Learning charme models with neural networks - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Learning charme models with neural networks

Résumé

In this paper, we consider a model called CHARME (Conditional Heteroscedastic Autoregressive Mixture of Experts), a class of generalized mixture of nonlinear nonparametric AR-ARCH time series. Under certain Lipschitz-type conditions on the autoregressive and volatility functions, we prove that this model is stationary, ergodic and $\tau$-weakly dependent. These conditions are much weaker than those presented in the literature that treats this model. Moreover, this result forms the theoretical basis for deriving an asymptotic theory of the underlying (non)parametric estimation, which we present for this model. As an application, from the universal approximation property of neural networks (NN), we develop a learning theory for the NN-based autoregressive functions of the model, where the strong consistency and asymptotic normality of the considered estimator of the NN weights and biases are guaranteed under weak conditions.
Fichier principal
Vignette du fichier
charme_v2.pdf (537.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02470605 , version 1 (07-02-2020)
hal-02470605 , version 2 (17-11-2020)

Identifiants

  • HAL Id : hal-02470605 , version 2

Citer

José G. Gómez García, Jalal Fadili, Christophe Chesneau. Learning charme models with neural networks. 2020. ⟨hal-02470605v2⟩
120 Consultations
71 Téléchargements

Partager

More