Robust calibration of numerical models based on relative regret - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Robust calibration of numerical models based on relative regret

Résumé

Classical methods of parameter estimation usually imply the minimisation of an objective function, that measures the error between some observations and the results obtained by a numerical model. In the presence of random inputs, the objective function becomes a random variable, and notions of robustness have to be introduced. In this paper, we are going to present how to take into account those uncertainties by defining a family of calibration objectives based on the notion of relative-regret with respect to the best attainable performance given the uncertainties and compare it with the minimum in the mean sense, and the minimum of variance.
Fichier principal
Vignette du fichier
article.pdf (3.94 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02464780 , version 1 (03-02-2020)
hal-02464780 , version 2 (19-10-2020)
hal-02464780 , version 3 (06-11-2020)

Identifiants

  • HAL Id : hal-02464780 , version 1

Citer

Victor Trappler, Élise Arnaud, Arthur Vidard, Laurent Debreu. Robust calibration of numerical models based on relative regret. 2020. ⟨hal-02464780v1⟩
404 Consultations
322 Téléchargements

Partager

More