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Abstract. We give a short review of old and recent results on the multidimensional inverse
scattering problem for the Schrödinger equation. A special attention is paid to efficient
reconstructions of the potential from scattering data which can be measured in practice.
In this connection our considerations include reconstructions from non-overdetermined
monochromatic scattering data and formulas for phase recovering from phaseless scat-
tering data. Potential applications include phaseless inverse X-ray scattering, acoustic
tomography and tomographies using elementary particles. This paper is based, in particu-
lar, on results going back to M. Born (1926), L. Faddeev (1956, 1974), S. Manakov (1981),
R.Beals, R. Coifman (1985), G. Henkin, R. Novikov (1987), and on more recent results of
R. Novikov ( 1998 - 2019), A. Agaltsov, T. Hohage, R. Novikov (2019).
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1. Introduction
We consider the stationary Schrödinger equation:

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 1, E > 0, (1.1)

where v is a sufficiently regular function on Rd with sufficient decay at infinity, for
example:

v ∈ L∞(Rd), supp v ⊂ D,

D is an open bounded domain in Rd,
(1.2a)

or

|v(x)| ≤ q(1 + |x|)−σ, x ∈ Rd, for some q ≥ 0 and σ > d. (1.2b)

Equation (1.1), under assumptions (1.2a), can be used, in particular, for describing
a quantum mechanical particle at fixed energy E interacting with a macroscopic object
contained in D. In this case v is the potential of this interaction.

We recall also that the (time-dependent) Schrödinger equation is the quantum me-
chanical analogue of the Newton’s second law.
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Note that we assume that h̄2

2m = 1 and ∆ is the standard Laplacian in x in the
Schrödinger equation (1.1).

For equation (1.1) we consider the scattering eigenfunctions ψ+(x, k), k ∈ Rd, k2 = E,
specified by the following asymptotics as |x| → ∞:

ψ+(x, k) = eikx + c(d, |k|) ei|k||x|

|x|(d−1)/2
f
(
k, |k| x

|x|
)
+ o

( 1

|x|(d−1)/2

)
,

c(d, |k|) = −πi(−2πi)(d−1)/2|k|(d−3)/2,

(1.3)

for some a priori unknown f . The function f arising in (1.3) is the scattering amplitude
for equation (1.1) for fixed E and is defined on

ME = {k, l ∈ Rd : k2 = l2 = E} = Sd−1√
E

× Sd−1√
E
. (1.4)

We recall that function ψ+(x, k) at fixed k describes scattering of the incident plane
wave described by eikx on the scatterer described by potential v(x). In addition, the second
term on the right-hand side of (1.3) describes the leading scattered spherical wave.

We also recall that in quantum mechanics the values of the functions ψ+ and f with
phase have no direct physical sense, whereas the phaseless values of |ψ+|2 and |f |2 have
probabilistic interpretations (the Born rule) and can be directly obtained in experiments;
see [B], [FM]. In particular, |f(k, l)|2 is differential scattering cross section, describing
probability density of scattering of particle with initial impulse k into direction l/|l| ̸= k/|k|.

We consider, in particular, the following problems for equation (1.1):
Problem 1.1. Given v, find ψ+ and f .
Problem 1.2a. Reconstruct potential v from its scattering amplitude f .
Problem 1.2b. Reconstruct potential v, under assumptions (1.2a), from ψ+ appro-

priately given outside of D.
Problem 1.3a. Reconstruct potential v from its phaseless scattering data |f |2.
Problem 1.3b. Reconstruct potential v, under assumptions (1.2a), from its phaseless

scattering data |ψ+|2 appropriately given outside of D.
Problem 1.1 is the direct scattering problem for equation (1.1). This problem can be

solved via the Lippmann-Schwinger integral equation (2.1) and formula (2.3); see Section
2.

Problem 1.2a is the inverse scattering problem (from far field) for equation (1.1).
Problem 1.2b is the inverse scattering problem (from near field) for equation (1.1).
Problems 1.3a and 1.3b are the phaseless versions of the inverse scattering problems

Problems 1.2a and 1.2b.
At this stage we do not specify which precise information about the functions f , ψ+,

|f |2, |ψ+|2 is used in each of Problems 1.2a, 1.2b, 1.3a, 1.3b and, in particular, we do not
specify whether E is fixed.

Note that earlier studies on inverse scattering for the Schrödinger equation (in fact,
on Problem 1.2a ) were essentially stimulated by the Heisenberg’s publications [H ]; see
related discussion in [F2]. In the mathematical literature the inverse scattering problem
for the Schrödinger equation (in fact, Problem 1.2a ) in dimension d = 3 without the
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spherically symmetric assumption on v was posed for the first time in [Gel]. At present,
there are many important results on Problem 1.2a; see [F1], [F2], [Mos], [Ber], [Re], [F3],
[DT], [NM], [L], [Mar], [ChS], [HN], [New], [N1], [S], [N2], [N3], [EW], [Mel], [N4], [N6],
[Gr], [HH], [Ho], [AW], [Buc], [N8], [ABR], [BAR], [E], [N9], [I], [IN], [N10], [N11], [AN2],
[N16], [ RS] and references therein. Formulas reducing Problem 1.2b to Problem 1.2a and
vice versa are also known for a long time; see, for example, [Ber].

On the other hand, in view of the Born rule, from applied point of view, Problems
1.3a, 1.3b and similar phaseless inverse scattering problems are much more important
than Problems 1.2a, 1.2b and similar phased inverse scattering problems for the quantum
mechanical Schrödinger equation. However, until recently, the mathematics of inverse wave
propagation problems without phase information, in general, and of Problems 1.3a, 1.3b,
in particular, were much less developed than for the phased case and an essential progress
in this direction (phaseless case) was done during recent years; see Chapter 10 of [ChS],
[KS], [AS], [JL], [IK], [K1], [N12]-[N16], [KR], [Ro], [K2], [AN2], [AHN], [HoNo], [P], [N17],
[NS] and references therein.

In the present paper we consider Problems 1.1- 1.3 mainly for the multidimensional
case (i.e. d ≥ 2) for fixed E and, especially, for d = 2 or d = 3. More precisely, our further
presentation can be described as follows.

In Section 2 we recall potential applications of results on Problems 1.1-1.3 at fixed E
for d = 2 or d = 3.

In Section 3 we recall well-known results on Problems 1.1.

In Section 4 we formalise the main objective of Problem 1.2a at fixed and sufficiently
large E. In Section 5 we recall an old classical result to this objective. And in Sections 6,
8 we present results of [N5]-[N7], [N11] which achieve this objective.

In Section 9 we recall examples of non-uniqueness for Problem 1.3a in its initial for-
mulation and in Section 10, 11 we present results of [N15], [AHN] on modified Problem
1.3a with background scatterers.

In Section 12 we present formulas of [N14], [N17] reducing Problem 1.3b to Problem
1.2a.

2. Potential applications

Results on Problems 1.1- 1.3 at fixed E for d = 2 or d = 3 admit potential applications,
in particular, in the following domains:

(i) Inverse problem of quantum scattering arising in nuclear physics and in tomogra-
phies using some elementary particles (see, for example, [ChS], [FO]);

(ii) Acoustic tomography (see, for example, [ABR], [BAR]);

(iii) Coherent x-ray imaging (see, for example, [JL], [HoNo]).

As regards to quantum scattering we assume that this scattering is modeled using the
Schrödinger equation (1.1).

As regards to acoustic tomography and coherent x-ray imaging, we assume that direct
scattering is modeled using the Helmholtz equation

−∆ψ =
( ω

c(x)
+ iα(x, ω)

)2
ψ, x ∈ Rd, (2.1)
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with velocity of wave propagation c(x), absorption coefficient α(x, ω), at fixed frequency
ω, where

c(x) ≡ c0, α(x, ω) ≡ 0 for |x| ≥ r. (2.2)

Equation (2.1), under conditions (2.2), can be written in the form of the Schrödinger
equation (1.1), where

v =
ω2

c20
−

( ω

c(x)
+ iα(x, ω)

)2
, E =

ω2

c20
, (2.3)

v = v(x, ω) ≡ 0 for |x| ≥ r.

Therefore, reconstruction methods for Problems 1.2, 1.3 at fixed E can be also used
for inverse scattering for the Helmholtz equation (2.2) at fixed ω, under conditions (2.2),
for d = 2 or d = 3.

As it was already mentioned in the Introduction, from applied point of view, the
inverse problem of quantum scattering is the most important in its phaseless versions. On
the other hand, in acoustic or electrodynamic experiments phased scattering data like ψ+

and f can be directly measured, at least, in principle. However, in many important cases
of monochromatic electro-magnetic wave propagation described using equation (2.1) (e.g.,
X-rays and lasers) the wave frequency is so great that only phaseless scattering data like
|ψ+| and |f | can be measured in practice by modern technical devices; see, e.g., [HoNo]
and references therein.

3. Direct scattering
The scattering eigenfunctions ψ+ satisfy the Lippmann-Schwinger integral equation

ψ+(x, k) = eikx +

∫
Rd

G+(x− y, k)v(y)ψ+(y, k)dy, (3.1)

G+(x, k)
def
= −(2π)−d

∫
Rd

eiξxdξ

ξ2 − k2 − i0
= G+

0 (|x|, |k|), (3.2)

where x ∈ Rd, k ∈ Rd, k2 = E. Note that

G+(x, k) = − i

4
H1

0 (|x| |k|) for d = 2, G+(x, k) = −e
i|k||x|

4π|x|
for d = 3, (3.3)

where H1
0 is the Hankel function of the first type.

For the scattering amplitude f the following formula holds:

f(k, l) = (2π)−d

∫
Rd

e−ilyv(y)ψ+(y, k)dy, (3.4)
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where k ∈ Rd, l ∈ Rd, k2 = l2 = E.
Equation (3.1) and formula (3.4) are a particular case of the equation and formulas

produced in [LS]. For basic mathematical results concerning (3.1), (3.4) we refer to [F3],
[BSh], [V], [N11] and references therein.

Problem 1.1 can be solved via equation (3.1) and formula (3.4).
More precisely, we consider Problem 1.1 for those E > 0 that

equation (3.1) is uniquely solvable for ψ+(·, k) ∈ L∞(Rd) for fixed E > 0, (3.5)

where k ∈ Rd, k2 = E. If, for example, v satisfies (1.2b) and is real-valued, then (3.5) is
fulfilled automatically.

We also recall that for any s > 1/2 the following Agmon estimate holds:

∥ < x >−s G+
0 (E) < x >−s ∥

L2(Rd
)→L2(Rd

)
= O(E−1/2), E → +∞, (3.6)

where < x > denotes the multiplication operator by the function (1 + |x|2)1/2, G+
0 (E)

denotes the operator such that

G+
0 (E)u(x) =

∫
Rd

G+
0 (|x− y|, E)u(y)dy, (3.7)

where G+
0 (|x|, E) is the function defined in (3.2), u is the test function. Estimate (3.6) was

given implicitly in [A]. This estimate is very convenient for studies of equation (3.1) and
formula (3.4) for large E; see,e.g., [N11].

4. The main objective of Problem 1.2a at fixed and sufficiently large E
In order to explain and justify the main objective of Problem 1.2a at fixed and suffi-

ciently large E, for d ≥ 2, we consider, first, Problems 1.1 and 1.2a in the Born approx-
imation for q → 0, where q is the number in (1.2b). In this approximation we have, in
particular:

ψ+(x, k) ≈ eikx, f(k, l) ≈ v̂(k − l), (4.1)

where

v̂(p) = (2π)−d

∫
Rd

eipxv(x)dx, p ∈ Rd. (4.2)

Note that
(k, l) ∈ ME ⇒ k − l ∈ B2

√
E , (4.3)

p ∈ B2
√
E ⇒ ∃ (k, l) ∈ ME such that p = k − l (for d ≥ 2), (4.4)

where ME is defined by (1.4),

Br = {p ∈ Rd : |p| ≤ r}. (4.5)
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Thus, in the Born approximation (for q → 0), for d ≥ 2, the scattering amplitude f on
ME is reduced to the Fourier transform v̂ on B2

√
E .

Moreover, in this approximation, for d ≥ 2, the scattering amplitude f on M[E0,E],
0 < E0 ≤ E, is also reduced to v̂ on B2

√
E , where M[E0,E] = ∪ζ∈[E0,E]Mζ .

Therefore, the most natural way for solving Problem 1.2a at fixed and sufficiently large
E in the Born approximation (for q → 0), for d ≥ 2, consists in the following formulas:

v(x) = vlinappr(x,E) + vlinerr(x,E), (4.6)

vlinappr(x,E) =

∫
|p|≤2

√
E

e−ipxv̂(p)dp,

vlinerr(x,E) =

∫
|p|≥2

√
E

e−ipxv̂(p)dp.

Here, vlinappr(x,E) is an approximate but stable reconstruction from f on ME reduced to

v̂ on B2
√
E and vlinerr(x,E) is the reconstruction error.

In addition, if v ∈Wm,1(Rd) (m-times smooth functions in L1(Rd)), m > d, then

∥vlinerr(·, E)∥
L∞(Rd

)
= O(E−(m−d)/2), E → +∞. (4.7)

De facto, the main objective of Problem 1.2a at fixed and sufficiently large E, for
d ≥ 2, consisted in finding analogs for the general non-linearized case of the reconstruction
result (4.6), (4.7) existing for the linearised case near zero potential.

This objective was achieved in [N6], [N7], [N11]; see Sections 6, 8 below.

Of course, under condition (1.2a), d ≥ 2, in the linearized case near zero potential,
when f on ME is reduced to v̂ on B2

√
E , where E ≥ 0, we have that v̂ on B2

√
E uniquely

determines v̂ on the entire Rd via analytic continuation. And, therefore, in this case
f on ME uniquely determines v. However, in contrast with (4.6) this reconstruction
involves an analytic continuation and is rather unstable. For the general non-linearized
case analogs of this uniqueness result were obtained in [N1], [N3], [Buc]. However, despite
their mathematical importance, we do not consider uniqueness theorems without stable
reconstruction as the main objective of inverse problems.

5. Old general result on Problem 1.2a for d ≥ 2
If v satisfies (1.2a), then

f(k, l) = v̂(k − l) +O(E−1/2), E → +∞, (k, l) ∈ ME , (5.1)

where v̂ is defined by (4.2). This result is known as the Born formula at high energies. As
a mathematical theorem formula (5.1) goes back to [F1]. At present, one can pvove (5.1)
using estimate (3.6); see, e.g., [N11].

6



Multidimensional inverse scattering for the Schrödinger equation

Using (5.1) for d ≥ 2 with

k = kE(p) =
p

2
+ ηE(p), l = lE(p) = −p

2
+ ηE(p), (5.2)

where

ηE(p) =
(
E − p2

4

)1/2
ν(p), |ν(p)| = 1, ν(p)p = 0,

one can reconstruct v̂(p) from f at high energies E for any p ∈ Rd.
However, formula (5.1) gives no method to reconstruct v from f on ME with the

error smaller than O(E−1/2) even if v ∈ S(Rd), where S stands for the Schwartz class.
Applying the inverse Fourrier transform F−1 to both sides of (5.1), one can obtain an

explicit linear formula for u1 = u1(x,E) in terms of f on ME , where

u1(x,E) = v(x) +O(E−α1), E → +∞, (5.3)

α1 =
m− d

2m
if v ∈Wm,1(Rd).

One can see that
α1 ≤ 1/2 even if m→ +∞.

Comparing (4.7) and (5.3) one can see that the approximate reconstruction u1(x,E)
is not optimal and does not achieve yet the objective formulated in Section 4.

6. Results of [N6], [N7]
Let

Wm,1
s (Rd) = {u : (1 + |x|)s∂Jv(x) ∈ L1(Rd), |J | ≤ m}, (6.1)

where m ∈ N ∪ 0, s > 0.

In [N6] for v ∈Wm,1
s (R2), m > 2, s > 0, for general nonlinearized case for d = 2, we

succeeded, in particular, to give a stable reconstruction

f on ME
stable reconstruction−→ vappr(·, E) on R2 (6.2)

such that
∥v − vappr(·, E)∥

L∞(R2
)
= O(E−(m−2)/2) as E → +∞. (6.3)

For d = 2, this reconstruction result achieves the objective formulated in Section 4 in
view of its stability and estimate (6.3) (which is similar to estimate (4.7) for d = 2).

Reconstruction (6.2) is based on Fredholm linear integral equations of the second
type. Among these linear integral equations, the most important ones, historically, go
back to the Gel’fand-Levitan integral equations of inverse scattering in dimension d = 1
and arise from a non-local Riemann-Hilbert problem for the Faddeev solutions ψ of the
Schrödinger equation at fixed energy E. Riemann-Hilbert problems of such type go back
to [M]. Definition of the Faddeev solutions ψ and some of their properties are recalled in
Section 7.

7
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For precise form of the equations and formulas involved into reconstruction (6.2) we
refer to [N6]. The main idea of [N6] was published first in [N5].

Reconstruction (6.2) together with its multifrequency generalization was implemented
numerically in [BAR].

In [N7] for v ∈Wm,1
s (R3), m > 3, s > 0, for general nonlinearized case for d = 3, we

succeeded, in particular, to give a stable reconstruction

f on ME
stable reconstruction−→ vappr(·, E) on R3 (6.4)

such that
∥v − vappr(·, E)∥

L∞(R3
)
= O(E−(m−3)/2 ln E), as E → +∞. (6.5)

For d = 3, this reconstruction result achieves the objective formulated in Section 4 in
view of its stability and estimate (6.5) (which is similar (in essence) to estimate (4.7) for
d = 3).

Reconstruction (6.4) is based on linear and nonlinear integral equations. Among these
integral equations, the most important are nonlinear ones arising from ∂̄-approach to 3D
inverse scattering at fixed energy. This ∂̄-approach goes back to [BC], [HN] and involves
different properties of the Faddeev generalized scattering amplitude h in complex domain
at fixed energy E. Definition of the Faddeev generalized scattering amplitude h and some
of its properties are recalled in Section 7.

For precise form of the equations and formulas involved into reconstruction (6.4) we
refer to [N7], [N8].

Reconstruction (6.4) was implemented numerically in [ABR]. Some of these results of
[ABR] are also presented in Section 4 of the survey paper [N8].

However, the main disadvantage of reconstruction (6.4) is the overdetermination of
f
∣∣
ME

for d = 3, required for this reconstruction. Indeed, f
∣∣
ME

is a function of 4 variables

for d = 3 (dimME = 2d − 2 = 4 for d = 3), whereas v is a function of 3 variables. This
point was one of motivations for obtaining the results presented in Section 8.

7. Faddeev functions
The results of [N6], [N7] presented in Section 6 are based on properties of the Faddeev’s

functions ψ, h, ψγ , hγ (see [F3], [BC], [HN], [N6], [N7]). Definitions and some properties
of these functions are recalled below in this section.

The Faddeev solutions ψ of the Schrödinger equation are defined as the solutions of
the integral equation (see [F3], [HN]):

ψ(x, k) = eikx +

∫
Rd

G(x− y, k)v(y)ψ(y, k)dy, (7.1)

G(x, k) = eikxg(x, k), g(x, k) = −
( 1

2π

)d ∫
Rd

eiξxdξ

ξ2 + 2kξ
, (7.2)

where x ∈ Rd, k ∈ Cd\Rd (and at fixed k equation (7.1) is an equation for ψ = eikxµ(x, k),
where µ is sought in L∞(Rd)). The Faddeev function h is defined by the formula (see [F3],
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[HN]):

h(k, l) =
( 1

2π

)d ∫
Rd

e−ilxv(x)ψ(x, k)dx, (7.3)

where k, l ∈ Cd\Rd, Imk = Im l.
Here ψ(x, k) satisfies (1.1) for E = k2, and ψ, G and h are (nonanalytic) continuations

of ψ+, G+ and f to the complex domain. In particular, h(k, l) for k2 = l2 can be considered
as the ”scattering” amplitude in the complex domain for equation (1.1) for E = k2.

Equation (7.1) and formulas (7.2), (7.3) are analogs in complex domain of equation
(3.1) and formulas (3.2), (3.3).

The functions ψγ and hγ are defined as follows (see [F3], [HN]):

ψγ(x, k) = ψ(x, k + i0γ), hγ(k, l) = h(k + i0γ, l + i0γ), (7.4)

where x, k, l, γ ∈ Rd, |γ| = 1. Note that

ψ+(x, k) = ψk/|k|(x, k), f(k, l) = hk/|k|(k, l), (7.5)

where x, k, l ∈ Rd, |k| > 0.
The following relations are fulfilled (see [F3], [HN]):

ψγ(x, k) = ψ+(x, k) + 2πi

∫
Rd

hγ(k,m)θ((m− k)γ)δ(m2 − k2)ψ+(x,m)dm, (7.6)

hγ(k, l) = f(k, l) + 2πi

∫
Rd

hγ(k,m)θ((m− k)γ)δ(m2 − k2)f(m, l)dm, (7.7)

where θ is the Heaviside step function, δ is the Dirac delta function, x, k, l, γ ∈ Rd, |γ| = 1.
The following ∂̄- equations and asymptotics hold (see [BC], [HN]):

∂

∂k̄j
µ(x, k) = −2π

∫
ξ∈Rd

ξjH(k,−ξ)eiξxδ(ξ2 + 2kξ)µ(x, k + ξ)dξ, (7.8)

µ(x, k) → 1, |k| → ∞, (7.9)

∂

∂k̄j
H(k, p) = −2π

∫
ξ∈Rd

ξjH(k,−ξ)H(k + ξ, p+ ξ)δ(ξ2 + 2kξ)dξ, (7.10)

H(k, p) → v̂(p), |k| → ∞, (7.11)

where
µ(x, k) = e−ikxψ(x, k), H(k, p) = h(k, k − p), (7.12)

v̂ is defined by (4.2), x ∈ Rd, k ∈ Cd\Rd, |k| =
(
(Rek)2 + (Imk)2

)1/2
, p ∈ Rd,

j = 1, . . . , d.

9
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The derivation of reconstruction (6.2) involves relations (7.6), (7.7), the ∂̄- equation
(7.8) and asymptotics (7.9), and some estimates on f and h, where d = 2.

The derivation of reconstruction (6.4) involves relations (7.7), the ∂̄- equation (7.10)
and asymptotics (7.11), and some estimates on f and h, where d = 3.

8. Results of [N10], [N11]
Let

Γδ
E = {k = kE(p), l = lE(p) : p ∈ B2δ

√
E}, 0 < δ ≤ 1, (8.1)

where Br is defined by (4.5), kE(p) and lE(p) are defined as in (5.2), where ν is a
piecewise continuous vector-function on Rd, d ≥ 2.

In this section we consider the following version of Problem 1.2a:
Reconstruct v on Rd from f on Γδ

E .

One can see that
Γδ
E ⊂ ME , (8.2a)

dimME = 2d− 2, dimΓδ
E = d for d ≥ 2, (8.2b)

dimME > d for d ≥ 3. (8.2c)

Due to (8.2a), any reconstruction of v from f on Γδ
E is also a reconstruction of v

from f on ME . In addition, due to (8.2b), (8.2c), the problem of finding v from f on
ME is overdetermined for d ≥ 3, whereas the problem of finding v from f on Γδ

E is
non-overdetermined.

In [N11], for d ≥ 2, we succeeded, in particular, to give by explicit formulas a stable
iterative reconstruction

f on Γδ
E

stable reconstruction−→ uj(·, E) on Rd, j = 1, 2, 3, . . . (8.3)

such that
∥uj(·, E)− v∥L∞(D) = O(E−αj ) as E → +∞, (8.4)

αj =
(
1−

(m− d

m

)j)m− d

2d
, j ≥ 1,

under the assumptions that

v is a perturbation of some known background v0 satisfying (1.2b), (8.5)

where v − v0 ∈Wm,1(Rd), m > d, and supp (v − v0) ⊂ D,

where D is an open bounded domain (which is fixed a priori).

One can see that:

α1 =
m− d

2m
, (8.6a)

αj →
j

2
if m→ +∞, (8.6b)

10
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αj → α∞ =
m− d

2d
if j → +∞, (8.6c)

α∞ → +∞ if m→ +∞. (8.6d)

One can also see that α1 is the number of (5.3) and that

α∞ <
m− d

2
, (8.7)

where (m− d)/2 is the number of (4.7).
In view of (8.6), (8.7), the error estimate in (8.3), (8.4) is less perfect than in (6.2),

(6.3) (for d = 2) and in (6.4), (6.5) (for d = 3) . However, in (8.3) we reconstruct v from

non-overdetermined data in contrast with (6.4) (for d = 3). Besides, in fact, f on Γ
δ(E)
E

only is used in (8.3), where

δ(E) = τE−(d−1)/(2d), τ ∈]0, 1], (8.8)

δ(E) → 0 as E → +∞.

In any case, α∞ in (8.6c) is comparable with (m − d)/2 in (4.7). Therefore, recon-
struction (8.3), (8.4) can be also considered as an analog for the general non-linearized case
of the reconstruction result (4.6), (4.7) existing for the linearised case near zero potential.

For precise form of formulas involved into reconstruction (8.3) we refer to [N11].

Note that the iterative reconstruction (8.3), (8.4) of [N11] was preceded by the fol-
lowing stability estimate obtained in [N10] :

∥v1 − v2∥L∞(D) ≤ C1(q,D, σ)E
1/2∥f1 − f2∥C(Γ

δ(E)

E
)
+ (8.9)

C2(q, r,D, σ,m)E−(m−d)/(2d), E ≥ 1,

under the assumptions that v1, v2 satisfy (1.2b), supp (v1−v2) ⊂ D, ∥v1−v2∥Wm,1(Rd
)
≤ r,

where q and σ are the numbers in (1.2b), δ(E) is defined by (8.8), C1 = C1(q,D, σ),
C2 = C2(q, r,D, σ,m) are non-negative constants.

Note also that the proofs of (8.3), (8.4) and (8.9) are based on the the Lippmann-
Schwinger integral equation (3.1) for ψ+, the integral formula (3.4) for the scattering
amplitude f and the Agmon estimate (3.6) for the Green function G+. These proofs are
much simpler than the proofs of (6.2), (6.3) and (6.4), (6.5) and, in view of their simplicity,
can be relatively easy adopted for other problems. In particular, the iterative approximate
reconstruction (8.3), (8.4) was extended to the phaseless case in [AHN], where the extended
reconstruction was also implemented numerically (see also Section 11).

9. Examples of non-uniqueness for Problem 1.3a
It is known that |f |2 even on MR+

does not determine v uniquely, in general, where

MR+
= ∪E∈R+

ME , R+ =]0,+∞[.

11
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In particular, |f |2 on MR+
is invariant with respect to translations of v. More pre-

cisely, we have the formulas:

fy(k, l) = ei(k−l)yf(k, l), (9.1)

|fy(k, l)|2 = |f(k, l)|2, (9.2)

y ∈ Rd, (k, l) ∈ MR+
,

where f is the scattering amplitude for v and fy is the scattering amplitude for vy,
where

vy(x) = v(x− y), x ∈ Rd, y ∈ Rd. (9.3)

Formula (9.1) is known, in particular, from the theory of solitons; see, e.g., [N9].
Besides, |f |2 on MR+

does not determine uniquely even the point Bethe-Peierls-

Fermi- Zel’dovich-Berezin-Faddeev potential potential v0,α supported at {0}, for d = 3;
see [N16]. More precisely, we have the formulas:

fα(k, l) =
1

2π2

1

α+ i
√
E
, (9.4)

|fα(k, l)|2 = |f−α(k, l)|2, (9.5)

α ∈ R, (k, l) ∈ MR+
,

where fα is the scattering amplitude for the point potential v0,α, for d = 3.
An analogous result is also valid in dimension d = 1.

10. Results of [N15] on modified Problem 1.3a for d ≥ 2
Let

S = {|f |2, |fj |2, j = 1, . . . , n}, (10.1)

where f is the initial scattering amplitude for v satisfying (1.2a), fj is the scattering
amplitude for

vj = v + wj , j = 1, . . . , n, (10.2)

where w1, . . . , wn are additional a priori known background scatterers such that

wj ∈ L∞(Rd), suppwj ⊂ Ωj , (10.3)

Ωj is an open bounded domain in Rd, Ωj ∩D = ∅,

wj ̸= 0, wj1 ̸= wj2 for j1 ̸= j2 in L∞(Rd),

j, j1, j2 ∈ {1, . . . , n}.

In other words, S consists of the phaseless scattering data |f |2, |f1|2, . . . , |fn|2 mea-
sured sequentially for the unknown scatterer v and then for the unknown scatterer v in
the presence of known scatterer wj nonintersecting v for j = 1, . . . , n.

12
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In this section we consider the following modified version of Problem 1.3a:
Problem 10.1. Reconstruct potential v from its phaseless scattering data S for some

appropriate a priori known background scatterers w1, . . . , wn.
Problem 10.1 in dimension d = 1 for n = 1 was, actually, considered in [AS]. However,

to our knowledge, Problem 10.1 in dimension d ≥ 2 was not considered in the literature
before work [N15].

Let the Fourier transforms v̂ and ŵj be represented as follows:

v̂(p) = |v̂(p)|eiα(p), ŵj(p) = |ŵj(p)|eiβj(p), (10.4)

where p ∈ Rd, j = 1, . . . , n.
In [N15], for v , w1, w2 satisfying (1.2a), (10.3), we give, in particular, the following

formulas for solving Problem 10.1, for d ≥ 2, n = 2:

|v̂j(p)|2 = |fj(k, l)|2 +O(E−1/2) as E → +∞,

p ∈ Rd, (k, l) ∈ ME , k − l = p, j = 0, 1, 2,
(10.5)

where v0 = v, f0 = f , vj is defined by (10.2), j = 1, 2;

|v̂|
(
cosα
sinα

)
= (2 sin(β2 − β1))

−1×(
sin β2 − sin β1

− cos β2 cos β1

)(
|ŵ1|−1(|v̂1|2 − |v̂|2 − |ŵ1|2)
|ŵ2|−1(|v̂2|2 − |v̂|2 − |ŵ3|2)

)
,

(10.6)

where

|v̂| = |v̂(p)|, α = α(p), βj = βj(p), |ŵj | = |ŵj(p)|, |v̂j | = |v̂j(p)|, j = 1, 2,

sin(β2(p)− β1(p)) ̸= 0, |ŵ1(p)| ̸= 0, |ŵ2(p)| ̸= 0, p ∈ Rd. (10.7)

Formulas (10.5) follow from (5.1) and are the Born formulas for |f |2, |f1|2, |f2|2 at
high energies. Using (10.5) we find |v̂|, |v̂1|, |v̂2| from |f |2, |f1|2, |f2|2 at high energies.

Using (10.4), (10.6) for appropriate w1, w2 we find v̂ from |v̂|, |v̂1|, |v̂2| and from a
priori known ŵ1, ŵ2.

In connection with conditions (10.7), for simplicity, we can also assume that, for
example:

w2(x) = w1(x− y), y ∈ Rd\{0}. (10.8)

In this case we have that

|ŵ2(p)| = |ŵ1(p)|, β2(p) = β1(p) + py, p ∈ Rd, (10.9)

and, therefore,

conditions (10.7) are fulfilled if and only if p ∈ Rd\(Ay ∪ Z),
Ay = {p ∈ Rd : e2ipy = 1}, Z = {p ∈ Rd : |ŵ1(p)| = 0}.

(10.10)
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In addition:

Ay is closed and MeasAy = 0 in Rd, y ̸= 0, (10.11)

Z is closed and MeasZ = 0 in Rd, (10.12)

where properties (10.12) follow from (10.3).
Thus, using (10.5)-(10.7) and assuming, for example, (10.8) one can see that the

phaseless scattering data S = {|f |2, |f1|2, |f2|2} at high energies in dimension d ≥ 2 and
the background scatterers w1, w2 uniquely determine v. More precisely, one can reconstruct
v̂(p) from S at high energies and from ŵ1, ŵ2 for any p ∈ Rd\(Ay ∪ Z), where Ay, Z are
defined in (10.10), using formulas (10.5) with k, l as in (5.2) and then using formula (10.6).

Actually, the reconstruction result for Problem 10.1 consisted in formulas (10.5)-(10.7)
is an analog of the old reconstruction result for Problem 1.2a consisted in formula (5.1).

11. Results of [AHN]
In [AHN], for d ≥ 2, we succeeded, in particular, to give a stable iterative reconstruc-

tion

S on ΓE , w1, w2
stable reconstruction−→ uj(·, E) on Rd, j = 1, 2, 3, . . . (11.1)

such that
∥uj(·, E)− v∥L∞(D) = O(E−αj ) as E → +∞, (11.2)

αj =
1

2

m− d

d+ 2ρ+ m−d
2N+1

(
1−

(
m− d

m+ 2ρ+ m−d
2N+1

)j)
, j ≥ 1,

under the assumptions that v satisfies (1.2a), v ∈Wm,1(Rd), m > d, N ∈ N, w1, w2 satisfy
(10.3) and

w1(x) = w(x− T1), w2(x) = w(x− T2), x ∈ Rd, (11.3)

w ∈ C(Rd), w = w̄, w(x) = 0 for |x| > R,

ŵ(p) = ŵ(p) ≥ κ(1 + |p|)−ρ, p ∈ Rd,
(11.4)

for some fixed T1, T2 ∈ Rd, T1 ̸= T2, R > 0, κ > 0, ρ > d. (A broad class of w satisfying
(11.4) was constructed in Lemma 1 of [AN1].)

Here, S is defined as in (10.1) for n = 2 and ΓE is defined as in (8.1) for δ = 1.
One can see that

α1 =
1

2

m− d

m+ 2ρ+ m−d
2N+1

, (11.5a)

αj →
j

2
if m→ +∞, (11.5b)

αj → α∞ =
1

2

m− d

d+ 2ρ+ m−d
2N+1

if j → +∞, (11.5c)
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α∞ → +∞ if m→ +∞, N → +∞. (11.5d)

In [AHN], for d ≥ 2, we also give, in particular, a stable iterative reconstruction

S on ΓE , w1, w2
stable reconstruction−→ uj(·, E) on Rd, j = 1, 2, 3, . . . (11.6)

such that
∥uj(·, E)− v∥L∞(D) = O(E−αj ) as E → +∞, (11.7)

αj =
1

2

m− d

d+ 2ρ

(
1−

(
m− d

m+ 2ρ

)j)
, j ≥ 1,

under the assumptions that v satisfies (1.2a), v ∈Wm,1(Rd), m > d, w1, w2 satisfy (10.3)
and

w1(x) = w(x− T1), w2(x) = iw(x− T1), x ∈ Rd, (11.8)

where w satisfies (11.4).
Here, S is defined as in (10.1) for n = 2 and ΓE is defined as in (8.1) for δ = 1.
One can see that

α1 =
1

2

m− d

m+ 2ρ
, (11.9a)

αj →
j

2
if m→ +∞, (11.9b)

αj → α∞ =
1

2

m− d

d+ 2ρ
if j → +∞, (11.9c)

α∞ → +∞ if m→ +∞. (11.9d)

Note that an analog of u1 of (11.1), (11.2) and an analog of u1 of (11.6), (11.7) were
constructed, first, in [AN1]. These u1 are analogs for the phaseless case of u1 of (5.3) for
the phased case. In turn, reconstructions (11.1), (11.2) and (11.6), (11.7) are analogs for
the phaseless case of reconstruction (8.3), (8.4) for the phased case.

In addition, in [AHN] we implemented numerically a version of reconstruction (11.1),
(11.2) for the case of three background scatterers w1, w2, w3 and we implemented numer-
ically reconstruction (11.6), (11.7); see Section 4 of [AHN].

12. Formulas of [N14], [N17] reducing Problem 1.3b to Problem 1.2a
Let

f1(k, l) = c(d, |k|)f(k, l), (k, l) ∈ ME , (12.1)

a(x, k) = |x|(d−1)/2(|ψ+(x, k)|2 − 1), x ∈ Rd\{0}, k ∈ Rd\{0}, (12.2)

where c is the constant of (1.3), ψ+, f are the function of (1.3), (3.1), (3.4), ME is defined
by (1.4).

In [N14], for v satisfying (1.2a), we succeeded, in particular, to give the following
formulas reducing Problem 1.3b to Problem 1.2a, for d ≥ 2:
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(
Re f1(k, l)
Imf1(k, l)

)
=M

((
a(x1, k)
a(x2, k)

)
−
(
δa(x1, k)
δa(x2, k)

))
, (12.3)

M =
1

2 sin(φ2 − φ1)

(
sinφ2 − sinφ1

− cosφ1 cosφ2

)
, (12.4)

x1 = sl̂, x2 = (s+ τ)l̂, l̂ = l/|l|, (12.5)

φj = |k||xj | − kxj , j = 1, 2, (12.6)

φ2 − φ1 = τ(|k| − kl̂), (12.7)

δa(x1, k) = O(s−α), δa(x2, k) = O(s−α) as s→ +∞ (12.8)

uniformly in k̂ = k/|k|, l̂ = l/|l| and τ at fixed E > 0,

α = 1/2 for d = 2, α = 1 for d ≥ 3, (12.9)

where
sin(φ2 − φ1) ̸= 0, (12.10)

(k, l) ∈ ME , s > 0, τ > 0.
Formulas (12.1), (12.3)-(12.10) are explicit two-point formulas for approximate finding

phased f(k, l) at fixed (k, l) ∈ ME , k ̸= l, from phaseless |ψ+(x, k)|2 at two points x =
x1, x2 defined in (12.5), where s is sufficiently large.

In turn, article [N13] gives exact versions (without error terms) of formulas (12.1),
(12.3)-(12.10) for the 3-point case for d = 1; see [N12], [N13] for details.

Detailed estimates for the error term δa(x, k) = O(s−α) in (12.3), (12.8), (12.9) are
given in [NS], for d = 3 and for d = 2. However, the main drawback of the two-point for-
mulas (12.1), (12.3)-(12.10) for finding phased f from phaseless |ψ+|2 is a slow decay of the
error as s → +∞; see (12.3), (12.8), (12.9). This drawback motivated our considerations
given in [N17].

In [N17], for v satisfying (1.2a), for fixed (k, l) ∈ ME , k ̸= l, for d = 3 and d = 2, we
succeeded, in particular, to give

formulas for finding f(k, l) up to O(s−n) as s→ +∞ (12.11)

from |ψ+(x, k)|2 given at 2n points x = x1(s), . . . , x2n(s),

where
xi(s) = ri(s)l̂, i = 1, . . . , 2n, l̂ = l/|l|, (12.12)

r2j−1(s) = λjs, r2j(s) = λjs+ τ, j = 1, . . . , n,

λ1 = 1, λj1 < λj2 for j1 < j2, τ = τfixed > 0.

The point is that in (12.11) we have a rapid decay of the error as s → +∞ if n is
sufficiently large. For d = 3, n = 1, formulas (12.11), (12.12) reduce to (12.1), (12.3)-
(12.10).
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The general idea of obaining the 2n-point formulas (12.11), (12.12) can be described
as follows.

We use that, under assumptions (1.2a), formula (1.3) admits the following much more
precise version:

ψ+(x, k) = eikx +
ei|k||x|

|x|(d−1)/2

( n∑
j=1

fj(k, |k| x
|x| )

|x|j−1
+O

( 1

|x|n
))

as |x| → ∞, (12.13)

where x ∈ Rd, k ∈ Rd, k2 = E > 0, n ∈ N.
Then, for fixed (k, l) ∈ ME , k ̸= l, we look for formulas for finding fj(k, l) up

to O(s−(n−j+1)) as s → +∞, j = 1, . . . , n, from |ψ+(x, k)|2 given at 2n points x =
x1(s), . . . , x2n(s) of the form (12.12), where fj = fj(k, l), j = 1, . . . , n, are the functions
arising in (12.13).

Using the later formulas for f1 and using (12.1) we obtain formulas (12.11), (12.12).
For precise form of formulas (12.11), (12.12) we refer to [N17].
The aforementioned formulas of [N13], [N14], [N17] reducing Problem 1.3b to Problem

1.2a permit to apply to the phaseless inverse scattering Problem 1.3b well developed meth-
ods existing for the inverse scattering Problem 1.2a with phase information; see Sections
4-8 for some of these methods.
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