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Abstract

Classical methods of parameter estimation usually imply the minimisation of an objective

function, that measures the error between some observations and the results obtained by

a numerical model. In the presence of random inputs, the objective function becomes a

random variable, and notions of robustness have to be introduced.

In this paper, we are going to present how to take into account those uncertainties

by defining a family of calibration objectives based on the notion of relative-regret with

respect to the best attainable performance given the uncertainties and compare it with

the minimum in the mean sense, and the minimum of variance.
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1. Introduction

Numerical models are widely used to study or forecast natural phenomena and im-

prove industrial processes. However, by essence models only partially represent reality

and sources of uncertainties are ubiquitous (discretisation errors, missing physical pro-

cesses, poorly known boundary conditions). Moreover, such uncertainties may be of

different nature. [1] proposes to consider two categories of uncertainties. On the one

hand aleatoric uncertainties, coming from the inherent variability of a phenomenon, e.g.

intrinsic randomness of some environmental variables. On the other hand, epistemic

uncertainties coming from a lack of knowledge about the properties and conditions of

the phenomenon underlying the behaviour of the system under study. The latter can
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be accounted for through the introduction of ad-hoc correcting terms in the numerical

model, that need to be properly estimated. Thus, reducing the epistemic uncertainty can

be done through parameters estimation approaches. This is usually done using optimal

control techniques, leading to an optimisation of a well chosen cost function which is

typically built as a comparison with reference observations. An application of such an

approach, in the context of ocean circulation modeling, is the estimation of ocean bottom

friction parameters in [2] and [3].

If parameters to be estimated are not the only source of uncertainties, their optimal

control is doomed to overfit the data, e.g to artificially introduce errors in the controlled

parameter to compensate for other sources. If such uncertainties are of aleatoric nature,

then the parameter estimation is only optimal for the observed situation, and may be

very poor in other configurations, phenomenon coined as localized optimisation in [4].

Taking into account aleatoric uncertainties in optimisation problems takes several names,

including robust optimisation, robust design in [5], or optimisation under uncertainties

[6, 7, 8].

Let’s denote k ∈ K the parameter set to be estimated to reduce epistemic errors. The

aleatoric uncertainties are modelled as a random vector U whose sample space is U. The

probability measure of U is PU, and its density, if it exists, is pU. The cost function

J(k,U) is a random variable in this context. It is most often defined as the squared

norm of a given function G(k,U)

J(k,U) =
1

2
‖G(k,U)‖2 (1)

For instance, in data assimilation, J describes a distance between the output of the

numerical model and given observed data, plus generally some regularization terms. For

a practical purpose, we assume that for every realisation u ∈ U of U, finding ku ∈ K

that minimises the cost function k 7→ J(k,U = u) is a well-posed problem, and that

the optimum is unique. Additionally, the following assumptions are made: the cost

function is strictly positive, and ∀ k ∈ K, the random variable J(k,U) has finite first-

and second-order moments.

In this paper, we aim at finding k̂ a robust estimator of k. The definition of robust-

ness differs depending on the context in which it is used. Indeed, one definition of the

robustness of an estimate is a measure of the sensibility of said estimate to outliers [9].
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This lead to the introduction of robust norms in data assimilation [10]. In a Bayesian

framework, robustness may refer to the sensitivity to a wrong specification of the pri-

ors [11]. Throughout this paper, robust has to be understood as satisfactory for a broad

range of u, and/or as insensitive as possible to uncertainties encompassed in U.

The usual practice consists in neglecting the variability of U by setting it to an a

priori value ub. In this case, k̂ is set to the optimum kub of J(k,U = ub). There is no

guarantee on the performance of k̂ if the calibrated model is used for predictions, as the

estimated value will compensate the error made by a possibly wrong specification of ub.

In a data assimilation context, this situation appears if ub does not properly represent

the conditions on which the observations have been obtained. Another strategy, that

consists in minimising J over the joint space K × U, is not always possible or relevant.

The complexity of the optimisation is increased, and the computed estimation of k̂ has

no reason to be robust in the end: this kind of method does not take into consideration

the variability of the uncertain variable. The worst-case approach [12] is another popular

method, and is based on the minimisation with respect to k of the maximum of the cost

function for u ∈ U: mink maxu J(k,U = u). This approach may yield over-conservative

solutions, and does not take into account the random nature of U.

Accounting for the probabilistic nature of U leads to study the distribution of the

random variable J(k,U), or the distribution of its minimisers kU. The latter is referred

as the distribution of the conditional minimisers, notion that appeared notably in [13] and

in [14] for a global optimisation purpose. Both approaches and related robust estimates

are described in Section 2. Section 3 introduces a new class of estimators, by relaxing the

constraint of optimality and defining regions of acceptability, similarly as [15] in discrete

combinatorial problems, or [16, 17] in operation research. The intention is that a robust

estimate provides values of the cost function close enough to the attainable minimum for

each configuration induced by u ∈ U. Illustration of the various described methods are

given on a numerical exemple in Section 4.

2. Classical robust estimators

As mentioned before, robustness can be understood as satisfactory for a broad range

of u, and/or as insensitive as possible to uncertainties encompassed in U. Under this
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definition, one may design robust estimators, either by using the moments of the cost

function; or by exploiting the distribution of its minimisers.

2.1. Optimisation of the moments

Let us define µ(k) and σ2(k), the expected value and the variance of the cost variable

for a given k as

µ(k) = EU [J(k,U)] =

∫
U
J(k,u)pU(u) du (2)

σ2(k) = VarU [J(k,U)] =

∫
U

(J(k,u)− µ(k))
2
pU(u) du (3)

Minimising the expectation leads to the estimate kE defined by:

kE = arg min
k∈K

µ(k) (4)

In order to take into account the spread around the mean value, one can choose to

minimise the variance, leading to kV:

kV = arg min
k∈K

σ2(k) (5)

A lot of different methods are readily available to solve these minimisation problems.

For instance, stochastic Sample Approximation [18, 19] is based on a finite and fixed set

of samples {ui}i=1...N of U. The estimations at a given k are computed using standard

Monte Carlo, resulting in the following optimisation problems:

k̂E = arg min
k∈K

N∑
i=1

J(k,ui) (6)

and

k̂V = arg min
k∈K

N∑
i=1

J(k,ui)−
N∑
j=1

J(k,uj)

2

(7)

If computationally affordable, one can perform these estimations on a regular grid on

K × U. In case of expensive computer code, one can build a meta model to ease the

minimisation, such as Gaussian processes [20]. Even though kE is a reasonable choice,

there is no guarantee that J(kE,U = u) will not reach catastrophic level for some u.

On the other hand, using kV will ensure stability of the cost function, but without any

control of its performance. Ideally, one would want to have a small expectation and a
4



small variance at the same time. Multi-objective optimisation is a proper tool to deal

with these simultaneous and sometimes concurrent objectives, for exemple by computing

the Pareto front of
(
µ(k), σ2(k)

)
as done in [21].

As the computation of this Pareto front is usually hard and expensive, alternative

strategies based on the minimisation of a scalarized version of the vector of objectives

are often considered. Some are based on a weighted sum of the objectives, as presented

in [22] and in [23], while some others are based on the minimisation of one of the objectives

under constraints on the others, as performed in [24]. Both of these methods are based

on an delicate choice of weights or of constraints before any computation. This choice

relies heavily on a knowledge of the properties of the cost function.

To summarise, even though the notions of mean and variance are quite easily under-

stood, getting a satisfactory estimator is not that straightforward. One could instead

consider how often a particular value k is a minimiser of the cost function, leading to the

notion of most probable estimate, as explained in the next subsection.

2.2. Most probable estimate

Let us consider the minimal cost attainable in each configuration brought by u. The

resulting conditional minimum is denoted J∗:

J∗ : u ∈ U 7−→ J∗(u) = min
k∈K

J(k,U = u) (8)

Similarly, the function of conditional minimisers can then defined by:

k∗ : u ∈ U 7−→ k∗(u) = ku = arg min
k∈K

J(k,U = u) (9)

Using this function, we can define the corresponding random variable K∗ as

K∗ = k∗(U), (10)

and its associated density function pK∗(k), that will be further referred as the density of

minimisers. The mode of this density is called the Most Probable Estimate (MPE) and

is noted kMPE:

kMPE = arg max
k∈K

pK∗(k) (11)

To give some intuition on this estimate, let us imagine that the distribution of minimisers

is a dirac centered on kMPE. Then it would mean that this estimate is the minimiser of
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the cost function whatever the realisation of the uncertain variable, therefore optimal in

all conditions. If the distribution pK∗ is heavily dominated by a single value, the MPE

may be a good candidate for robust control. This is not so obvious in the case of a

multimodal distribution.

In general, an analytical form of pK∗ is usually impossible to obtain, so an estimation

p̂K∗ must be used, and its maximum computed to get the MPE. In the rest of the paper,

the hat notation will indicate an estimation using numerical values of the underlying

theoretical quantity. Once again, a set of samples {ui}i=1...N can be used to compute

the set {kui}i=1...N , from which one can approximate pK∗ . The resulting approximation

and therefore its mode, is sensitive to the density estimation method. Main methods are

KDE (Kernel Density Estimation) [25], and EM (Expectation-Maximisation) [26].

KDE is a non-parametric estimation technique based on the use of a kernel function

f . Assuming an isotropic kernel, the estimation has the following form:

p̂K∗(k) =
1

NhdimK

N∑
i=1

f

(
k− kui

h

)
(12)

where h is the bandwidth. In a multidimensional setting, one usually consider a kernel

based on the product of 1D kernels, applied independently to all components: f(k) =∏dimK
j=1 f1D(k(j)) where k(j) is the j-th component of k. There is wide choice of available

f1D, and a popular choice is the Gaussian kernel f1D(x) = 1√
2π

exp(−x2/2).

The EM algorithm can also be used to estimate the density, by minimising the statis-

tical distance between the empirical distribution and a mixture of ν Gaussian densities.

The estimation has then the following form:

p̂K∗(k) =

ν∑
i=1

πiφ(k; mi,Σi) (13)

where φ(·; m,Σ) is the probability density function of the normal distribution of mean

m and covariance matrix Σ, and {πi}i=1...ν are the mixing coefficients.

In practice, despite the fact that those methods are well established, using them in

a plug-in approach has some flaws. One of the basic assumption of density estimation

is to assume that K∗ is a continuous random variable, hypothesis that may be violated.

Worse, the notion of mode is not well defined when the distribution of the minimisers

is a discrete-continuous mixture. This may result in inconsistent estimations of k̂MPE
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when using different methods as illustrated in next subsection.

2.3. Numerical illustration

Before going further in the explanation of our approach, let us illustrate the nature

of previously detailed estimators, k̂E, k̂V and k̂MPE on two analytical cost functions.

These functions are based on the Branin-Hoo’s function, slightly modified to ensure

strict positivity:

BH(x1, x2) =
1

51.95

[(
x̄2 −

5.1x̄21
4π2

+
5x̄1
π
− 6

)2

+

(
10− 10

8π

)
cos(x̄1)− 44.81

]
+ 2

(14)

with x̄1 = 3x1 − 5, x̄2 = 3x2 (15)

Using Eq. (14), we define the two cost functions on K× U = [0, 5]× [0, 5] as:

JBH : (k,u) 7→ BH(k,u)

JBHswap : (k,u) 7→ BH(u,k)

Even though the functions are quite similar, the asymmetric roles of k and u cause

different behaviour in the estimations.

The random variable U is assumed to be uniformly distributed over U. The estima-

tions are based on a 1000× 1000 regular grid over K×U. Both cost functions are shown

on the top of Figure 1.

The left, (resp. right), column stands for JBH (resp. JBHswap). Functions µ(k) and

σ(k) are drawn on the bottom row, respectively in purple and green. The corresponding

minimisers k̂E and k̂V are also plotted. On this figure, we can observe that k̂E and k̂V

are close for JBH, while being significantly different for JBHswap.

Similarly, estimations of k̂MPE are depicted on Figure 2. The top row shows the

contours of both functions as well as the set of conditional minimisers {kui}1≤i≤N in red,

as defined in Eq. (9). The bottom row presents three approximations of the density of

minimisers: the histogram in grey (bin size selected using Freedman-Diaconis from [27]),

the result of a kernel density estimation (KDE) with Gaussian kernels in red (using

Scott’s rule from [28] for bandwidth selection), and the estimation by a Gaussian mixture,

calculated with the EM algorithm. The number of Gaussians has been fixed to 3, a guess
7
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Figure 1: The left column concerns JBH, while the right one deals with JBHswap. Contours of both

functions are plotted on the top, and curves of µ(k) and σ(k) are shown on the bottom (respective scales

are not displayed). Estimates k̂E and k̂V are plotted with the dashed line.

based on the general shape of the histogram. Respective estimations of k̂MPE are also

depicted using dashed lines.

For JBHswap, we can observe that those three methods give consistent results, as

k̂MPE,KDE = k̂MPE,EM = k̂MPE,histogram ≈ 0.8. This is not the case for JBH: using

Kernel density estimation (Gaussian), the estimation of kMPE is k̂MPE,KDE ≈ 1.5, while

using the histogram and Gaussian mixture, k̂MPE,histogram = k̂MPE,EM = 3.8.

This difference is explained by the accumulation of minimisers at this point: this

challenges the assumption that K∗ is continuous. As the density estimation techniques

traditionally assume this continuity, the EM algorithm fits this using a normal distri-

bution with a very small variance, while the KDE considers a sum of Gaussian kernels

of constant bandwidth, located at the same point. This particular problem highlights

an issue with kMPE, as its estimation is possibly sensitive to the density approximation

procedure.
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Figure 2: Top Left: JBH along with conditional minimisers in red. Bottom left: Estimated densities

using KDE and EM algorithm and the histogram. The dashed lines indicate the MPE found using those

methods. Right: Same quantities with JBHswap.

Instead of just considering the optimal minimisers, we introduce a bit of leeway,

and look for “acceptably not optimal” parameters. This slackness takes the form of a

relaxation coefficient and its choice defines a new family of robust estimators, where each

one of its member carries information on its robustness through this coefficient.

3. Relative regret-based family of estimators

3.1. Relaxing the optimality constraint

The density of minimisers has been estimated by optimising k 7→ J(k,U = u) over

K for different realisations of u. Instead of focusing on optimal values, we propose to

consider their acceptable neighbourhood in terms of performance of the cost function as

well. To do so, for each u, k is deemed acceptable when J(k,U = u) ≤ αJ∗(u), with

α > 1. In this context, for a given k, the set Rα(k) ⊆ U is defined as the set of u, for
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which k is acceptable:

Rα(k) = {u ∈ U | J(k,U = u) ≤ αJ∗(u)} (16)

Figure 3 details the successive steps for the construction of the set Rα. First, the con-

ditional minimisers are computed, as shown on the top plots. Afterwards, for a given

level α = 1.5, the set of acceptable k can be identified for each u ∈ U, as shown on the

bottom left plot. Finally, the region Rα(k) is the subset of U for which k is acceptable,

as represented with a vertical slice on the bottom right plot.

Introducing the random nature of U, one can define Γα(k) as the probability that k

is acceptable given α:

Γα(k) = PU [U ∈ Rα(k)] = PU [J(k,U) ≤ αJ∗(U)] (17)

In other words, Γα(k) is the probability that J(k,U) is between J∗(U) and αJ∗(U).

Noting that without relaxation, i.e. when α is set to 1, Γ1 is non-zero if the set

{u ∈ U | J(k,U = u) = J∗(u)} has non-zero measure with respect to PU. It happens

when the distribution of K∗ presents atoms.

This can be linked to the definition of the distribution of the minimisers K∗. For

instance, if K is a discrete set, we can rewrite Γ1 as Γ1(k) = PU [J(k,U = u) = J∗(U)] =

PU [k = k∗(U)] which is the probability mass function of K∗.

The motivation behind this relaxation is to take into account the local behaviour

of the function around the conditional minimisers. For a given set of environmental

conditions u, if the function k 7→ J(k,U = u) is flat around its minimum k∗(u), then

choosing k∗(u) + ε (for a small ε) will produce a value closer to the minimum than when

the function has a high curvature. In addition to that, relaxing the constraint using a

multiplicative constant puts more weight on the values of k∗(u) when J∗(u) is small.

The choice of the relaxation constant α can be made to ensure the existence of a

parameter that is “acceptable” with a certain probability. For instance, given that J > 0,

Γα(k) is increasing with respect to α for any k ∈ K. We can then focus on the smallest

value of α such that Γα reaches a certain level of confidence p ∈ [0, 1]. This leads to the

10
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Figure 3: Principle of the relaxation of the constraint on JBH, and illustration of Rα(k). Top plots:

Computation of the conditional minimisers k∗(u). Top right plot: the set (k∗(u),u) of conditional

minimisers is represented in red. On the bottom left plot, for a relaxation α = 1.5, and u = 3, the

acceptable k are in cyan, while the non-acceptable ones are in orange, while the frontier {(k∗(u),u) |
J∗(u) = J(k,U = u)} is in yellow. On the bottom right plot, the set Rα(k) for α = 1.5 and k = 1.5 is

in green.

definition of αp

αp = inf {α ≥ 1 | ∃kp ∈ K, Γα(kp) ≥ p}

= inf

{
α ≥ 1 | max

k∈K
Γα(k) ≥ p

}
(18)11



that is the smallest α, such that there exists a particular kp ∈ K for which J(kp,U) ≤
αpJ

∗(U) with probability p. {kp for p ∈ [0; 1]} defines the relative-regret family of robust

estimators (RRE). This formulation can be linked to the quantiles and Value-at-Risk of

the random variable maxk{J(k,U)/J∗(U)}, that is a measure of risk usually applied in

the financial sector (see [29]). For different levels p, and thus different αp, Figure 4 shows

examples of Γαp
for JBHswap. By definition, the associated kp is then the first value for

which Γαp
reaches p. We can see that changing the level p shifts the maximiser of Γαp

,

and that for small α, Γα(k1) is also very small. This indicates that k1 is located quite

far from the conditional minimisers, and arise as a compromise when the relaxation is

large enough.

0 1 2 3 4 5

k

0.2

0.4

0.6

0.8

1.0

Γ
α

k1k0.8k0.6

Illustration of the probability Γαp for different p
and associated kp

Γα(k), α = α1

Γα(k), α = α0.8

Γα(k), α = α0.6

Figure 4: Illustration of the influence of different levels p on Γαp and on kp for JBHswap

By considering the particular case where p = 1, a relation between k1 and α1 can be

derived, by using Eq. (18) and the strict positivity of the cost function:

PU

[
J(k1,U)

J∗(U)
≤ α1

]
= 1 (19)

it follows then that

α1 = sup
u∈U

J(k1,U = u)

J∗(u)
= inf

k∈K

{
sup
u∈U

J(k,U = u)

J∗(u)

}
(20)

This alternative definition of α1 is useful to estimate it quickly whenever a grid over

K × U has already been evaluated, thus avoiding multiple computations of Γα(k) until

its maximum reaches 1. From Eq. (20), choosing a level of confidence equal to 1 is
12



then equivalent to looking for the worst-case scenario of the ratio J(k,U = u)/J∗(u).

Therefore it may suffer from the same pitfall as the worst-case approach. As mentioned

in the introduction, this is not suited for random variable with unbounded support as it

may return over-conservative solution, provided that a solution exists in the first place.

αp can be an indicator of the robustness of kp. A high value of α1 corresponds to a

high ratio J(k,U = u)/J∗(u) for at least one particular u. In that sense, J(k1,U = u)

may be possibly very high. More generally, for a fixed level of confidence p, αp is the

slackness needed to be able to reach the probability p. We can then see that it is sensible

to study jointly p, αp and kp.

3.2. Choosing the relaxation coefficient

In order to choose the quantities introduced above, there are three choices: either

fixing p, either fixing the maximal threshold α, or looking for a compromise between p

and α. The most trivial way is to set α, to find the couples of points (k,u) verifying

J(k,U = u) ≤ αJ∗(u), and then to estimate the probability Γα(k) defined in Eq. (16).

For instance, when N sampled values of U: {ui}1≤i≤N are available, a possible estimator

of Γα is

Γ̂α(k) =
Card

{
ui | J(k,U = ui) ≤ αJ∗(ui)

}
N

(21)

However, this may be a risky approach. Indeed if α is chosen too small, the resulting p̂ =

maxk Γ̂α(k) will be also small, meaning that the cost function will have non acceptable

values with high probability.

Similarly, if p is fixed, the corresponding α̂p is computed by searching for the smallest

α satisfying maxk Γ̂α(k) = p. Once again, if α̂p is too large, the relaxation needed to get

acceptable values with probability p is very high, so the resulting estimation k̂p may not

be relevant for the future application.

Also, choosing p = 1 is possible only if the sample space of U is bounded. An
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illustration of this flaw appears in the following simple problem:

K = U = [0, +∞[

J(k,U = u) = u(k− u)2 + 1

k∗(u) = u

J∗(u) = 1

In this case, for each k ∈ K, limu→+∞ J(k,U = u)/J∗(u) = +∞, so there is no k such

that the ratio J/J∗ can be bounded, hence α1 does not exist in this case.

Looking for a compromise between p and α would be preferable. This could be

achieved by studying p 7→ αp, and particularly its slope. If this curve presents a steep

increase, the multiplicative constant αp must be increased by a large amount in order to

increase the probability p by a small amount. Interesting couples (p, αp) would then be

the ones located before an abrupt increase of the slope of p 7→ αp.

Another possibility is to model this compromise by the ratio (p/αp), as it increases

with respect to p and decreases with respect to αp. The level of confidence pratio is then

defined as the maximiser of p 7→ p/αp.

3.3. Numerical Illustration

In this Section, we will compare the different estimators introduced previously and

summarised in Table 1 on JBH and JBHswap.

Definition Related quantities Interpretation

arg min k∈K EU [J(k,U)] kE Long run performances

arg min k∈K VarU [J(k,U)] kV Steady performances

arg max k∈K pK∗(k) kMPE Most probable minimiser

inf {α | ∃kp ∈ K, Γα(kp) ≥ p} (p,kp, αp) Acceptable values

with fixed probability p

pratio = arg max p/αp (pratio,kratio, αratio) Maximal ratio of p and αp

Table 1: Robust estimators, based on a cost function J

As stated before, we chose to model the uncertainties as a random variable uniformly

distributed on U. The bounded nature of U allows us to consider members of the RRE
14



up to a level of confidence p = 1. From now on, k̂MPE is estimated using KDE with

Gaussian kernels.

The smallest estimated relaxation α̂1 and the corresponding k̂1 has been computed for

JBH and JBHswap, using a regular grid of 1000×1000 points on K×U. The contour plots

of those functions can be seen in the top plots of Figure 5. The frontier corresponding

to the couples of points (k,u) verifying {J(k,U = u) = αJ∗(u)} has been drawn on

top of these contour plots, for α = α̂1 and an arbitrary α = 1.5 < α̂1 to illustrate the

effect of the acceptable region when the relaxation α changes. On the bottom plots, the

curves k 7→ Γ̂α(k) for α = α̂1 and α = 1.5 along with the histograms of the minimisers

are represented.

One can notice that the relaxation allows us to avoid the issue brought by the accu-

mulation of the minimisers of JBH at 3.8, as opposed to the MPE and its dependence on

the estimation procedure of the distribution.

In order to choose a satisfying level of confidence p, we are going to study p 7→ α̂p

and p 7→ p/α̂p, as described in Section 3.2.

The plot of p 7→ α̂p for JBH on Figure 6 shows what seems to be a piecewise linear

behaviour. The last change of slope, i.e. for p ≈ 0.9 corresponds to a local maximum

of the ratio, while the first change of slope at p̂ratio = 0.654 corresponds to the global

maximum of the ratio. The RRE will then be evaluated for both of these values, as well

as p = 1 for reference.

For JBH, the numerical values of the robust estimators can be found in Table 2. For

this particular problem, the different estimates are close to each other.

Table 2: Estimation performed for JBH, sorted by value

Estimate Value

k̂V 1.371

k̂p, p = 1 1.557

k̂E 1.587

k̂MPE 1.628

k̂ratio, p̂ratio = 0.654 1.637

k̂p, p = 0.90 1.797
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Figure 5: Top: JBH and JBHswap contours. The thick yellow lines are the boundaries of the acceptable

region defined for α̂1, the thick orange are for α = 1.5. The red dashed line is the estimation k̂1. Bottom:

Γ̂α for α = 1.5 and α = α̂1, and estimated density of the minimisers.

Practically speaking, in order to compare the effective values taken by the objective

function given an estimate k̂ we are going to consider the functions u 7→ J(k̂,U = u),

that we will call “profiles of k̂”. Those profiles are well suited for the representation of

the cost function for an estimate k̂ fixed as the uncertain variable is modelled with a 1D

uniform random variable.
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Figure 6: Evolution of the couples (p, αp) and corresponding ratio p/αp for JBH. The dashed line

indicates the level p associated with the highest ratio

For JBH, the curves are plotted in Figure 7.

By construction, the profile of k̂1 is always within the shaded region, corresponding

to [J∗(u), α̂1J
∗(u)]. The profile of k̂E in contrast, exceeds α̂1J

∗(u) for u close to 5, while

the profile of k̂V does it for u close to 0. Except for k̂V, the different estimators give

somewhat comparable results.

By contrast, JBHswap will show a different behaviour as Figure 8 provides the plots

of p 7→ α̂p and p 7→ p/α̂p.

Compared to the similar plots for JBH in Figure 6, α̂p exhibits a smoother behaviour

for JBHswap as no abrupt change of slope is easily discernable and the ratio presents a

unique maximum for p̂ratio = 0.766. The numerical values of the estimations k̂ presented

in Table 3 show that, contrary to JBH, the calibrated values are more spread over K.

Profiles of the different estimates of JBHswap are shown in Figure 9.

In this case, k̂MPE, k̂E and k̂ratio present a similar behaviour. They perform very

well for u > 2, especially for k̂MPE which is very close to the minimal value; however

for u < 2, they produce high values of the function. The performances of k̂1 are closer

to the performances of k̂V for this function, but it performs worse than k̂E and k̂V for

u > 2, even though its range is designed to stay within the interval [J∗(u); α̂1J
∗(u)].
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k̂ratio coincide in this case

Table 3: Estimations performed for JBHswap, sorted by value

Estimate Value

k̂MPE 0.606

k̂ratio, p̂ratio = 0.766 1.537

k̂E 1.752

k̂V 2.638

k̂1, p = 1 2.798

We have seen how some classical robust estimators and the RRE behave on two

different analytical problems. In addition to the usual levels of confidence such as 90%
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Figure 8: Evolution of the couples (p, αp) and corresponding ratio p/αp for JBHswap. The dashed line
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and 95%, one can also settle for an ad-hoc compromise, where p maximizes the ratio

p/αp. When the sample space of U is bounded, a conservative solution is to set p = 1.

We are now going to see how can robust minimisation is applied on the calibration of a

numerical model.

4. Robust calibration of a numerical model

4.1. Calibration of a toy numerical model

We will follow the approach described in [30] in order to establish the function G
described in the first section in Eq. (1), and the resulting cost function J .

The calibration of a numerical model is usually based on the comparison between

the numerical model and some observations, during a fixed time interval [0, T ] called

assimilation window. The modelled physical system can be seen as a map from U to

Y, the space of observations, denoted as Mo : u 7→ Mo(u), where u ∈ U is an input

representing some environmental conditions. The observation mentioned above is the

output of the physical system during the time-window, and is denoted byMo(utrue) ∈ Y,

where utrue ∈ U is unknown.
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In addition of u, the numerical modelM depends on some other input k ∈ K. This

additional parametrization comes usually from the successive simplifications needed to

implement a numerical model of the observed physical system. k needs to be calibrated

accordingly, so that the numerical model can be used to predict the behaviour of the

physical system under different operating conditions.

The misfit G is defined as the difference between the numerical model and the obser-

vation. Choosing a squared norm, the cost function J defined in Eq. (1) is

J(k,U = u) =
1

2
‖G(k,u)‖2 =

1

2
‖M(k,u)−Mo(utrue)‖2 (22)
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4.2. The Shallow Water equations

The model to calibrate is an implementation of the 1D Shallow Water equations,

described in Eq. (23), where h is the height of the water column, q the discharge, and

z the bathymetry, while g is the usual gravitation constant. The parameter to calibrate

k is the quadratic friction term, proportional to the square of the inverse of Manning-

Strickler coefficient. The environmental parameter u is the amplitude of a sine wave of

period 1/ω0. The domain of those two parameters are K = [0.0, 1.3] and U = [0.5, 0.7].



∂th+ ∂xq = 0

∂tq + ∂x

(
q2

h + g
2h

2
)

= −gh∂xz − kq|q|h−7/3

h(0, t) = 20.0 + 3 · sin
(
2πt
2

)
+ 1.5 · u · sin

(
2πt
ω0

)
∂xq(0, t) = 0

(23)

These equations are integrated using a finite-volume scheme on a discretized domain

[0, L], up to a time T . The output of the computer code is the sea surface height h, on the

center of all the volumes and at all the time-steps, that will be denotedM(k,u; ω0 = 1.0).

In this setting, the random variable U is uniformly distributed on U.

To generate the observation, we set utrue = 2/3, and defineMo based on the computer

model M, such that Mo(utrue) = M(ktrue,utrue; ω0 = 0.999). ω0 represents here the

uncontrollable error between the observations and the numerical model and will now be

omitted systematically in the notation.

The true value of the bottom friction ktrue = (ktrue1 , ktrue2 , . . . , ktrueNvol
) is not constant

over the whole domain, and is defined as

ktruei = 0.2 ·
(

1 + sin

(
2πxi
L

))
where xi is the center of the i-th volume. The two sources of systematic errors are the

one-dimensionality of K, and ω0. Given this setting, there exists no couple (k,u) ∈
K×U reproducing exactly the observations, thus the cost function will always be strictly

positive.

4.3. Computation of the robust estimates

As the numerical model is expensive to run, it has first been evaluated on a relatively

small regular grid covering K × U, and a metamodel based on Gaussian processes is
21



constructed using those initial evaluations. In order to better capture the locus of the

conditional minimisers {(k∗(u),u) | u ∈ U}, we select points maximising the PEI crite-

rion [31, 32] in order to add points to the design that improve the metamodel accuracy

close to the conditional minimisers. Afterwards, a bigger regular grid is evaluated by the

metamodel once the design space has been sufficiently explored, and these computations

are used to calibrate the model.

The different steps of the estimation are illustrated Figure 10, where the top plot

shows the contour plot of J , with the conditional minimisers and the RRE of level p = 1.

On the middle plot are shown the conditional moments, k̂E and k̂V and the estimated

density of the minimisers. At the bottom of the Figure, Γ̂αp
are represented for different

levels p. As U is bounded, p = 1 is attainable, and k̂1 is evaluated.

We can see that the different estimations seem less problematic for this problem than

for the analytical examples shown in Section 3.3, as everything appears to be very smooth

and unimodal.

Looking at p 7→ αp and p 7→ p/αp on Figure 11, we can see that αp evolves almost

linearly for p > 0.5, and that the ratio p/αp is monotonically increasing, so that the

maximal ratio is found for p = 1.

The different estimates take a wide range of values, as seen on Table 4, from 0.249

to almost 1.0, while ktruei ∈ [0, 0.4] for 1 ≤ i ≤ Nvol. It can be noted that the calibration

may lead to values outside the range given by the true ones. This can be interpreted

as the fact that the calibration look to compensate for errors on ω0. As a basis for

comparison, the global minimiser of J over K × U has also been computed, and k̂global

is then obtained by discarding the u value.

Similarly as for JBH and JBHswap, the profiles are depicted Figure 12.

We can see that the performances of k̂1 and k̂E are very similar, but k̂1 has better

performances when u > 0.6. When comparing with the global optimiser k̂global, k̂1

performs better when u < 0.625, so more than half of the time. We are now going to

compare how well some of those calibrated values compare in a forecast context.

4.4. Assessing the quality of the forecast of the calibrated model

For the calibration, the model has been integrated on a time-period [0, T ], called

assimilation window, and have been compared with the observation of the sea water
22



0.0 0.2 0.4 0.6 0.8 1.0 1.2

k

0.50

0.55

0.60

0.65

0.70

u

Contours of J

k∗(u)

{(k,u)|J(k,u) = α̂1J
∗(u)}

k̂1

Global minimiser

0.0 0.2 0.4 0.6 0.8 1.0 1.2

k

M
ea

n
an

d
st

an
d

ar
d

d
ev

ia
ti

on

Conditional moments and conditional minimizers

µ(k)

σ(k)

KDE estimation of K∗

0.0 0.2 0.4 0.6 0.8 1.0 1.2

k

0.0

0.2

0.4

0.6

0.8

1.0

Γ̂
α

(k
)

k̂1

k̂0.9

k̂0.8

k̂0.7

Γ̂αp for p = 0.7, 0.8, 0.9 and 1

Figure 10: Procedure of robust calibration for the shallow water problem. Top: contours of J , conditional

minimisers and {(k,U = u)|J(k,u) = α̂1J∗(u)}. Middle: Conditional moments and histogram and KDE

of the conditional minimisers. Bottom: Γ̂αp for different levels p

height on the same time-period. We now want to compare the quality of the different

forecasts originating from different calibrated bottom frictions. Those forecasts result

from the integration of the numerical model between the time T and a time Tpred: the

forecast window.

Given the probabilistic nature of the environmental conditions U, the forecasts will

also be probabilistic. We will then compare Mo
pred(U) and Mpred(k,U), that are the

observation, and the numerical model on the forecast window for a calibrated k.

Two metrics will be computed: the squared forecast error, and the Continuous Ranked
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Table 4: Calibrated values of k according to different criteria, for the shallow water problem

Estimate Value

k̂MPE 0.249

k̂global 0.290

k̂p, p = 1 0.423

k̂p, p = 0.90 0.458

k̂E 0.501

k̂p, p = 0.80 0.505

k̂p, p = 0.70 0.560

k̂V 0.990

Probability Score (CRPS) [33]. The parameters satisfying a robust criterion that are

compared are the minimiser of the expectation k̂E, the minimiser of the variance k̂V and

the relative regret of level p = 1, k̂1 as described in the previous section. We will also

feature the global minimiser k̂global, and the conditional minimisers k̂∗(ui) where the

chosen environmental variables are {ui}1≤i≤4 = {0.5, 0.55, 0.65, 0.7}. Those values, even

though they do not meet a robustness criterion, are introduced in order to have a more
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precise idea on the possible performances of a deterministic version of the calibration

problem. The conditional minimiser k̂∗(0.6) has been omitted as it results in a value

very similar to the minimum of the expectation.

4.4.1. Squared forecast error

A first simple approach to measure the forecast quality is to take the squared difference

between the numerical model and the observation for two samples of U. Given two

environmental conditions u and u′ ∈ U, the former used to run the computer simulation

and the latter to generate the observations, the squared forecast error for the parameter

k is

Spred(k,u,u′) =
(
Mpred(k,u)−Mo

pred(u′)
)2 (24)

Averaging over both u and u′ defines the mean squared forecast error, defined on
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every point of the spatial domain, and at every time-steps. This can be done using

a Monte-Carlo approximation. As u and u′ are i.i.d., assuming that we have a set of

samples {ui}1≤i≤Nu , the squared forecast error can then be approximated:

S(k) =
1

N2
u

Nu∑
i=1

Nu∑
j=1

Spred(k,ui,uj) =
1

N2
u

Nu∑
i=1

Nu∑
j=1

(
Mpred(k,ui)−Mo

pred(uj)
)2 (25)

The mean squared forecast error averaged over the whole space and over all the time-

steps gives an indication on the overall prediction quality of the prediction given this

metric, and are represented on the right of Figure 13. We can see that k̂global performs

slightly better than k̂1, itself performing slightly better than k̂E. Averaging S(k̂) over the

time steps between T and Tpred, we have an indication on the quality of the forecast in

the squared sense depending on the spatial coordinate x, as seen on the left of Figure 13.
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Figure 13: Squared forecast error for the shallow water case, depending on the calibrated parameter.

The left figure shows the squared error time-averaged as a function of the spatial coordinate x, while the

right barplot shows the relative change of the mean forecast error, averaged over time and space, taken

w.r.t. to the best attained performance for k∗(0.7)

We can see that the mean forecast error squared, on the right side, averaged over
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time and space is the smallest for the conditional minimisers k̂∗(0.7) and k̂∗(0.65), then

k̂global, while k̂1.0 performs slightly better than k̂E.

It may seem surprising that some parameters calibrated without a robustness aspect

perform better than k̂1 and k̂E, but their performances are largely dependent on the

choice of u and their associated conditional minimisers. Good forecasts can be achieved

as well as bad ones, as shown for u = 0.5, that leads to bad forecasts.

One issue with the squared forecast error is that it will penalize strongly the forecasts

that present high variability with respect to the environmental conditions. A way to deal

with this is to use another metric, that takes the probabilistic nature of the forecasts

into account.

4.4.2. Continuous Ranked Probability Score

Given the random variablesMpred(k̂,U) andMo
pred(U), representing the probabilis-

tic forecast and the probabilistic observations, we can define the cumulative distribu-

tion functions (CDF) Fpred(·, k̂) and F opred(·) The Continuous ranked probability score

(CRPS) measures the squared difference between the predicted CDF Fpred using a cali-

brated value, and the CDF of the observations F opred.

CRPS(k) =

∫
R

(Fpred(ξ,k)− F opred(ξ))2 dξ (26)

The left plot of Figure 14 shows the CRPS averaged over time, where x denotes the

spatial coordinate and the right plot shows the value of the CRPS averaged over time and

space. The difference between the squared forecast error and the CRPS is apparent when

comparing the general trends shared by the different calibrated parameters. According to

the squared error, the sea water height of the physical region x = 4 is not well predicted,

while around x = 8, the predictions are better. On the other hand, according to the

CRPS, the region around x = 8 provide worse forecasts than when x = 4 and x = 7.

Given the properties of the two metrics, we can conclude that the region around x = 4

presents a lot of variability with respect to u, for both the true model and the numerical

one. However, for x ≈ 8, there is a lot less variability, as the low squared error indicates,

but probably a higher bias, due to the systematic errors between the truth and the

numerical model.
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Figure 14: CRPS computed for different calibrated parameters for the shallow water case. The left figure

shows the CRPS time-averaged as a function of the spatial coordinate x, and the right figure shows the

relative change of the CRPS averaged over time and space, taken with respect to the best attained CRPS

for k∗(0.7)

The numerical evaluations of the CRPS for different parameters show the same order

of performances observed for the squared error: the calibrated parameters that present

the best performances for forecasts according to those two metrics are k̂∗(0.7), k̂∗(0.65)

which is very similar to k̂global, and then k̂1, and k̂E. This presupposes to know which u

to choose for the conditional minimisation, thus having a strong insight on the value of

the parameters in the first place.

Conclusion

In this paper, we dealt with a problem of robust calibration, or in other terms, the

robust minimisation of an objective function. To adress this issue, we proposed a new set

of robust estimators: the family of the RRE (Relative-regret estimators), and compared

it in a forecast context to some other robust estimators, for the calibration of the bottom
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friction of a shallow water model.

Our approach is based on the will to be as close as possible to the conditional min-

imisers with high probability. At a level p, in addition to the estimation, we have the

relaxation coefficient αp that bounds with probability p the relative error of the cost

function. This helps us to assess the robustness properties of the proposed estimation.

Except for simple analytical examples, the exact evaluation of a member of the RRE

is very expensive computer-wise, not to say impossible. Some bottlenecks appear: the

computations of the conditional minimisers k∗(u) and the minimum J∗(u), that require

very local exploration of K for every u; and the computations of the probability of

overshooting a given bound that depends on J∗(u) (analogous to a probability of failure),

task that requires an efficient exploration of the whole sample space U.

For the calibration of the shallow water model presented in Section 4, we chose to

construct a response surface based on Gaussian processes, which is then used for the

extensive computations. This construction is first based on an initial design, that is

enriched to better capture the locus of the conditional minimisers using the PEI criterion

introduced in [31].

Comparing the performances of the different estimates in a forecast context, one can

see that for the two metrics introduced in Section 4, k̂1 performs better than k̂E, but

is sometimes outperformed by “non-robust” solutions. Those require some additional

knowledge about the environmental conditions, and did not present some robust proper-

ties during the calibration phase.

Practically speaking, the estimation of those quantities is very crude, so the com-

putational cost may be very expensive. As perspective, specific strategies have to be

created, based for instance on sequential design of computer experiments using Gaus-

sian processes, to diminish the amount of runs needed of the numerical model. Ideally,

one would want to develop an acquisition criterion, that makes the balance between the

minimisation of a well-chosen probability of failure, and the exploration around the con-

ditional minimisers. Finally, the models upon which this calibration procedure have been

applied are very simplistic. We plan in the future to apply this to the robust calibration

of the bottom friction of a realistic model of the ocean.
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