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Abstract—The growing Internet of Things (IoT) market in-
troduces new security challenges for network administrators.
Most IoT devices are poorly configured making them a target
of choice for attackers. Mirai botnet illustrates the threat posed
by IoT devices. In this context, Machine Learning techniques
can be leveraged to detect attacks in IoT networks. Indeed,
contrary to desktop computers or laptops, IoT devices are used
for very specific tasks. Therefore, the generated network traffic
follows a predictable pattern making data analysis techniques
well suited to detect a deviation from the expected behavior. In
this paper, we present machine learning based techniques for
IoT network monitoring. We first built an experimental smart
home network to generate network traffic data. The network
traffic is described using features, such as the size of the first
N packets sent and received along with the corresponding inter-
arrival times. We then train and test classification algorithms
for devices recognition purposes. We also describe how to use
autoencoders for anomaly detection in IoT networks.

I. INTRODUCTION

The total number of IoT devices is expected to reach
75 billion by 2030 [1]. The growing IoT market introduces
new challenges for network administrators [2]. Mirai botnet
infected more than 600,000 devices around the world [3]. IoT
botnet are primarily used for DDoS attacks. Legacy network
monitoring methods are not tailored to cope with the ever
growing IoT network.

Given the huge diversity of IoT devices (thermostat, camera,
smart bulb, etc), device type recognition is critical. It will help
to enforce security by applying device specific filtering rules.
For example, knowing that a device is a security camera from
a specific manufacturer can help the network administrator to
configure the network so that the camera will not be allowed
to do anything else than what it is expected to do. Device
type recognition can also be used to block the access to the
network of devices considered to be vulnerable.

Machine learning can also be leveraged to perform intrusion
detection. Indeed, unsupervised machine learning algorithms
can be leveraged to define the legitimate networking behavior
of each IoT device in the network. To this purpose, autoen-
coders, an unsupervised neural network architecture, can be
used. Any deviation from the expected behavior would trigger
an alert indicating malicious activities.

In this paper, we present machine learning based approaches
for IoT network monitoring. After presenting the related work
in Section II, we describe the network traffic generation
process in Section III. We also define the set of features used to
describe network traffic data. Then in Section IV, a machine
learning based device type recognition method is presented

along with the experimental results. Next, in Section V an
autoencoder based anomaly detection model is proposed.

II. RELATED WORK

A few works exist focusing on IoT device type identifica-
tion. Y. Meidan et al. [4] [5] present a machine learning based
network traffic analysis approach to identify IoT devices. The
purpose is to create whitelists of authorized devices. T. D.
Nguyen et al. [6] propose a method to detect compromised
IoT devices taking advantage of the temporal periodicity of
traffic generated by IoT devices . First, legitimate communi-
cation profiles are created for individual devices. A recurrent
neural network is then used to detect any deviation from the
legitimate behavior. M. Miettinen et al. [7] present a method
to identify the type of an IoT device being connected to the
network by analyzing network traffic generated during the
device setup. They use features extracted from link, network,
transport and application layers of the packets sent by a device
during its setup phase. B. Bezawada et al. [8] also describe a
method to perform device behavioral fingerprinting. Our work
on IoT device recognition through network traffic classification
differs from existing ones in that we use a very different set
of features that are easily extractable even from encrypted
network traffic.

Some works focus on leveraging machine learning for
intrusion detection in IoT. R. Doshi et al. [9] use supervised
machine learning to perform DDoS attack detection in IoT
network. Other works take advantage of unsupervised learning
[10] [6]. In [10], Y. Meidan et al. describe network traffic
using statistics aggregated by source IP, source IP-MAC,
channel and socket. That is, the developed system assume
that the IP and MAC addresses of each device are known
beforehand. Which is not necessarily the case if the devices
communicate through a NAT proxy and the detection system
is located outside the local network. Moreover, the work
primarily focuses on detecting infected devices and does not
aim to separate malicious communications from legitimate
ones. In [6] data are extracted from the incoming packet
flows and are fed to a Gated Recurrent Unit (GRU) that
estimates the occurrence probability of each new packet. A
device is considered as being compromised if the probability
of occurrence of a stream of packets fall below a determined
threshold. They train a different model for each device. Hence,
the device type needs to be known beforehand to apply the
appropriate model limiting the capabilities of the approach.
The presented method is also limited because it requires the



Fig. 1: Experimental smart home network

developed NIDS to be deployed in the same local network as
the monitored device because network flows are defined based
on the MAC address of the monitored device.

III. NETWORK TRAFFIC DATA

Two types of network traffic is needed for our study:
legitimate IoT network traffic and malicious network traffic
(generated by malware targeting IoT devices). To generate
legitimate IoT network traffic, a small smart home network
is built as shown in Figure 1. The experimental smart home
network consists of 4 smart devices: TP-Link Connected Bulb,
Nest Security Camera, Mini, D-Link Motion Detector and
Wemo Switch Smart Plug. The communication of the devices
is collected thanks to a Raspberry Pi placed between the
wireless access point and the Internet as shown in Figure 1.
The network traffic is collected for 7 days. The collected data
is split into a training set and a test set. To get malicious
network traffic we have two solutions. Either we generate the
malicious traffic in an offline network by purposely infecting
a device, or we can get malicious traffic collected by an IoT
honeypot such as IoTPOT [11]. The raw network traffic is
preprocessed to extract useful features to feed the learning
algorithms with. Our work focuses only on TCP connections.
Hence, bidirectional flows identified by the tuple (source IP,
destination IP, source port, destination port) are extracted from
the raw network traffic. The bidirectional flows are described
by the following features:

• The size of the first N packets sent
• The size of the first N packets received
• The N - 1 packet inter-arrival times between the first N

packets sent
• The N - 1 packet inter-arrival times between the first N

packets received

IV. IOT DEVICE RECOGNITION

In this section we test six different machine learning al-
gorithms to classify the bidirectional flows according to the
IoT device they belong to. Note that for this study only the
legitimate network traffic is needed. The tested classification
algorithms are Random Forest, Decision Tree, SVM (with
rbf kernel), k-Nearest Neighbors, Artificial Neural Network

TABLE I: Overall performance on the test set of the different
classifiers

accuracy micro-av.
precision

micro-av.
recall

micro-av.
F1 score

RF .999 .999 .999 .999
DT .995 .995 .995 .995

SVM .993 .993 .993 .993
KNN .989 .989 .989 .989
ANN .986 .986 .986 .986
GNB .919 .919 .919 .919

(ANN) and Gaussian Naı̈ve Bayes. The ANN is a fully con-
nected feedforward neural network consisting of two hidden
layers with 10 neurons each and using a dropout rate of 0.5
for regularization. The variable N, defined in Section III, is
equal to 10. The metrics used to assess the performance are
the accuracy, the micro-average of precision and recall, and
the F1 score. The accuracy of the classifier is the proportion
of flows that are correctly classified. Let us consider our 4-
class classification problem. The four classes are device1,
device2, device3 and device4. Let TPi, TNi, FPi and FNi

be the number of true positive, true negative, false positive,
and false negative respectively for devicei. The micro-average
of precision, recall and F1 score are given by:

microAvPrecision =
∑

TPi∑
TPi+

∑
FPi

microAvRecall =
∑

TPi∑
TPi+

∑
FNi

microAvF1Score = 2 microAvPrecision.microAvRecall
microAvPrecision+microAvRecall

The results are shown in Table I.
With an overall accuracy of 91.9%, Gaussian Naive Bayes

is the algorithm that performs the worst. All other algorithms
achieve a high performance with an overall accuracy on the
test set ranging between 98.6% and 99.9%. The best perfor-
mance is achieved by the Random Forest classifier. Further
details about the experiments are available in [12].

We also evaluate the performance achieved by the Random
Forest classifier for different values of N (N being the number
of packets sent and received that are taken into consideration,
as defined in Section III). The obtained results are shown in
Figure 2. The classifier achieves high accuracy even with a
small value of N. Hence, for N equal to 2, the overall accuracy
is as high as 98.9%. The maximum accuracy of 99.9% is
achieved for N equal to 6 and higher.

V. ANOMALY DETECTION FOR IOT NETWORKS

Anomaly detection, also referred as unsupervised learning,
is well-suited for IoT network because contrary to a laptop
an IoT device performs a specific task. Indeed, the main
difficulty encountered in general purpose network consisting
of desktop computers, laptops or smartphone is the great
variability and randomness of the generated network traffic.
We propose to develop intrusion detection system in the case
of a smart home environment. To this purpose we will explore
unsupervised deep learning algorithms such as autoencoders.
Anomaly detection models are trained on legitimate network



Fig. 2: Overall accuracy achieved by the Random Forest
classifier for different values of N

Fig. 3: Autoencoder

traffic data. The model learns the legitimate networking be-
havior profile of the device. Any networking activity that
deviates from the expected behavior is considered as being
malicious. An advantage of unsupervised learning is that it is
able to detect new previously unseen attacks. An autoencoder
is a particular neural network architecture that copy its input
to its output under some constraints as shown in Figure 3
[13]. The constraint forces the neural network to learn an
efficient representation of the input data. The constraint can
be to limit the number of neurons in the hidden layer (vanilla
autoencoder). The difference between the output and the input
is called the reconstruction error. An autoencoder is very bad
in reconstructing outliers. Hence, the reconstruction error can
be used to detect anomaly. For each IoT device type, a different
autoencoder is trained. Th eautoencoder will learn the expected
legitimate behavior of the device. If the reconstruction error
is too high, it indicates a possible attack.

VI. CONCLUSION

In this work we presented different machine learning based
approaches for IoT network monitoring. First, an experimental
smart home network was built to generate network traffic data.
Bidirectional TCP flows are then extracted from the generated
network traffic. Features used to describe bidirectional flows
include the size of the first N packets sent and received, along
with the corresponding inter-arrival times. The collected data
are used to train different classification algorithms to recognize
the IoT device type. An overall accuraccy of 99.9% is achieved
by the Random Forest classifier. Further details about the work
are available in [12]. Finally, we propose to use unsupervised
deep learning algorithms, such as autoencoder, to detect at-
tacks in IoT networks. In the future, the developed device type
recognition and anomaly detection models will be integrated
to a software defined networking (SDN) environment.
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