Multidimensional inverse scattering for the Schrödinger equation - Archive ouverte HAL
Chapitre D'ouvrage Année : 2022

Multidimensional inverse scattering for the Schrödinger equation

Résumé

We give a short review of old and recent results on the multidimensional inverse scattering problem for the Schrödinger equation. A special attention is paid to efficient reconstructions of the potential from scattering data which can be measured in practice. In this connection our considerations include reconstructions from non-overdetermined monochromatic scattering data and formulas for phase recovering from phaseless scattering data. Potential applications include phaseless inverse X-ray scattering, acoustic tomography and tomographies using elementary particles. This paper is based, in particular, on results going back to M. Born (1926), L. Faddeev (1956, 1974), S. Manakov (1981), R.Beals, R. Coifman (1985), G. Henkin, R. Novikov (1987), and on more recent results of R. Novikov ( 1998 - 2019), A. Agaltsov, T. Hohage, R. Novikov (2019). This paper is an extended version of the talk given at the 12th ISAAC Congress, Aveiro, Portugal, 29 July - 2 August, 2019.
Fichier principal
Vignette du fichier
ISP.pdf (117.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02465839 , version 1 (04-02-2020)

Identifiants

Citer

Roman Novikov. Multidimensional inverse scattering for the Schrödinger equation. P. Cerejeiras, M. Reissig (eds) Mathematical Analysis, its Applications and Computation. ISAAC 2019. Springer Proceedings in Mathematics & Statistics. Springer, Cham, 385, pp.75-98, 2022, ⟨10.1007/978-3-030-97127-4_3⟩. ⟨hal-02465839⟩
211 Consultations
370 Téléchargements

Altmetric

Partager

More