Curiosities and counterexamples in smooth convex optimization - Archive ouverte HAL
Article Dans Une Revue Mathematical Programming Année : 2021

Curiosities and counterexamples in smooth convex optimization

Résumé

Counterexamples to some old-standing optimization problems in the smooth convex coercive setting are provided. We show that block-coordinate, steepest descent with exact search or Bregman descent methods do not generally converge. Other failures of various desirable features are established: directional convergence of Cauchy's gradient curves, convergence of Newton's flow, finite length of Tikhonov path, convergence of central paths, or smooth Kurdyka-Lojasiewicz inequality. All examples are planar. These examples are based on general smooth convex interpolation results. Given a decreasing sequence of positively curved C k convex compact sets in the plane, we provide a level set interpolation of a C k smooth convex function where k ≥ 2 is arbitrary. If the intersection is reduced to one point our interpolant has positive definite Hessian, otherwise it is positive definite out of the solution set. Furthermore , given a sequence of decreasing polygons we provide an interpolant agreeing with the vertices and whose gradients coincide with prescribed normals.
Fichier principal
Vignette du fichier
convexFreaks.pdf (1014.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02447733 , version 1 (21-01-2020)
hal-02447733 , version 2 (24-01-2020)

Identifiants

Citer

Jerome Bolte, Edouard Pauwels. Curiosities and counterexamples in smooth convex optimization. Mathematical Programming, 2021, ⟨10.1007/s10107-021-01707-1⟩. ⟨hal-02447733v2⟩
215 Consultations
294 Téléchargements

Altmetric

Partager

More