss ([4]), using an
involved geometric argument, and, independently, by McMullen ([2]), via Ornstein’s
non-inequality. We improve this result: roughly speaking, we prove that, there exists
g € L for which (%) has no solution such that d2f> € L and f is “slightly
better” than L!. Our proof relies on Riesz products in the spirit of the approach of
Wojciechowski ([6]) for the study of () with source g € L'. The proof we give is
elementary, self-contained and completely avoids the use of Ornstein’s non-inequality.

RESUME. — Notre point de départ est le résultat suivant de non existence : il
existe g € L>°(T?), d’integrale nulle et telle que ’équation
divf=g (*)

n’ait pas de solution f = (f1, f2) € W1>°(T?). Ce résultat a été obtenu indépendam-
ment par Preiss ([4]), en utilisant un argument géométrique délicat, et par McMullen
([2]), via la non-inégalité d’Ornstein. Nous améliorons substantiellement ce résultat,
en montrant qu’en général () n’a pas de solution satisfaisant d2fa € L°°, avec
f «un peu mieux » que L'. Notre démonstration est basée sur les produits Riesz
dans lesprit de I’approche de Wojciechowski ([6]) pour I’étude de () avec source
g € L'. La démonstration est élémentaire et évite completement 'utilisation de la
non-inégalité d’Ornstein.
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Keywords: divergence equation, Riesz products, function spaces.

2020 Mathematics Subject Classification: 42B37, 42B05.

(1) Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille
Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France —
eduard.curca@staff.uaic.ro

The author was supported by the LABEX MILYON (ANR-10-LABX-0070) of
Université de Lyon, within the program “Investissements d’Avenir”
(ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Article proposé par Radu Ignat.

—491 —


mailto:eduard.curca@staff.uaic.ro

Eduard Curca

1. Introduction

In this paper, we improve the following result of Preiss ([4]) and McMullen
([2, Theorem 2.1]):

THEOREM 1.1. — There exists g € L>(T?) with zero integral, such that
there are no fi, fo € WH(T?2) with

g =01f1 + 02 fa.

The proof in [4] is “geometric”, the one in [2] relies essentially on Orn-
stein’s non-inequality ([3]).

Note that, in the above statement, the conditions on f7, fo are isotropic,
i.e., we require 9;f; € L°°(T?) for all [,j = 1,2. In what follows, we will
prove that, under some mild regularity assumptions on fi, fs, the above
requirements can be weakened to anisotropic conditions. Namely, it is enough
to impose Oa f> € L>°(T?). In order to state this more precisely, we introduce
the following spaces of distributions.

Suppose A : N — (0,00) is a decreasing function such that A(k) — 0
when k — oo. To such a function we associate the Banach space of those
distributions whose Fourier transform decays at the rate at least A. More

precisely, consider the space
aup HOI OO} |

S {f € DT sup 5D

endowed with the norm given by

o~

0] :
Iy := sup S F € S\(T),

neZz?

To mention only few examples, we note that, for any m € N*, W™ 1(T?)—
S\ (T?), with A(|n|) = 1/(1+|n|)™ and, if s > 0, the fractional Sobolev space
H*(T?) is embedded in Sy(T?) for A(|n|) = 1/(1 + |n|)*.

With this notation, we can formulate our result.

THEOREM 1.2. — Suppose A : N — (0,00) is decreasing to 0. There
exists g € L>(T?) such that there are no fo, f1, fo € Sx(T?) with O2f> €
L>°(T?) and

g = fo+01f1 + 02 fa.

We can easily observe that Theorem 1.2 implies Theorem 1.1. Indeed, if
f1, fo € WL°(T?) then dyfy € L°°(T?) and, as we mentioned above, we
have f1, fo € Sx(T?) for A(Jn]) = 1/(1+]|n|). Also, even the weaker regularity
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condition fy, f1, fo € H*(T?), dafa € L>®(T?) (¢ > 0, a small fixed number)
rules out the existence of a solution. Intuitively, f € Sy(T?), with A slowly
decaying, means that f is “slightly better” than L'. The above result asserts
that solutions with such regularity satisfying ds fo € L>°(T?) need not exist.

Finally, we discuss the most important aspect, which is the proof of Theo-
rem 1.2. Our proof completely avoids the use of Ornstein’s non-inequality. It
is an adaptation of the Riesz products based proof, given by Wojciechowski
in [6], of the fact that there exist L' functions which are not divergences
of W1 vector fields. We follow the general structure of his proof making
the needed modifications in order to handle the L™ case. While the proof
in [6] relies on a relatively difficult lemma ([6, Lemma 1]), in our case, the
role of this lemma will be played by Lemma 2.1 below, which is elemen-
tary and easy. Another aspect of our proof is the presence of the function
A. This allows us to quantify the regularity that we impose to the solution
and to improve the result described by Theorem 1.1. The approach based
on Ornstein’s non-inequality does not seem to be suited for obtaining this
improvement.

We also mention that the proof of Theorem 1.2 given below is self-
contained and elementary.

Acknowledgements

The author thanks Petru Mironescu for useful discussions and sugges-
tions.

2. Proof of Theorem 1.2

Before starting the proof, we recall first the following well-known elemen-
tary fact (see [5, Lemma 6.3, p. 118]):

LEMMA 2.1. — Suppose z1,...,zn are some complex numbers. Then,
there exist o1,...,0n € {0,1} such that

N
E OkZk
k=1

Proof. — We follow [5]. View z1,...,zx as vectors in R2. For a given
6 € [0, 2], let 79 := (cos @, sinf). If Hy is the half-plane given by

Hp:={z € R?|(2,1r9) > 0},

N

> %ZIZH-

k=1
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we have

N

1 2 N 1 2 N 1 27
. +d40 = _— . +
o |, > z|do > ﬂ/o > (2,70 dG_Z%/O (2;,79) 70,

k=1,zx€Hy Jj=1 7j=1
and we easily see that, for all j,
1 27

1 [ 1
3 | ratan = lsig [ (eoso)ran = iz

Using the above inequality, we complete the proof of Lemma 2.1 via a
mean value argument: there exists 6y € [0, 27| such that

N 27 N N
1 1
E 2k >2— E 2k d9275 1251,
T T
kzl,zkEHgo k=1,zx€Hy j=1
and one can choose oy, =1, if 2, € Hp, and o = 0, otherwise. O

We will also need few facts concerning the trigonometric polynomials.

Fix a finite sequence (ag)x—1,n in Z2. For each finite sequence (as, ..., ay)
of complex numbers we have the following expansion rule for Riesz products:

N
H 1+ oy cos(t, ag))
k=1

N
=1+ 3 11 % gifterarttenan) - (91)

k=151,..‘,6k€{71,0,1} e,-;éO
Ek;ﬁo

(This can be easily proved by induction on N.)

Suppose, moreover, that (ax)r=1,n, with ax € (Z\ {0})? is component-
wise lacunary, i.e., there exists a constant M >3 such that |ax1(1)|/|ar(1)]>
M and |ag+1(2)|/|ax(2)] > M for all 1 < k < N—1. Then, all the expressions
€1a1 + -+ + €ray in the above formula are distinct and nonzero. Hence, if
ai,...,ay and f1,..., Sy are complex numbers, by using the above formula
and the relation between convolution and the Fourier transform, we obtain

N
H (1 + ay cos(- H (1+ Brcos(-,ag))
k=1 k=1

H kﬂk cos(-,ag)). (2.2)

k=1
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Indeed, using (2.1) we find that the coefficient of ¢?(h-e101+ +ekar) in the left
hand side of (2.2) is

o Bi ;B /2
IS NEIRIE

g]»;é(] Ej#() Ej;éo

Since, all the expressions €1a1 +- - - +era are distinct, the above identity
permits us to recover the right hand side of (2.2) via (2.1).

We will also use the following standard algebraic identity which can be
proved by induction on N:

N k—1
H(1+ck—1 Z H1+cj (2.3)

k=1
for any complex numbers ¢y, ..., cn.
Proof of Theorem 1.2. — Suppose that the assertion of Theorem 1.2 is
false and fix a function A as in the statement. Then, by the open mapping
principle, there exists a constant C' > 0 such that for any g € L°°(T?) there

exist distributions fy, f1, fo € SA(T?), satisfying g = fo + 01 f1 + Oa.f2, with
the properties that 0y fo € L>°(T?) and

[ follsy + If1llsy + [l f2llsy + 102f2llLe < Cllgllzee- (2.4)
Let N be a large positive integer such that In N > 257C and consider

the functions on T2
N N

gn(t) == H (1 + ]icos<t,ak>> and Gn(t) := H(l + cos(t, ax)),

k=1 k=1

where the finite sequence (ax)x—1 ny in (N*)? is defined below.

Using Lemma 2.1, applied to the sequence of complex numbers

k—1 .
1 1
Zk:kg<l+27) fOkal,...,N,

(here and after the product over an empty set is by convention equal to 1),
we can find a sequence o1,...,0n5 € {0,1} such that

Na_kk—l ; 1Nkl R

— 1+—)| > — - 1+— — - 1 N. (2.5
S EI(5) 2 2o s M ap) 225> 7o 9
k=1 Jj=1 k=1 j=1
Now we impose the sequence (ay)r=1,n to satisfy the following properties:

(i) (ar)k=1,n is component-wise lacunary;
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(ii) If o = 1, then

ap(l) + Z Ejaj(l) A |ar(2) + Z Ej(lj(Q) < g

1<j<k—1 1<i<k—1
forall ey,...,e5-1 € {—1,0,1};

(iii) If o, = 0, then

@+ Y @A |a®)+ D ga)|] <y

1<j<k—1 1< <k—1
forall ey,...,e,-1 € {—1,0,1}.

(By convention the sum over an empty set is equal to 0.)

Such a sequence can be easily constructed by induction on k: if aq, ..., ax_1
are chosen, then we choose ax(2) much larger than ax(1), or ax(1l) much
larger than a(2), depending on whether o = 1 or o, = 0 respectively.
Since A is decreasing to 0, we can satisfy in this way the conditions (ii),
respectively (iii). Also, the condition (i) can be easily satisfied.

We now return to the proof of Theorem 1.2. Note that

N 1
1)?2 2
loxlle= =TT (1+55) <% <3,
k=1
and also Gy > 0 and ||Gnllr =1. (2.6)

(We can see that |G|z =1 by using (2.1).)

Using (2.2) and (2.3), we get

Gr *gn(t) = ﬁ (1 + ;kcos<t,ak>>

k=1

N . k—1 .
i i
=1+ k§:1 % cos(t, ax) Jl;[l (1 + %5 cos(t, aj>> . (21)
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Consider the sets

A .

N
U {51(11 +"'+5kak|€1a"'a€k € {717031}3 €k 7£ 0}7
k=1
or=1
N
B = U {£1a1+-~-+£kak|51,...,5k S {—1,0,1}, Ek 750}
k=1

or=0

Since the sequence (ay)r=1,n is component-wise lacunary, we have ({0} x
ZYN(AUB) =2, (Zx{0})N(AUB) =@ and AN B = &, while clearly
|AU B| < 3V. In particular, |A| < 3V, |B| < 3V.

Using now (2.7), we have
)

N
PGy *gn(t) = Z ;15

k=1

k—1 ‘
cos(t, ax) H <1 + % cos(t,aj)> ,
j=1

and from (2.5) we obtain

N . k-1 .
o 7 1
PsG 0)| = —_— 1+ — )| > —InN, 2.8
PGy ranO] =L 5 T (145 )| 5omv @28)
k=1 Jj=1
where P4 is the linear operator on trigonometric polynomials, satisfying
Pyeitn) — ¢iltn) if n € A and Pyet™™ = 0 otherwise.

On the other hand, according to our assumption and (2.6), we can find

fos f1, fo € SA(T?), satisfying gn = fo + O1f1 + O2f2, with the properties
that Oy fy € L°°(T?) and

[ follsy + 1f1llsy + [ f2llsy + 102 f2lle < 3C.
Let us note that
PAGN*gN:PAGN*fOJrPAGN*alfl+PAGN*82f2. (2.9)

We next estimate each term on the right hand side of (2.9).

For the second term, we have:
|PAGN * 01 f1] L=
= ||GnN * Padh f1llpe < ||GNlLt | Padi fillnee = ||Padh f1ll Lo
_ . _ —~
< |Almax |0, fi(n)] = |A|max [n(1)]|f1(n)]
< [Afmax () A(l) | fi s, < 14| max [n(D)A(n(2) )] i ls,

<3VN47N3C < 3C,
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where we have used (ii).

For the third term, we observe that, thanks to the identity Gy = PAGn+
PGy + 1, we have PAGN * Oofo = G % 02 fs — PG * O fo. Hence, we

can write:
| PAG N * 02 f2| Lo
= ||Gn x O2fo — PpGn * 02 fo| |1 < |G * D2 folle + [ PBG N * 02 fo| |1
< GnllllOzfalle + |GN L [PBO2fallLoe = 102 f2llL + [[PBO2 f2| L0
< 3C + | Bmax |9 fo(n)| = 3C + | B max|n(2)[| f2(n)|
neB neB
<30+ 8" max (@A) fols, < 3C + 3% max (A (n() fols,
<3C+3V47N3C <60,
where we have used (iii) to pass from the fourth to the fifth line.
Finally, the first term is easier to handle. We have:
[PAGN * follL = [|Gn * Pafolle < [|[Pafollze < |A|I7{1€<‘ij§|fo(n)|
< IAJmax A fols, < || ma (D [A(n(2)) | ols,

<3V4=N30 < 3C.

These estimates together with (2.9) give us
|PAGN * gn ||~ < 3C + 6C + 3C = 12C,

which contradicts (2.8), since In N > 257C. O
Remarks. —
(1). — Similarly, a closer look to the proof in [6] gives the following ana-

logue of Theorem 1.2 in the case of L'.

THEOREM 2.2. — Suppose A : N — (0,00) is decreasing to 0. There
exists g € LY(T?) such that there are no fo, fi, fo € S\(T?) with dafs €
LY(T?) and

g = fo+01f1 + 0afa.

(2). — The d-dimensional case, with d > 3, can be easily obtained from
Theorem 1.2. More precisely, we have

THEOREM 2.3. — Let d > 2. Suppose A : N — (0,00) is decreasing to 0.
There exists g € L>(T?) such that there are no fo, fi, fa,...,fa € D'(T?)
with fo, f1, fa € Sx(TY), dafo € L=(T%) and

g=fo+01fi+0afo+ -+ 0afa
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Indeed, consider a ¢’ € C®(T?) and ¢ € C*(T?2) such that 0 <
1 < 1 and de_Q 1 = 1. If the above result were not true, we could find
an f17 f27 ey fd S D/(Td) SuCh that
g/®¢:f0+81f1 + Oafo+ -4+ 0afa

and

| foll sy (ray + 1 f1llsy(ray + | f2ll sy (may + 1022

| Lo (rey < Cllg'l|l Lo (12)-

Without loss of generality, we can suppose that fy, f1, fo,..., fq are
smooth. Integrating this equation in the last d — 2 coordinates, we reduce
the problem to the 2-dimensional case: ¢’ = f) + 01 f] + 02 f5 where

f]'(t) ::/ fit,7)dr, forj=0,1,2,
Td—2
satisfy
I follsxcr2y + 1fillsacr2) + 1 fallsy 2y + 102f3l oo (r2) < Cllg | oo (12)-

Here, we have used the fact that, for all n’ € Z?2,
Fi)| = [H0, 0] < M 0Dl ey = M D s o

(3). — Using Lemma 2.1, and adapting the technique in [1], we can ob-
tain similar anisotropic Ornstein type inequalities adapted to the L case.
We give below an example. For any ¢ > 0, there exists a trigonometric
polynomial f on T2, depending on &, such that

ell97 05 fll e = 101 fllL + 10702 fll e + 10105 f | Loe + 105 £l -
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