On Farrell-Tate cohomology of GL(3) over rings of quadratic integers - Archive ouverte HAL
Pré-Publication, Document De Travail Journal of Pure and Applied Algebra Année : 2019

On Farrell-Tate cohomology of GL(3) over rings of quadratic integers

Résumé

The goal of the present paper is to push forward the frontiers of computations on Farrell-Tate cohomology for arithmetic groups. The conjugacy classification of cyclic subgroups is reduced to the classification of modules of group rings over suitable rings of integers which are principal ideal domains, generalizing an old result of Reiner. As an example of the number-theoretic input required for the Farrell-Tate cohomology computations, we discuss in detail the homological torsion in PGL(3) over principal ideal rings of quadratic integers, accompanied by machine computations in the imaginary quadratic case.
Fichier principal
Vignette du fichier
gl3om-arxiv.pdf (411.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02435963 , version 1 (11-01-2020)
hal-02435963 , version 2 (19-10-2022)

Identifiants

Citer

Bui Anh Tuan, Alexander D. Rahm, Matthias Wendt. On Farrell-Tate cohomology of GL(3) over rings of quadratic integers. 2020. ⟨hal-02435963v1⟩
128 Consultations
83 Téléchargements

Altmetric

Partager

More