SPOQ lp-Over-lq Regularization for Sparse Signal Recovery applied to Mass Spectrometry - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Signal Processing Année : 2020

SPOQ lp-Over-lq Regularization for Sparse Signal Recovery applied to Mass Spectrometry

Afef Cherni
  • Fonction : Auteur
  • PersonId : 175574
  • IdHAL : afef-cherni
Emilie Chouzenoux
Laurent Duval

Résumé

Underdetermined or ill-posed inverse problems require additional information for sound solutions with tractable optimization algorithms. Sparsity yields consequent heuristics to that matter, with numerous applications in signal restoration, image recovery, or machine learning. Since the l0 count measure is barely tractable, many statistical or learning approaches have invested in computable proxies, such as the l1 norm. However, the latter does not exhibit the desirable property of scale invari-ance for sparse data. Generalizing the SOOT Euclidean/Taxicab l1/ l2 norm-ratio initially introduced for blind deconvolution, we propose SPOQ, a family of smoothed scale-invariant penalty functions. It consists of a Lipschitz-differentiable surrogate for p-over-q quasi-norm/norm ratios with p ∈ ]0, 2[ and q ≥ 2. This surrogate is embedded into a novel majorize-minimize trust-region approach, generalizing the variable metric forward-backward algorithm. For naturally sparse mass-spectrometry signals, we show that SPOQ significantly outperforms l0, l1, Cauchy, Welsch, and CEL0 penalties on several performance measures. Guidelines on SPOQ hyperparameters tuning are also provided, suggesting simple data-driven choices.
Fichier principal
Vignette du fichier
Cherni_A_2020_PREPRINT_spoq_lpolqrssrams.pdf (1.73 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02454518 , version 1 (24-01-2020)

Identifiants

Citer

Afef Cherni, Emilie Chouzenoux, Laurent Duval, Jean-Christophe Pesquet. SPOQ lp-Over-lq Regularization for Sparse Signal Recovery applied to Mass Spectrometry. IEEE Transactions on Signal Processing, 2020, 68, pp.6070--6084. ⟨10.1109/TSP.2020.3025731⟩. ⟨hal-02454518⟩
382 Consultations
157 Téléchargements

Altmetric

Partager

More