Machine learning for IoT network monitoring - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Machine learning for IoT network monitoring

Résumé

The growing Internet of Things (IoT) market introduces new security challenges for network administrators. Most IoT devices are poorly configured making them a target of choice for attackers. Mirai botnet illustrates the threat posed by IoT devices. In this context, Machine Learning techniques can be leveraged to detect attacks in IoT networks. Indeed, contrary to desktop computers or laptops, IoT devices are used for very specific tasks. Therefore, the generated network traffic follows a predictable pattern making data analysis techniques well suited to detect a deviation from the expected behavior. In this paper, we present machine learning based techniques for IoT network monitoring. We first built an experimental smart home network to generate network traffic data. The network traffic is described using features, such as the size of the first N packets sent and received along with the corresponding inter-arrival times. We then train and test classification algorithms for devices recognition purposes. We also describe how to use autoencoders for anomaly detection in IoT networks.
Fichier principal
Vignette du fichier
final_RESSI_2019_ML_for_IoT_network_monitoring.pdf (272.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02438733 , version 1 (14-01-2020)

Identifiants

  • HAL Id : hal-02438733 , version 1

Citer

Mustafizur R Shahid, Gregory Blanc, Zonghua Zhang, Hervé Debar. Machine learning for IoT network monitoring. RESSI 2019: Rendez-vous de la Recherche et de l'Enseignement de la Sécurité des Systèmes d'Information, May 2019, Erquy, France. pp.1-3. ⟨hal-02438733⟩
253 Consultations
274 Téléchargements

Partager

More