
HAL Id: hal-02435963
https://hal.science/hal-02435963v1

Preprint submitted on 11 Jan 2020 (v1), last revised 19 Oct 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Farrell-Tate cohomology of GL(3) over rings of
quadratic integers

Bui Anh Tuan, Alexander D. Rahm, Matthias Wendt

To cite this version:
Bui Anh Tuan, Alexander D. Rahm, Matthias Wendt. On Farrell-Tate cohomology of GL(3) over
rings of quadratic integers. 2020. �hal-02435963v1�

https://hal.science/hal-02435963v1
https://hal.archives-ouvertes.fr


ON FARRELL–TATE COHOMOLOGY OF GL3

OVER RINGS OF QUADRATIC INTEGERS

BUI ANH TUAN, ALEXANDER D. RAHM AND MATTHIAS WENDT

Abstract. The goal of the present paper is to push forward the frontiers of
computations on mod ` Farrell–Tate cohomology for arithmetic groups. We

deal with `-rank 1 cases different from PSL2. The conjugacy classification of

cyclic subgroups of order ` is reduced to the classification of modules of C`-
group rings over suitable rings of integers which are principal ideal domains,

generalizing an old result of Reiner. As an example of the number-theoretic

input required for the Farrell–Tate cohomology computations, we discuss in
detail the homological torsion in PGL3 over principal ideal rings of quadratic

integers, accompanied by machine computations in the imaginary quadratic

case.
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1. Introduction

In the present paper, we investigate the mod ` Farrell–Tate cohomology of some
arithmetic groups Γ of `-rank 1. This means that all elementary abelian `-groups
in Γ are in fact cyclic. Via Brown’s formula for Farrell–Tate cohomology, we only
need to know the number of conjugacy classes of cyclic subgroups of Γ of order `
and the Farrell–Tate cohomology of their normalizers. It is well-known, cf. e.g.
the previous computations of mod ` Farell–Tate cohomology for SL2(OK,S) in [14],
that the conjugacy classification of cyclic subgroups translates in some way into
class group questions which can be handled by classical algebraic number theory.

For the groups SL2(OK,S) discussed in [14], the modules over the group rings
OK,S [C`] corresponding to the cyclic subgroups were indecomposable. This is no
longer true for the cyclic subgroups in PGL3(OK,S), and the interaction between
the indecomposable constituents of the corresponding OK,S [C`]-modules has to be
taken into account. On the matrix level, the situation to keep in mind is that of
(3 × 3)-matrices with integer entries which have an upper triangular block form,
one block given by a (2 × 2)-matrix of order `, a further diagonal entry of 1, and
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2 BUI ANH TUAN, ALEXANDER D. RAHM AND MATTHIAS WENDT

the additional new things that need to be handled are the things that appear in
the off-diagonal block.

To deal with this situation, we provide a generalization of a result of Reiner [15],
concerning the classification of Z[C`]-modules. We generalize his result to a partial
classification of OK,S [C`]-modules, provided that OK,S is a principal ideal domain
and the ring OK,S [ζ`] is a Dedekind domain, cf. Theorem 4.4 and Proposition 4.7.
Since the conjugacy classification for cyclic subgroups translates into the isomor-
phism classification of such modules over the group rings, this extension of Reiner’s
result can be used to provide computations of numbers of conjugacy classes in a
number of interesting cases. We also extend Reiner’s result in a different direction:
we describe the automorphism groups of the OK,S [C`]-modules, and this trans-
lates into a computation of the centralizers and normalizers of cyclic subgroups in
suitable arithmetic groups like PGL3(O−m), cf. Section 5.

With these results in hand, we can then discuss a couple of example cases and
provide formulas for the mod ` Farrell–Tate cohomology. The cases we consider are
mod 3 Farrell–Tate cohomology for rings of quadratic integers, cf. Theorem 6.6 for
the imaginary quadratic case and Proposition 6.8 for the real quadratic case. We
also discuss the 5-torsion for PGL3(OQ(

√
5)), the 7-torsion for PGL3(OQ(

√
−7)) and

the `-torsion in PGL`(Z), cf. Section 6. In the imaginary quadratic case, our result
describing the homological 3-torsion is the following, for a proof see page 14.

Theorem 1.1. Let A = Z × Z/6, and let Z/2 act on A by sign inversion to
construct A o Z/2. Then for the integers m ∈ {1, 2, 7, 11, 19, 43, 67, 163}, the mod
3 Farrell-Tate cohomology of PGL3(O−m) admits an isomorphism

Ĥ
•
(PGL3(O−m);F3) ∼= Ĥ

•
(A;F3)⊕λ⊕̃Ĥ

•
(Ao Z/2;F3)⊕µ,

where λ respectively µ are the numbers of conjugacy classes of order-3-subgroups
in PGL3(O−m) which do not, respectively which do, have a dihedral overgroup in
PGL3(O−m).

Here, the cohomology rings Ĥ
•
(A;F3) and Ĥ

•
(AoZ/2;F3) are described explic-

itly in Proposition 6.7 and the discussion that follows it. The numbers λ and µ can
be computed in terms of the Galois-action on the class group of Q(

√
−m, ζ3) and

the action of O×Q(
√
−m,ζ3)

on O−m/(3), cf. Section 6.

We accompany our study by machine computations on Voronoi cell complexes
with GL3(OQ(

√
−m))-action, constructed with Sebastian Schönnenbeck’s software [3,

16]. Using a cell subdivision algorithm that was recently introduced by the au-
thors [6], it has been possible to extract the `-torsion subcomplexes. Then for each
conjugacy class of cyclic subgroups of order `, we get a connected component of
the reduced `-torsion subcomplex, which determines the Farrell–Tate cohomology
of its normalizer and tells us whether it contributes to the quantity λ or µ in The-
orem 1.1. We will describe the machine computations in Section 7, the results for
small quadratic integer rings O−m being displayed in Table 1.

For the casesm = 1, 2, 7, 11, 19, this coincides precisely with the number-theoretic
formulas discussed in Section 6. Note that the cases m = 15 and m = 5 are cases
where the conditions of Theorem 1.1 are not satisfied: in both cases, O−m fails to be
a principal ideal domain, and for m = 15 an additional requirement for our analysis,
3 - m, is violated. In these cases, we cannot yet provide general number-theoretic
counts for the conjugacy classes of order-3-subgroups, but see the discussion of the
case O−5 in Section A

Structure of the paper: A few preliminary statements are made in Section 2,
and the translation between conjugacy classes of cyclic subgroups and modules
over the group rings for the cyclic groups is explained in Section 3. We discuss a
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m 1 2 7 11 15 19 5
λ 0 0 0 0 0 0 1
µ 2 4 3 4 7 3 8

Table 1. Machine results on the parameters λ and µ of Theorem 1.1.

generalization of Reiner’s classification of modules over group rings in Section 4.
A description of the centralizers and normalizers of cyclic subgroups in terms of
the automorphisms of the corresponding modules over the group rings is given in
Section 5. Finally, the example computations are given in Section 6, and we discuss
the machine computations in Section 7.

2. Preliminaries

2.1. Finite subgroups. In the present paper, we will deal with the Farrell–Tate
cohomology of arithmetic groups Γ which are of `-rank 1. This means that the
maximal abelian `-subgroup of G has rank 1. Note that if the arithmetic group Γ =
PGLn(OK,S) for n ≥ 2 contains a non-trivial cyclic group C`, then [K(ζ`) : K] ≤ n.
In that case, if the `-rank is 1, we must have [K(ζ`) : K] > n

2 (and that already
excludes ` = 2). In the specific case Γ = PGL3(OK,S) this means that the degree
[K(ζ`) : K] is either 2 or 3. In the case where K = Q(

√
−m) is an imaginary

quadratic field, this restricts us to the primes ` = 3, 5, 7. Actually, the case ` = 5
doesn’t appear since the quadratic subfield of Q(ζ5) is Q(

√
5) which is real, and the

case ` = 7 only appears for the quadratic subfield Q(
√
−7) of Q(ζ7).

For example, if there is a 5-torsion element in GL3(OQ(
√
−m)), then the cyclo-

tomic field Q(ζ5) must embed into the matrix algebra M3(Q(
√
−m)) with ζ5 map-

ping to the 5-torsion element. This is only possible if [Q(ζ5,
√
−m) : Q(

√
−m)] ≤ 2,

because subfields of the 3× 3-matrix algebra can only have degree at most 3. The
cyclotomic field Q(ζ5) has a unique quadratic subfield which is Q(

√
5) and there-

fore the composite Q(ζ5,
√
−m) has degree 8 whenever m is positive. (This can

also be checked by Pari/GP, a minimal polynomial for the composite is given by
x8 − x6 + x4 − x2 + 1.) In particular, there can be no 5-torsion elements in GL3

over imaginary quadratic number rings.

2.2. Farrell–Tate cohomology and Brown’s formula. To compute the rele-
vant examples of Farrell–Tate cohomology of linear groups, we will use Brown’s
formula for `-rank 1, cf. [4, Corollary X.7.4]. In this case, Brown’s complex of el-
ementary abelian `-subgroups of Γ (also known as the Quillen complex) is in fact
a disjoint union of conjugacy classes of cyclic `-subgroups of Γ, and the formula is
given by

Ĥ
•
(Γ,F`) ∼=

∏
[G≤Γ],G cyclic

H̃
•
(CΓ(G),F`)NΓ(G)/CΓ(G),

where the sum on the right is indexed by the conjugacy classes of finite cyclic
subgroups of Γ. To evaluate the formula, we need to determine the conjugacy
classes of cyclic subgroups as well as the structure of their normalizers. These
questions can be translated into questions about the isomorphism classification
of modules over groups rings, and the question of automorphism groups of such
modules. For cyclic groups, these questions can be approached using the classical
work of Reiner, cf. [15].
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3. Conjugacy classification of cyclic subgroups

In this section, we will relate the conjugacy classification of cyclic subgroups C`
in general linear groups over S-integer rings OK,S to the isomorphism classification
of modules over the group rings OK,S [C`]; this is a rather classical argument, cf.
[11]. The isomorphism classification will be done in the next section, generalizing
Reiner’s article [15] on the isomorphism classification of modules over the integral
group ring Z[C`].

Proposition 3.1. There is an injection from the set of conjugacy classes of em-
beddings C` ↪→ GLn(OK,S) to the set of isomorphism classes of OK,S [C`]-modules
whose underlying OK,S-module is free of rank n. The only isomorphism class not
in the image is the one where the C`-action is trivial.

Proof. (i) Assume we have a subgroup C` ↪→ GLn(OK,S). In particular, we have
a non-trivial action of C` on M = O⊕nK,S . We use this action to turn M into

an OK,S [C`]-module by letting the element [g] for g ∈ C` act via the embedding
C` ↪→ GLn(OK,S).

(ii) Assume we have two subgroups φ, φ′ : C` ↪→ GLn(OK,S) which are conjugate.
Then any conjugating matrix A gives rise to commutative diagrams

O⊕nK,S
φ(g) //

A

��

O⊕nK,S

A

��
O⊕nK,S φ′(g)

// O⊕nK,S

showing that the two OK,S [C`]-modules associated to φ and φ′ are isomorphic via
A.

(iii) Conversely, assume we have an OK,S [C`]-module M whose underlying OK,S-
module is free of rank n. We choose anOK,S-basis forM . The representing matrices
for the automorphisms [g] for g ∈ C` provide an embedding C` ↪→ GLn(OK,S) since
by assumption the action of C` is non-trivial. Different choices of basis will give
rise to subgroups which are conjugate via change-of-basis matrices.

(iv) Assume we have an isomorphism f : M ∼= M ′ of OK,S [C`]-modules as in
(iii). Then a choice of basis for M induces a choice of basis for M ′ via f . With
these choices of bases, the modules M and M ′ give rise to the same subgroup
of GLn(OK,S). The independence-of-basis statement in (iii) implies that the sub-
groups associated to M and M ′ (for arbitrary choices of bases) are conjugate. �

Remark 3.2. It should be pointed out that there is a difference between conjugacy
classes of embeddings C` ↪→ GLn(OK,S) and conjugacy classes of cyclic subgroups
of GLn(OK,S) of order `. For a non-trivial automorphism φ : C` → C` and some
embedding ι : C` ↪→ GLn(OK,S), the two embeddings ι and ι ◦ φ are non-conjugate
while obviously the images of ι and ι ◦ φ are equal as subgroups. This is similar to
the difference between the conjugacy classification of order ` elements and order `
subgroups in [14].

Let φ : C` → C` be an automorphism of the cyclic group. Then φ induces an
OK,S-linear automorphism of OK,S [C`] in the obvious way. For the purposes of the
next result, we call such automorphisms special.

Corollary 3.3. The injection of Proposition 3.1 gives rise to a bijection from the
conjugacy classes of order ` subgroups in GLn(OK,S) to the quotient of the set of
isomorphism classes of OK,S-free OK,S [C`]-modules by the special automorphisms.
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Under the bijection of Proposition 3.1, the centralizer of a subgroup C` ↪→
GLn(OK,S) is isomorphic to the OK,S [C`]-automorphism group of the correspond-
ing module M . The normalizer is isomorphic to the group of OK,S-automorphisms
which are semilinear with respect to a special automorphism of OK,S [C`].

Proof. We consider a fixed subgroup (as opposed to a conjugacy class), and consider
the associated module M , equipped with the corresponding choice of basis. Then a
matrix A in the centralizer of ι : C` ↪→ GLn(OK,S) provides commutative diagrams
for all g ∈ C`:

O⊕nK,S
ι(g) //

A

��

O⊕nK,S

A

��
O⊕nK,S ι(g)

// O⊕nK,S .

As in the proof of Proposition 3.1, this provides an automorphism of the OK,S [C`]-
module M . This construction is obviously compatible with composition.

Conversely, an OK,S [C`]-automorphism of the module M corresponding to ι(C`)
provides a change-of-basis matrix which is in the centralizer of ι(C`). Again, this
is obviously compatible with composition.

The two constructions above are inverses, proving the claim for the centralizer.
The claims for the normalizer are proved in the same way, changing the lower
morphism in the commutative diagram from ι(g) to φ ◦ ι(g). �

Remark 3.4. We will see later that the semi-linear automorphisms correspond to
the action of the Galois group of OK,S [ζ`] over OK,S on GLn(OK,S). Consequently,
one of the contributions to the conjugacy classification is given by the Galois-orbits
on the class group.

4. Modules over cyclic group rings

In this section, we provide a generalization of Reiner’s classification of Z[C`]-
modules, cf. [15]. Reiner’s analysis of the modules over the group ring Z[C`] is
essentially based on the class group theory for cyclotomic integers. In the gen-
eralization to rings of S-integers, we will therefore need some assumption on the
situation, related to existence of relative integral bases.

4.1. Relative integral bases. As usual, denote by Φ`(T ) the `-th cyclotomic
polynomial. If Φ`(T ) is not K-irreducible, then the degree of ζ` over K is a strict
divisor of the degree of Φ`(T ). In this case, we have OK,S [ζ`] = OK,S [T ]/(Ψ`(T ))
where Ψ`(T ) is the minimal polynomial of ζ` over K.

To get a full analogue of Reiner’s result, we assume that the ring
OK,S [T ]/(Φ`(T )) is a Dedekind domain. Some results will work
under the weaker hypothesis that OK,S [ζ`] is a Dedekind domain.
We will make these cases explicit.

Note that even if OK,S [ζ`] is a Dedekind domain, OK,S [T ]/(Φ`(T )) need not be a
Dedekind domain. If Φ`(T ) is not K-irreducible, then the total ring of fractions
is K[T ]/(Φ`(T )) which is a direct sum of copies of K(ζ`), corresponding to the
number of K-factors of Φ`(T ).

Example 4.1. In the case K = Q(
√
−7) and ` = 7, denote by N7 =

∑6
i=0[gi] the

norm element in Z[C7], where g ∈ C7 is a generator. Then OK [C`]/(N7) is a fiber

product of two copies of OK [ζ7] over the quotient OK [ζ7]/(
√
−7

3
) where

√
−7

3
is
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the resultant of the two K-factors of Φ7(T ) = Ψ7(T ) ·Ψ7(T ), where

Ψ7(T ) = T 3 − (ζ7 + ζ2
7 + ζ4

7 )T 2 + (ζ3
7 + ζ5

7 + ζ6
7 )T − 1

= T 3 +

(
1−
√
−7

2

)
T 2 −

(
1 +
√
−7

2

)
T − 1

and

Ψ7(T ) = T 3 − (ζ3
7 + ζ5

7 + ζ6
7 )T 2 + (ζ7 + ζ2

7 + ζ4
7 )T − 1

= T 3 +

(
1 +
√
−7

2

)
T 2 −

(
1−
√
−7

2

)
T − 1.

�

The Dedekind domain requirement is crucial because it provides a bijection be-
tween isomorphism classes of finitely generated torsion-free modules of fixed rank
n and the class group. The ring OK,S [ζ`] is a Dedekind ring precisely when the
relevant powers of ζ` form a relative integral basis of K(ζ`)/K. For most of our
purposes, the following statement will be sufficient.

Lemma 4.2. Let K/Q be a Galois extension with discriminant dK , and let ` be a
prime with (`, dK) = 1. Then

OK(ζ`) = OK [ζ`] ∼= OK [T ]/(Φ`(T )).

Proof. The discriminant of Q(ζ`)/Q is a power of ` so that by assumption the
discriminants of K and Q(ζ`) are coprime. Then the product of the integral bases
of K/Q and Q(ζ`)/Q is an integral basis of K(ζ`)/Q. In particular, any element of

OK(ζ`) is an OK-linear combination of 1, ζ`, . . . , ζ
`−1
` , hence these form a relative

integral basis of K(ζ`)/K. �

Remark 4.3. For the case K = Q(
√
−m) and 3 | m, then there doesn’t exist

a relative integral basis for the extension Q(
√
−m, ζ3)/Q(

√
−m). In particular,

the ring O√−m[ζ3] isn’t the maximal order of Q(
√
−m, ζ3) and hence fails to be a

Dedekind ring. This follows from [2, Theorem I].

4.2. Isomorphism classification. We can now provide our extension of Reiner’s
study of isomorphism classes of modules over group rings for cyclic groups, mostly
following the arguments of [15]. The situation is the following: let K be a number
field, let S be a finite set of places containing the infinite ones, and denote by OK,S
the ring of S-integers in K. Denote by C` the cyclic group of order ` where ` is a
prime. In some cases relevant to computations of Farrell–Tate cohomology, we will
give a classification of finitely generated OK,S [C`]-modules which are OK,S-free.
For this, we assume that OK,S [T ]/(Φ`(T )) is a Dedekind domain. Note that in this
case we actually have OK,S [T ]/(Φ`(T )) ∼= OK,S [ζ`]. Denote by N =

∑
g∈C`

[g] the
norm element.

Theorem 4.4. Let OK,S be a ring of S-integers in a number field and let ` be a
prime. Assume that OK,S is a principal ideal domain and that OK,S [T ]/(Φ`(T )) is
a Dedekind domain. Then the isomorphism classes of finitely generated OK,S-free
OK,S [C`]-modules M are parametrized by

(1) the OK,S [ζ`]-rank r of MN := {m ∈M | N ·m = 0},
(2) the ideal class of the determinant of the OK,S [ζ`]-module MN,
(3) the OK,S-rank s of M/MN,
(4) a min(r, s)-tuple of OK,S [ζ`]

×-orbits of elements in OK,S [ζ`]/(ζ` − 1) (for
the natural multiplication action).

In the above, any non-negative integer is possible in (1) and (3). Any ideal class in
(2) is possible, and any choice of tuple of orbits in (4) is possible.



FARRELL–TATE COHOMOLOGY OF GL3(OQ(
√
−m)) 7

Proof. Choose a generator γ for the cyclic group C`, so to write C` = 〈γ|γ` = 1〉. Let
M be an OK,S-free OK,S [C`]-module. The set MN of elements of M annihilated
by the norm element N has a natural module structure over the quotient ring
OK,S [C`]/(N). The kernel of the natural surjective morphism

OK,S [C`]→ OK,S [T ]/(Φ`(T )) : γ 7→ T

is generated by Φ`(γ) = N. In particular, we get an induced isomorphism

OK,S [C`]/(N) ∼= OK,S [T ]/(Φ`(T )) ∼= OK,S [ζ`].

Since M is OK,S-free, the submodule MN embeds into a direct sum of copies of
K(ζ`) and hence is finitely generated and torsion-free over OK,S [ζ`]. By assump-
tion, OK,S [ζ`] is a Dedekind ring, hence finitely generated and torsion-free implies
projective and the general theory states that MN is of the form OK,S [ζ`]

r−1⊕a with
a a fractional ideal of OK,S [ζ`]. The OK,S [ζ`]-module (and the restricted OK,S [C`]-
module) MN is completely determined by r and the ideal class of a. This provides
the data in (1) and (2).

There is an inclusion of OK,S [ζ`]-modules MN ⊃ (γ − 1)M ⊃ (ζ` − 1)MN. From
standard results on Dedekind rings (as in Reiner’s paper), we have

MN
∼= OK,S [ζ`]

r−1 ⊕ a (as OK,S [ζ`]-modules);

and in this module, (γ−1)M is of the form I1⊕· · ·⊕Ir−1⊕Ira for ideals (ζ`−1) ⊆
Ij ⊆ OK,S [ζ`]. Hence the quotient B := (γ − 1)M/(ζ` − 1)MN is a module over
the quotient ring OK,S [ζ`]/(ζ` − 1), and the latter ring is isomorphic to OK,S/(`)
because the same is true over Z. Consequently, the module (γ−1)M is determined
exactly by an ideal in (OK,S [ζ`]/(ζ` − 1))

r ∼= (OK,S/(`))r.

Remark 4.5. In Reiner’s work [15], we have Z/(`) ∼= F` and the ideal is simply
determined by an integer ≤ r. The same is still true whenever the prime ` is inert
in the field extension K/Q.

The quotient M/MN is a finitely generated torsion-free OK,S-module: by as-
sumption M embeds into a direct sum of copies of K and K(ζ`) and MN is the
part of M which embeds into the K(ζ`)-copies. Hence it is projective and the se-
quence 0 → MN → M → M/MN → 0 splits as OK,S-modules. The module M is
OK,S-free by assumption. Therefore, as OK,S-modules, we have MN

∼= OaK,S ⊕ b

and M/MN
∼= ObK,S ⊕ b−1 for some fractional OK,S-ideal b. The module M/MN

(both as OK,S-module and as OK,S [C`]-module) is determined up to isomorphism
by b and the ideal class of b. Since the ideal b is equivalent to the norm of the
ideal a in the extension OK,S [ζ`]/OK,S , its ideal class is determined by the one of
a. This provides the information in (3).

It remains to identify the OK,S [C`]-module structure of M in terms of the mod-
ule structures of MN and M/MN. The module M is an extension 0 → MN →
M →M/MN → 0 where MN has the OK,S [C`]-structure induced from the module
structure over OK,S [ζ`] with a non-trivial ζ`-action, and the structure of M/MN

is induced from OK,S , i.e., has a trivial ζ`-action. We noted above that M/MN is
OK,S-projective, so that the extension splits as OK,S-module. Hence we can, as
in Reiner’s paper, choose an OK,S-complement X of MN lifting M/MN and write
M = MN ⊕ X. To write down the action of γ in this decomposition, we note
that γ acts as ζ` on MN and acts trivially on M/MN. Therefore, we must have
γ(x) = x + (γ − 1)(x) for an OK,S-linear map (γ − 1) : M/MN → MN. From the
decomposition M = MN ⊕X, we have

(γ − 1)M = (ζ` − 1)MN ⊕ (γ − 1)X.
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Therefore, the map (γ − 1) : X → MN is determined, modulo (ζ` − 1)MN, by an
OK,S-linear map X → B. To describe the map X → B, we recall that X ∼= ObK,S⊕
b−1 and B is a submodule of OK,S/(`)⊕r. Then X → B factors through a map

OK,S/(`)⊕(b+1) → OK,S/(`)⊕r, and as in Reiner’s paper, by choosing appropriate

bases, yi of OK,S/(`)⊕(b+1) and βj of OK,S/(`)⊕r, the map (γ − 1) has the form
yj 7→ cjβj for suitable coefficients ci.

It remains to figure out which OK,S/(`)-multiples in the above give rise to iso-
morphic module structures. In Reiner’s paper, this is taken care of by [15, Lemma
4]: over OK,S = Z all the coefficients can be taken to be 1. In our more general case,
the appropriate replacement of [15, Lemma 4] is the following statement: for a frac-
tional OK,S [ζ`]-ideal a, an element β ∈ a and two elements c1, c2 ∈ OK,S , the two
OK,S [C`]-module structures on a⊕OK,S · y given by y 7→ y+ c1β and y 7→ y+ c2β,
respectively, are isomorphic if and only if there exists a unit u ∈ OK,S [ζ`]

× such
that uc1 = c2. In particular, it is in general not possible to have all the coefficients
be 1, but coefficients in the same orbit of the unit group give rise to isomorphic
actions. The data in (5) for the above action is therefore given by the orbits of the
coefficients ci ∈ OK,S/(`) ∼= OK,S [ζ`]/(ζ` − 1) under the multiplication action of
the unit group OK,S [ζ`]

×.
The explicit construction of a module with the specified invariants goes through

as in [15], showing the realizability of all choices. �

Remark 4.6. It should be pointed out that the assumption that OK,S [T ]/(Φ`(T )) is
a Dedekind ring is important. What comes up naturally in the first step are finitely
generated torsion-free modules. That classification problem is fairly complicated,
but over Dedekind rings reduces to the classification of finitely generated locally free
modules.

We now formulate a very special case of the classification which works under the
weaker assumption that OK,S [ζ`] is a Dedekind ring but in which Φ`(T ) need not
be K-irreducible. We restrict to the case where MN has OK,S [ζ`]-rank 1. In this
case, base-change to K results in one of the irreducible K-representations of C`.
The OK,S [T ]/(Φ`)-module structure factors through a projection OK,S [T ]/(Φ`) �
OK,S [ζ`] and is completely determined by this. Again, the OK,S [C`]-module struc-
ture of MN is completely determined by a fractional ideal a in OK,S [ζ`]. The rest
of the analysis goes through to show the following

Proposition 4.7. Let OK,S be a ring of S-integers in a number field K and let
` be a prime. Assume that OK,S is a principal ideal domain and that OK,S [ζ`] is
a Dedekind domain. Then the isomorphism classes of finitely generated OK,S-free
OK,S [C`]-modules M where MN has OK,S [ζ`]-rank 1 are parametrized by

(1) the ideal class of the OK,S [ζ`]-module MN,
(2) the OK,S-rank of M/MN,
(3) an OK,S [ζ`]

×-orbit of elements in OK,S [ζ`]/(ζ` − 1) (for the natural multi-
plication action).

In the above, any integer n ≥ 0 is possible in (2). Any ideal class is possible in (1),
and any choice of orbit in (4) is possible.

Remark 4.8. Pulling back modules along the two projections

OQ(
√
−7)[T ]/(Φ7(T ))→ OQ(ζ7)

results in non-isomorphic modules which correspond to non-isomorphic Q(
√
−7)-

representations of C7. However, this effectively only amounts to different choices of
generators of conjugate subgroups. If we are only interested in counting subgroups,
this doesn’t affect the end result.



FARRELL–TATE COHOMOLOGY OF GL3(OQ(
√
−m)) 9

5. Centralizers and normalizers

We now need to describe centralizers and normalizers of the corresponding C`-
subgroups of GLn(OK,S). For the purpose of the following section, fix a subgroup
ι : C` ↪→ GLn(OK,S) and the corresponding OK,S [C`]-module M . Since our in-
tended application is to essential rank one cases, most notably GL3(OK,S), we
assume throughout the section that the associated module M is such that its as-
sociated representation over K is of the form K × K(ζ`). We also assume in the
following section that the conditions of Proposition 4.7 are satisfied.

First, we can embed GLn(OK,S) ↪→ GLn(K). The centralizer of C` ↪→ GLn(K)
is the automorphism group of the representation M⊗OK,SK ∼= K×K(ζ`) of C` over
K. Under our assumption ζ` 6∈ K, the C`-representation K(ζ`) is K-irreducible.
In particular,

HomK[C`](K(ζ`),K) ∼= HomK[C`](K,K(ζ`)) ∼= 0.

From this, any K[C`]-automorphism φ of K×K(ζ`) must be of the form φK×φK(ζ`)

where φK and φK(ζ`) are K[C`]-automorphisms of K and K(ζ`), respectively. Via
the embedding GLn(OK,S) ↪→ GLn(K), the same must be true for automorphisms
of the OK,S [C`]-modules. In terms of the centralizer as a subgroup of GLn(OK,S),
this means that the centralizer must be conjugate to a block-diagonal matrix. For
the normalizer, similar statements apply. The only additional elements in the nor-
malizer would come from K-linear automorphisms of K(ζ`) which are accounted
for by the Galois group Gal(K(ζ`)/K).

Now we need some induction-type theorems to determine the automorphism
groups of the individual almost-direct summands of the module M .

Lemma 5.1. Let M be an OK,S [C`]-module such that multiplication with the norm
element N is the zero map and assume that the OK,S [ζ`]-rank of M is 1. Then

AutOK,S [C`](M) ∼= AutOK,S [ζ`](M) ∼= OK,S [ζ`]
×.

Proof. Since the norm element N annihilates M , it has an induced module structure
for

OK,S [C`]/(N) ∼= OK,S [ζ`].

This yields a homomorphism AutOK,S [C`](M) → AutOK,S [ζ`](M). This homomor-
phism is injective, since both automorphism groups embed into AutOK,S (M). The
natural restriction map along the homomorphism OK,S [C`] → OK,S [ζ`] provides
an inverse, establishing the first isomorphism.

For the second isomorphism, we know that M is a finitely generated projective
OK,S [ζ`]-module, and our additional assumption is that its rank is 1. Since local
units can be patched to global units, the automorphism group of a finitely generated
projective OK,S [ζ`]-module of rank 1 is isomorphic to OK,S [ζ`]

×. �

Lemma 5.2. Let M be an OK,S [C`]-module such that multiplication with the norm
element N is injective and M is a finitely generated projective OK,S-module of
rank 1. Then

AutOK,S [C`](M) ∼= AutOK,S (M) ∼= O×K,S .

Proof. Injectivity of multiplication with the norm implies that the action of C`
is trivial. The second isomorphism AutOK,S (M) ∼= O×K,S follows as before, by
patching local units.

An OK,S [C`]-automorphism of M is in particular an OK,S-automorphism, giving
rise to an injective restriction map AutOK,S [C`](M) → AutOK,S (M). Since any
OK,S-automorphism of M automatically commutes with the trivial C`-action we
get the first isomorphism. �
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We can now analyse the structure of AutOK,S [C`](M) where M is a module
corresponding to a C`-subgroup of GL3(OK,S). Any OK,S [C`]-automorphism φ of
M necessarily maps the submodule MN to itself and hence induces automorphisms
φN and φ of MN and M/MN, respectively. By Lemmas 5.1 and 5.2, we have an
induced morphism

AutOK,S [C`](M)→ OK,S [C`]
× ×O×K,S .

For the split module (corresponding to the orbit of 0 inOK,S [ζ`]/(ζ`−1) as described
in Theorem 4.4 resp. Proposition 4.7), this actually describes the full centralizer.
For a non-split module where there is an additional unipotent action (corresponding
to the orbit of a non-zero element in in OK,S [ζ`]/(ζ` − 1)), we have morphisms
OK,S [ζ`]→ OK,S/(`) and OK,S → OK,S/(`) given by reduction mod `. These ring
homomorphisms induce maps on the unit groups.

Lemma 5.3. Assume M is the OK,S [C`]-module associated to a C`-subgroup of
GL3(OK,S) where [K(ζ`) : K] = 2. The induced morphism from the automorphism
group above factors through an isomorphism

AutOK,S [C`](M)→ OK,S [C`]
× ×cEnd(OK,S/(`)) O

×
K,S

where the right-hand side is defined to be

OK,S [C`]
× ×cEnd(OK,S/(`)) O

×
K,S =

{
(φ, ψ) | φc = cψ in End(OK,S/(`))

}
Proof. It remains to identify the image of the induced morphism. Let

(φ, ψ) ∈ OK,S [C`]
× ×cEnd(OK,S/(`)) O

×
K,S .

To set up notation, let M = a ⊕ Nm a−1 with the action specified as in Reiner’s
results: it sends a generator y to (β, y) where β ∈ a is a choice of preimage of an
element c ∈ OK,S [ζ`]/(ζ` − 1). Formulated differently, the action on x ∈ Nm a−1

adds a specific choice of lift x̃ ∈ a of the product cx of the reduction of x mod `
and the coefficient c; for notational purposes, we denote this lift x̃ by β(x).

Now we want to determine when the action described above commutes with the
automorphism (φ, ψ). If we first apply the action and then the automorphism,
then we get φ(β(y)) in the component a. If, on the other hand, we first apply
the automorphism and then the action, we get β(ψ(y)) in the component a. For
φ(β(y)) = β(ψ(y)), it is necessary and sufficient that the reductions of φ and ψ to
OK,S/(`) satisfy φ(c · y) = c · ψ(y). This is precisely the claim. �

Remark 5.4. Since φ and ψ are given by multiplication with units in OK,S/(`)
(the reductions of the respective units in the rings of integers), they are OK,S/(`)-
linear. In particular, the requirement translates to c(φ − ψ), and this is always
satisfied if the reductions of φ and ψ are the same. However, if c happens to be a
zero-divisor, the requirement c(φ− ψ) is strictly weaker; it is no requirement at all
for c = 0, which recovers the product description of the automorphism group for the
split module.

Lemma 5.5. Assume M is the OK,S [C`]-module associated to a C`-subgroup of
GL3(OK,S) with [K(ζ`) : K] = 2. In particular, M ∼= a⊕Nm a−1 for an ideal class
a of OK,S [ζ`]. The group of special semilinear automorphisms of M is of the form(

AutOK,S [C`](M)
)
o Stab(a,Gal(K(ζ`)/K)).

The action is the natural Galois action on the automorphism group, viewed as fiber
product of unit groups as in Lemma 5.3.
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Proof. By embedding OK,S [C`] ↪→ K[C`], we already know that the only semilinear
automorphisms that are not in the automorphism group come from the Galois-
action of Gal(K(ζ`)/K). However, the Galois group does not need to stabilize
the isomorphism class of the module; this happens whenever we have a non-trivial
Galois action on the class group of K(ζ`). The semilinear automorphisms modulo
the linear ones are exactly identified with the stabilizer of the ideal class a in the
Galois group, as claimed. �

6. Example cases

Now we discuss a couple of example cases to compare them to the computer
calculations as sanity check.

6.1. Homological 3-torsion in PGL3 over quadratic imaginary integers.
Let m be a square-free natural number with 3 - m and denote by O−m = OQ(

√
−m).

In the case where O−m is a principal ideal domain, using Corollary 3.3 combined
with Proposition 4.7, the conjugacy classes of embeddings C3 ↪→ PGL3(O−m) are
parametrized by pairs of elements (a, c) where a is an ideal class in O−m[ζ3] and c
is an O−m[ζ3]×-orbit of elements in O−m[ζ3]/(ζ3 − 1). Consequently, the number
of conjugacy classes of subgroups is

# ClQ(
√
−d,
√
−3)

# Gal(Q(
√
−d,
√
−3)/Q(

√
−d))

·#
(
(O−m[ζ3]/(ζ3 − 1))/O−m[ζ3]×

)
To determine the orbit set for the natural O−m[ζ3]×-action on O−m[ζ3]/(ζ3− 1)

we first note that our assumption 3 - m implies

OQ(
√
−m)/(3) ∼= F3[X]/(X2 +m) ∼=

{
F9 m ≡ 1 mod 3
F3 × F3 m ≡ 2 mod 3

We make a case distinction, depending on the residue class of m mod 3. These
arguments actually do not require O−m to be a principal ideal domain. We do
them in this generality: for any m coprime to 3, the numbers of orbits below give
the numbers of conjugacy classes of order-3-subgroups corresponding to the trivial
ideal class.

Proposition 6.1. Assume m ≡ 2 mod 3. If the reduction morphism O−m[ζ3]× →
(F3 × F3)× is surjective, then there are four O−m[ζ3]×-orbits on O−m[ζ3]/(ζ3 − 1).
Otherwise, the reduction morphism has image {(1, 1), (−1,−1)} and there are five
orbits.

Proof. If m ≡ 2 mod 3, then (F3 × F3)× ∼= Z/2Z×2, concretely realized as the
subset {(±1,±1)}. Note that actually F3 × F3

∼= F3[X]/(X2 + m), so that an
integer n ∈ Z always reduces to (n, n), and

√
−m ∈ O−m maps to (1,−1). In

particular, if we consider the natural reduction morphism O−m[ζ3]× → (F3×F3)×,
the elements (1, 1) and (−1,−1) are the images of the global units ±1 ∈ O−m[ζ3].
So there are only two possibilities for the image of the reduction map: either it is
Z/2Z ∼= {(1, 1), (−1,−1)} or it is the full group (F3 × F3)×. Consequently, there
are two possibilities for the orbit set. In both of them, we have the orbits {(0, 0)},
{(1, 0), (−1, 0)} and {(0, 1), (0,−1)}, irrespective of the image. If the image contains
(1,−1), then we have an orbit {(±1,±1)}. If the image doesn’t contain (1,−1),
then we have two orbits {(1, 1), (−1,−1)} and {(1,−1), (−1, 1)}. This proves the
claim. �

Example 6.2. We give examples that both possibilities can appear.
Consider the case m = 2. Using Pari/GP, we find that ζ3 −

√
−2ζ3 + 2 is a

fundamental unit of O−2[ζ3]. Using that integers go to their reduction,
√
−2 maps
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to (1, 2) and ζ3 maps to (1, 1), the image of this unit under the reduction map is
(1, 1)−(1, 2)(1, 1)+(2, 2) = (2, 1). Thus we are in the case where there are 4 orbits.

Consider the case m = 5. Using Pari/GP, we find that −
√
−5+4(ζ3+1)+ζ3

√
−5

is a fundamental unit of O−5[ζ3]. The image of this unit under the reduction map
is (2, 1) + (8, 8) + (1, 2) = (−1,−1). In particular, (1, 2) is not in the image of the
reduction map and therefore we are in the case with 5 orbits. �

Example 6.3. For the first few square-free numbers m with m ≡ 2 mod 3 and
−m ≡ 2, 3 mod 4, we then have the following

m hQ(
√
−m,
√
−3) orbit number

2 1 4
5 2 5
14 4 5
17 4 5
26 12 4
29 6 5

It seems that there is a relation to the unit index in the class number formula, cf.
[10]. In the above table, the orbit number 4 appears precisely in those cases where
hQ(
√
−m,
√
−3) = hQ(

√
−m)hQ(

√
3m); and the orbit number 5 appears in those cases

where hQ(
√
−m,
√
−3) = (1/2)hQ(

√
−m)hQ(

√
3m). �

Proposition 6.4. Assume m ≡ 1 mod 3. The number of O−m[ζ3]×-orbits is given
by the following table, depending on the image of the natural reduction morphism
O−m[ζ3]× → (F9)× ∼= Z/8Z:

image orbit number

Z/8Z 2
Z/4Z 3
Z/2Z 5

Proof. The subgroup {±1} is always contained in the image of the global units
±1 ∈ O−m[ζ3], hence the above list exhausts all possible cases. The orbits are then
given by {0} and the cosets of the image of the reduction map in F×9 ∼= Z/8Z. �

Example 6.5. Again, all three cases appear as can be checked by computing fun-
damental units using Pari/GP. This is most easily done in the cases where −m ≡
2, 3 mod 4 since in this case ζ3

√
−m is a primitive element giving rise to the inte-

gral basis {1, ζ3 + 1, ζ3
√
−m,−

√
−m}. Once the fundamental unit is computed, its

image under the reduction map is determined by noting that integers n ∈ Z map
to the subfield F3 ⊂ F9 via reduction mod 3, ζ3 maps to 1 and

√
−m maps to a

primitive element of the field extension F9/F3. If the fundamental unit maps to the
reduction of an integer, the image is Z/2Z, if it maps to ±

√
−m the image is Z/4Z

and if it maps to a linear combination ±1±
√
−m we have the full image. For the

first few square-free m, the results look as follows:

m hQ(
√
−m,
√
−3) orbit number

1 1 2
10 2 4
13 4 3
22 2 4

Again, there seems to be a relation to the unit index. It seems reasonable to ex-
pect that orbit number 2 only appears in the exceptional case m = 1 where the
unit group of O−m is µ4; orbit number 3 should appear in those cases where
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hQ(
√
−m,
√
−3) = hQ(

√
−m)hQ(

√
3m); and the orbit number 4 should appear in those

cases where hQ(
√
−m,
√
−3) = (1/2)hQ(

√
−m)hQ(

√
3m). �

Now it remains to determine the structure of the normalizers and compute the
appropriate contributions to the Farrell–Tate cohomology. The corresponding cen-
tralizers will be of the form

O×Q(
√
−m,ζ3)

×cEnd(O−m/(3)) O
×
Q(
√
−m)

for an O−m[ζ3]×-orbit representative c ∈ O−m[ζ3]/(ζ3 − 1). For the case where
m ≡ 1 mod 3, c is either 0 or a unit, giving rise to the two possibilities

O×Q(
√
−m,ζ3)

×O×Q(
√
−m)

and O×Q(
√
−m,ζ3)

×(OQ(
√
−m)/(3))

× O×Q(
√
−m)

,

respectively. In the case m ≡ 2 mod 3, there are two further possibilities for the
orbits {(±1, 0)} and {(0,±1)}. In these cases,

O×Q(
√
−m,ζ3)

×cEnd(O−m/(3)) O
×
Q(
√
−m)

consists of those pairs (φ, ψ) ∈ O×Q(
√
−m,ζ3)

×O×Q(
√
−m)

for which the reductions of φ

and ψ agree in the first or second component of (F3×F3)× ∼= Z/2Z×2, respectively.
The normalizers (whenever they do not already agree with the centralizers) will be
extensions of the above groups by the group

Gal(Q(
√
−m, ζ3)/Q(

√
−m)) ∼= Z/2Z

acting via the Galois action ζ3 7→ ζ2
3 on the first factor and trivially on the second.

Note that these actions are actually compatible via the reduction to O−m[ζ3]/(ζ3−
1) ∼= O−m/(3) because the extension Q(

√
−m, ζ3)/Q(

√
−m) is completely ramified

over (3).
By Dirichlet’s unit theorem, we have

O×Q(
√
−m,ζ3)

∼= Z× µ3n, and O×−m ∼= µn

where n = 2 except in the case m = 1 where n = 4. The Galois action on µn is
trivial because these are contained in O−m; and the Galois action on Z must also be
non-trivial, i.e., given by multiplication with −1, since none of the non-torsion units
is contained in O−m. The structure of the centralizer for the split representation is
therefore (

O×Q(
√
−m,ζ3)

×O×Q(
√
−m)

)
o Z/2Z ∼= ((Z× µ3) o Z/2Z)× µ×2

n

with n as above.
For the normalizers of the non-split representations, i.e., where the orbit in

O−m[ζ3]/(ζ3 − 1) is different from {0} we can again consider the two cases:

(1) If m ≡ 2 mod 3, we have O−m[ζ3]/(ζ3 − 1) ∼= F3 × F3. The reduction map
µ2
∼= O×−m → (F3 × F3)× is injective. For O×Q(

√
−m,ζ3)

∼= Z × µ3n, the

reduction map O×Q(
√
−m,ζ3)

→ (F3 × F3)× is injective on µn, the zero map

on µ3 and the image of a fundamental unit depends on m. In the case
where c = {(±1, 0)} or c = {(0,±1)}, the fiber product is given by the
units in O−m[ζ3] whose reduction has first resp. second component equal
to the reduction of a unit from O−m, respectively. Since this is no condition
at all, the fiber product is simply O−m[ζ3]× ∼= Z× µ3n. In the case where
the orbit contains (1,−1), the fiber product consists of the group of units
in O−m[ζ3] whose reduction is of the form (1, 1) or (−1,−1). The index of
this subgroup is 1 or 2, depending on m, but in any case the isomorphism
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type of the units is again Z × µ3n. The Galois action here is the one we
considered before, and we have(
O×Q(

√
−m,ζ3)

×cEnd(O−m/(3)) O
×
Q(
√
−m)

)
o Z/2Z ∼= ((Z× µ3) o Z/2Z)× µn

(2) If m ≡ 1 mod 3, we have O−m[ζ3]/(ζ3 − 1) ∼= F9. Again the reduction map
µn ∼= O×−m → F×9 is injective. In any case, if c is not the orbit {0}, it consists
entirely of units. Hence the fiber product is the group of units of O−m[ζ3]
whose reduction is ±1. As an abelian group, this is again isomorphic to
Z× µ3n with the Galois action discussed previously, hence we have(
O×Q(

√
−m,ζ3)

×cEnd(O−m/(3)) O
×
Q(
√
−m)

)
o Z/2Z ∼= ((Z× µ3) o Z/2Z)× µn

Now we have all the information we need to state the computation of the Farrell–
Tate cohomology of PGL3(OQ(

√
−m)).

Theorem 6.6. Let m 6= 3 be a positive square-free integer and assume that O−m
is a principal ideal domain. Then we have

Ĥ
•

(PGL3(O−m);F3) ∼= Ĥ
•

(Z× µ3;F3)
⊕c·hλ ⊕ Ĥ

•
((Z× µ3) o Z/2Z;F3)

⊕c·hµ

Here c is the number of O−m[ζ3]×-orbits on O−m[ζ3]/(ζ3 − 1), hµ is the number
of ideal classes in O−m[ζ3] which are Galois-invariant for the natural action of
Gal(Q(

√
−m,

√
−3)/Q(

√
−m)), and hλ is the number of 2-element Galois-orbits of

ideal classes. In particular, hQ(
√
−m,
√
−3) = 2hλ + hµ.

Proof of Theorem 1.1 and Theorem 6.6: Both theorems follow from Brown’s
formula for the Farrell–Tate cohomology. By the discussion in Section 2, the ele-
mentary abelian 3-subgroups of GL3(O−m) are all of rank 1. The structure of the
centralizers and normalizers was described in the Dedekind ring case in Lemma 5.3
and Lemma 5.5. The same results are true in the more general case of Theorem 1.1,
using the structure results concerning unit groups of orders, cf. [12]. Theorem 6.6
then follows from the more precise result of Proposition 4.7 and the previous dis-
cussion of the O−m[ζ3]×-action on O−m/(3) above. �

More explicit information on the Farrell–Tate cohomology of such groups can
now be obtained via the following computation included in [14]:

Proposition 6.7. Let A = Z/nZ×Zr, and let ` be an odd prime with ` | n. Then,
with b1, x1, . . . , xr denoting classes in degree 1 and a2 a class of degree 2, we have

Ĥ
•
(A;F`) ∼= Ĥ

•
(Z/nZ;F`)⊗F`

•∧
Fr` ∼= F`[a2, a

−1
2 ](b1, x1, . . . , xr).

The Hochschild–Serre spectral sequence associated to the semi-direct product Ao
Z/2Z (where Z/2Z acts as −1 on A) degenerates and yields an isomorphism

Ĥ
•
(Ao Z/2Z;F`) ∼= Ĥ

•
(A;F`)Z/2Z.

The invariant classes are then given by a⊗2i
2 tensor the even exterior powers plus

a
⊗(2i+1)
2 tensor the odd exterior powers.

As a direct application, the Farrell–Tate cohomology of a group like

OK [ζ`]
× o Gal(K(ζ`)/K) ∼= (Z× Z/nZ) o Z/2Z

with K = Q(
√
−m) (where the action in the semidirect product on the right is

consequently given by multiplication with −1) looks like the direct sum of two
copies of the cohomology of the dihedral group with 2n elements, with one copy
shifted by one.
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The algebra in Theorem 6.6 is given by the Z/2Z-invariant elements in the
algebra F3[a±1

2 ](b1, x1), where the action of Z/2Z is by multiplication with −1
on all the generators. The invariant subalgebra is then generated by the classes
b1x1 in degree 2, b1a2 and x1a2 in degree 3, and a2

2 in degree 4. Consequently, the
Hilbert–Poincaré series for the positive degrees is

2
T 2 + 2T 3 + T 4

1− T 4
= 2

T 2(1 + T )2

1− T 4
.

6.2. Homological 3-torsion in PGL3 for real quadratic fields. Now we discuss
analogues of the above results for rings of integers in real quadratic fields. So let m
be a positive square-free number with 3 - m, denote by Om = OQ(

√
m) and assume

that O−m is a principal ideal domain. As before, conjugacy classes are parametrized
by pairs (a, c) with a an ideal class in Om[ζ3] and c and Om[ζ3]×-orbit of elements
in Om[ζ3]/(ζ3 − 1).

As in the imaginary case, Om[ζ3]/(ζ3 − 1) ∼= Om/(3) is

F3[X]/(X2 −m) ∼=
{

F3 × F3 m ≡ 1 mod 3
F9 m ≡ 2 mod 3

An essential difference is now that the unit group O×m ∼= Z × µ2 is already of
rank 1. For the natural reduction morphism O×m → Om/(3)×, various possibilities
occur: for O2, O5, O13 and O17 we have maximal possible image, while for O7

and O11 the image is Z/2Z ∼= {±1}. The image of the natural reduction morphism
Om[ζ3]× → Om/(3)× will then always contain the image of the reduction morphism
O×m → Om/(3)× because O×m ↪→ Om[ζ3]× is a finite index subgroup. In particular,
in those cases where already O×m surjects onto Om/(3)×, we will have the minimal
possible number of orbits.

By Dirichlet’s unit theorem, we have O×m ∼= Z × µ2 and Om[ζ3]× ∼= Z × µ6. In
the fiber product and up to 2-torsion, we then get (as abelian groups, but there are
case distinction concerning the index in the full unit groups) Z×Z×µ3. The Galois

action of Gal(Q(
√
m,
√

3)/Q(
√
m)) on µ3 is the non-trivial one mapping ζ3 7→ ζ2

3 .
The Galois action on Z2 is trivial: for the summand Z ⊆ O×m this is clear, and the
summand Z ⊆ Om[ζ3]× contains O×m as finite-index subgroup. Consequently, the
structure of the normalizer in the real quadratic case is Z2 × (µ3 o Z/2Z).

For the Farrell–Tate cohomology, this implies the following result:

Proposition 6.8. Let m be a positive square-free integer with 3 - m and assume
that Om is a principal ideal domain. Then we have

Ĥ
•

(PGL3(Om);F3) ∼= Ĥ
• (

Z2 × µ3;F3

)⊕c·hλ ⊕ Ĥ
• (

Z2 × (µ3 o Z/2Z) ;F3

)⊕c·hµ
Here c is the number of Om[ζ3]×-orbits on Om[ζ3]/(ζ3 − 1), hµ is the number
of ideal classes in Om[ζ3] which are Galois-invariant for the natural action of
Gal(Q(

√
m,
√
−3)/Q(

√
m)), and hλ is the number of 2-element Galois orbits of

ideal classes.

The Farrell–Tate cohomology algebra is F3[a2](b1, x1, y1) for the case Z2 × µ3

and F3[a±2
2 ](b31, x1, y1) for the case Z2 × (µ3 o Z/2Z).

6.3. 5-torsion in PGL3(OQ(
√

5)). We consider the Farrell–Tate cohomology of the

group GL3(OQ(
√

5)). We fix the embedding Q(ζ5) ↪→ C given by ζ5 7→ exp( 2πi
5 ).

Since [Q(ζ5) : Q] = 4, 5-torsion in GL3(OQ(
√
m)) can only appear for the quadratic

subfield K = Q(
√

5). The minimal polynomial of ζ5 factors as

Φ4(X) =

(
X2 −

√
5− 1

2
X + 1

)(
X2 +

√
5 + 1

2
X + 1

)
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Since ζ5 + ζ−1
5 ∈ OQ(

√
5), ζ

2
5 = (ζ5 + ζ−1

5 )ζ5−1 is an OQ(
√

5)-linear combination of 1

and ζ5, hence {1, ζ5} is a relative integral basis. We can employ Proposition 4.7 to
obtain the conjugacy classification of C5-subgroups in GL3(OQ(

√
5)) and to describe

the Farrell–Tate cohomology.
The class group of OQ(ζ5) is trivial, and for an OQ(

√
5)[C5]-module M whose

OQ(
√

5)-rank is 3 the rank of M/MN has to be 1. Consequently, the number of

conjugacy classes equals the number ofO×Q(ζ5)-orbits of elements inOQ(ζ5)/(ζ5−1) ∼=
F5. To determine the image of O×Q(ζ5) → F×5 we consider the composition with the

natural inclusion O×Q(
√

5)
↪→ O×Q(ζ5). Now we note that the fundamental unit of

Q(
√

5) is given by
√

5+1
2 , whose image under the reduction map

OQ(
√

5) → OQ(
√

5)/(
√

5) ∼= F5

is 3 ∈ F×5 . Consequently, the map O×Q(ζ5) → F×5 is surjective and there are 2 orbits.

The structure of the normalizers and the structure of the Farrell–Tate coho-
mology can be determined as in the previous case of homological 3-torsion over
real quadratic number rings. Consequently, the mod 5 Farrell–Tate cohomology of
GL3(O5) is of the form

Ĥ
•

(PGL3(O5);F5) ∼= Ĥ
• (

Z2 × (µ5 o Z/2Z) ;F5

)⊕2

6.4. 7-torsion in PGL3(OQ(
√
−7)). We consider the Farrell–Tate cohomology of

the group GL3(OQ(
√
−7)) with F7-coefficients. We fix the embedding Q(ζ7) ↪→ C,

ζ7 7→ exp( 2πi
7 ). For the minimal polynomial of ζ7 over Q(

√
−7), we choose the

first of the two factors from Example 4.1. From that polynomial, we see that
ζ3
7 is a OQ(

√
−7)-linear combination of 1, ζ7 and ζ2

7 . This implies that 1, ζ7, ζ
2
7 is

a relative integral basis of Z[ζ7] over OQ(
√
−7). However, in this case, the ring

OQ(
√
−7)[T ]/(Φ7(T )) fails to be a Dedekind domain because the cyclotomic poly-

nomial Φ7(T ) decomposes as product of two polynomials of degree 3 over Q(
√
−7).

We have to apply the partial result Proposition 4.7 to get a classification. This is
enough for our purposes as we are interested in those modules which are OQ(

√
−7)-

free of rank 3.
The class group Cl(OQ(

√
−7)) is trivial, every ideal class of Q(ζ7) has a basis

as OQ(
√
−7)-module. We can therefore apply Reiner’s results to determine the

conjugacy classes of C7-subgroups in PGL3(OQ(
√
−7)). Since the class group of

Cl(OQ(ζ7)) is also trivial there is a unique conjugacy class of cyclic subgroups of
order 7, corresponding to the free rank one Z[ζ7]-module.

The centralizer in PGL3(OQ(
√
−7)) of the cyclic group of order 7 is the usual unit

group

O×Q(ζ7)
∼= Z2 × µ14

and the normalizer is an extension of this unit group by the Galois group of the
extension Q(ζ7)/Q(

√
−7) acting in the obvious way. Therefore, the normalizer of

the cyclic group is of the form

O×Q(ζ7) o Gal(Q(ζ7)/Q(
√
−7)) ∼=

(
Z2 × µ14

)
o Z/3Z.

The Galois action on the group µ14 is induced from the natural embedding Z/3Z ↪→
Aut(µ14), and the action on Z2 is given by the 2-dimensional rotation representa-
tion.

Proposition 6.9.

Ĥ
•
(PGL3(OQ(

√
−7));F7) ∼= Ĥ

•
(O×Q(ζ7);F7)Z/3Z ∼= F7[a±3

2 ](b51, x1 ∧ y1).
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Proof. The first isomorphism follows since the Hochschild–Serre spectral sequence
degenerates, essentially because the F7-cohomology of Z/3Z is trivial. Now we
determine the action and invariant subalgebra of

Ĥ
•
(O×Q(ζ7);F7) ∼= Ĥ

•
(Z2 × Z/14Z;F7)

∼= F7[a2](b1, x1, y1)

The action on the degree 2 of H•(Z/7Z;Z) ∼= F7[a2] is via the dual of the natural
embedding Z/3Z ↪→ Aut(µ14). The induced action in degree 2n of F7[an2 ] is the
n-th tensor power. Therefore, the invariant subring is F7[a3

2]. In the cohomology
ring H•(Z/7Z;F7) ∼= F7[a2](b1), the representation in degree 2n− 1 is the same as
in degree 2n, hence the invariant subring here is F7[a3

2](b51).
The action of Z/3Z on Z2 is the rotation representation. Therefore, on the

cohomology H•(Z2;F7) ∼= F7(x1, y1) we have the dual of the rotation representation
in degree 1. The rotation is a permutation representation by x1 7→ y1, y1 7→ −x1 −
y1. From this, we see that

∧2 Z2 is the trivial Z/3Z-representation. Hence the
invariant subalgebra is the exterior algebra generated by x1 ∧ y1. Combination of
the two paragraphs proves the result. �

The Hilbert–Poincaré series for the invariant algebra is

(1 + T 5)(1 + T 2)

1− T 6
.

6.5. `-torsion in PGL`(Z). Another example that can be handled along the lines
of the PGL3(OQ(

√
−m))-examples is the `-torsion in the case PGL`(Z). By Reiner’s

result [15], there are 2hQ(ζ`) conjugacy classes of C`-subgroups in PGL`(Z). By

Dirichlet’s unit theorem, O×Q(ζ`)
∼= Z

`−3
2 × µ2`. Therefore, the normalizers for the

two conjugacy classes belonging to a given ideal class are of the form (Z
`−3

2 ×µ2`)o
Z/(`−1)Z and (Z

`−3
2 ×Z/(`−1)Z µ2`)oZ/(`−1)Z, respectively. For the special case

` = 5, the Farrell–Tate cohomology of PGL5(Z) is then twice the one for PSL4(Z)
(where the latter was computed in [6]).

7. Machine computations

The authors have run a machine computation, starting with Voronöı cell com-
plexes with GL3(OQ(

√
−m))-action, constructed by Sebastian Schönnenbeck’s soft-

ware [16]. More precisely, GL3(OQ(
√
−m)) acts on a certain space of quadratic

forms, and there is an equivariant retraction to Ash’s well-rounded retract [1]. On
the latter co-compact space, a suitable form of Voronöı’s algorithm yields an explicit
cell structure with cell stabilizers and computable quotient space, as described by
Braun, Coulangeon, Nebe and Schönnenbeck [3].

In view of determining the parameters λ and µ of Theorem 1.1, we want to
extract the torsion subcomplexes from these Voronöı cell complexes.

Definition 7.1. For ` a prime number, the `-torsion subcomplex is the set of all
cells with stabilizers containing some element(s) of order `.

For the `-torsion subcomplex to be guaranteed to be a cell complex, and to consist
only of fixed points of order-`-elements (so to coincide with the `-singular part),
we need a rigidity property: We want each cell stabilizer to fix its cell pointwise.
This rigidity property is lacking on our Voronöı cell complexes. In theory, it is
always possible to obtain this rigidity property via the barycentric subdivision.
However, the barycentric subdivision of an n-dimensional cell complex can multiply
the number of cells by (n + 1)! and thus easily let the memory stack overflow. In
previous work of the authors [6], a cell subdivision algorithm was introduced (“rigid
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facets subdivision”), which refines the cell structure to get the rigidity property, in
an efficient enough way to treat the GL3(OQ(

√
−m))-cases. This allows us to extract

the `-torsion subcomplexes.
The authors applied the rigid facets subdivision algorithm to the PGL3(Z[i])

cell complex of Mathieu Dutour Sikiric [7] and the GL3(O−m) cell complexes for
m ∈ {1, 2, 5, 7, 11, 19} of Sebastian Schönnenbeck [16]; then extracted the 3-torsion
subcomplex, and finally reduced it using their pertinent methods [13].

Outcome 7.2. For GL3(O−m), m ∈ {1, 2, 5, 7, 11, 19}, the 3-torsion subcomplex
can be reduced to a graph. The quotient of the reduced subcomplex by the GL3(O−m)-
action consists of λ connected components of type b (an edge with its endpoints
identified), and µ connected components of type b b (an edge without identifications
on its endpoints). The counts of λ and µ are given in Table 1.

Corollary 7.3. Table 1 specifies, within its scope, the values of the parameters λ
and µ in Theorem 1.1.

Proof. On each connected component of type b , the vertex stabilizer equals the
edge stabilizer, and is of isomorphism type C3, denoting a cyclic group with 3
elements. On each connected component of type b b , the edge stabilizer is of iso-
morphism type C3, and the two vertex stabilizers are of isomorphism type D3,
denoting a dihedral group with 3 · 2 elements, but not conjugate to each other in
GL3(O−m). From previous work of the authors [6, 13], we know that since each
connected component has been reduced to one edge, each conjugacy class of order-
3-subgroups in GL3(O−m) is represented precisely by one of these edges’ stabilizers.
So we have λ, respectively µ conjugacy classes of order-3-subgroups which are not
contained, respectively which are contained in a copy of D3 in GL3(O−m). �

The reduced `-torsion subcomplex furthermore allows us to compute the mod `
Farrell-Tate cohomology of GL3(O−m) via the equivariant spectral sequence (a.k.a.
the isotropy spectral sequence). Because there is up to conjugating isomorphism
just one inclusion C3 → D3, the dp,q1 -differentials of the equivariant spectral se-
quence with F3-coefficients on the 3-torsion subcomplex have the maximal possible
ranks, i.e., they are surjective whenever both domain of definition and codomain
contain 3-torsion. The subsequent computation of the E2 = E∞-page of the
isotropy spectral sequence agrees with the results formulated in Theorem 6.6.

Appendix A. Explicit order 3 matrices over Z[
√
−5]

We shortly discuss how arguments as in the proof of Theorem 4.4 can actually
be used to produce explicit matrices of finite order. The example case we discuss is
GL3(OQ(

√
−5)), i.e., invertible 3× 3-matrices of order 3 with entries in the number

ring OQ(
√
−5) = Z[

√
−5], which we denote by O−5 in the following. Note that our

proof of Theorem 4.4 doesn’t apply to that case. Nevertheless, the first part of the
proof allows to provide matrices of finite order, but the conjugacy discussion in the
end of the proof requires choices of suitable bases which doesn’t work for non-free
projective modules. In any case, we hope that the explicit arguments below clarify
a bit the ideas behind the proof of Theorem 4.4 as well as the issues in the general
non-PID case.

We first describe the O−5-structure of the relevant modules M over O−5[C3]. By
the arguments in the proof of Theorem 4.4, the submodule MN ⊆ M annihilated
by the norm element has a structure of module over O−5[ζ3]. This is a Dedekind
ring, cf. Lemma 4.2, and we have a relative integral basis {1, ζ3} for O−5[ζ3] over
O−5. A slight change of basis allows to write

O−5[ζ3] ∼= O−5 · ζ3 ⊕O−5 · (ζ3 − 1)
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as O−5-modules. The ideal class group of O−5[ζ3] is isomorphic to Z/2Z, with a
representative of the nontrivial ideal class given by (3,

√
−5ζ3−1). Under the above

isomorphism O−5[ζ3] ∼= O−5 · ζ3 ⊕O−5 · (ζ3 − 1), the ideal (3,
√
−5ζ3 − 1) maps to

(3,
√
−5 − 1) · ζ3 in the first factor (given by setting ζ3 − 1 = 0) and to (3,−1) in

the second factor (given by setting ζ3 = 0). In particular, as O−5-module, we have
a decomposition

(3,
√
−5ζ3 − 1) ∼= (3,

√
−5− 1) · ζ3 ⊕O−5 · (ζ3 − 1).

In particular, this implies that the relative norm map

Z/2Z ∼= Cl(O−5[ζ3])→ Cl(O−5) ∼= Z/2Z

is the nontrivial map. The O−5[C3]-modules M which are free of rank 3 as O−5-
modules have a direct sum decomposition M ∼= MN⊕M/MN (asO−5-modules), and
there are two possibilities: the first one has MN

∼= O−5[ζ3] ∼= O⊕2
−5 and M/MN

∼=
O−5, and the second one has MN

∼= (3,
√
−5ζ3−1) ∼= O−5⊕(3,

√
−5−1) and MN

∼=
(2,
√
−5 + 1) (where we have chosen a different ideal representative (2,

√
−5 + 1) of

the non-trivial element of the ideal class group of O−5).
The O−5[C3]-module structures are now determined by giving the action of the

element [γ] ∈ O−5[C3] corresponding to a chosen generator γ of C3. By the descrip-
tion of the action in Theorem 4.4, the element [γ] acts on MN via multiplication by
ζ3. On M/MN, the action is given by adding the image under an O−5-linear map
M/MN →MN.

In the first case, we get the following module, as well as explicit representing
matrices for the order 3 elements of GL3(O−5). We have M/MN

∼= O−5 and
MN
∼= O−5[ζ3] ∼= O⊕2

−5. As basis of MN ⊕M/MN we choose 1 ∈M/MN and {1, ζ3}
in MN. The element [γ] ∈ O−5[C3] acts on MN by multiplication with ζ3, and on
M/MN by 1 7→ 1 + β for β ∈MN. In this basis, the representing matrix for [γ] is 0 −1 a

1 −1 b

0 0 1

 .

The 2 × 2-block in the upper left is the representing matrix for multiplication by
ζ3 on O−5[ζ3] with basis {1, ζ3}, and a, b ∈ O−5 determine the element a + bζ3 ∈
MN
∼= O−5[ζ3] which is the image of 1 ∈M/MN

∼= O−5 under the action of [γ].
The second case is slightly more complicated. We have M/MN

∼= (2,
√
−5 +

1), henceforth denoted by a, and MN
∼= (3,

√
−5 − 1) ⊕ O−5, the first summand

henceforth denoted by b. Since the ideals a and b are non-principal, it is impossible
to choose O−5-bases for MN or M/MN individually. However, we may choose a
basis for MN ⊕M/MN as follows: since the ideals a and b are relatively prime, we
have the natural surjection

f : a⊕ b→ a + b = O−5 : (x, y) 7→ x− y.

The kernel of this map f is ab = (−
√
−5 + 1)O−5. In particular, an O−5-basis for

a⊕b is given by (−2,−3) (obtained by lifting 1 along f) and (−
√
−5+1,−

√
−5+1)

(obtained as image of the generator of ker f under the inclusion into a ⊕ b). We
can now write down a choice of basis for

MN ⊕M/MN
∼= b · ζ3 ⊕O−5 · (ζ3 − 1)⊕ a

given by (−3 · ζ3, 0,−2), (0, 1, 0) and ((−
√
−5 + 1) · ζ3, 0,−

√
−5 + 1). Note that the

decomposition MN
∼= b·ζ3⊕O−5 ·(ζ3−1) is the one induced from the decomposition

O−5[ζ3] ∼= O−5 · ζ3 ⊕ O−5 · (ζ3 − 1) corresponding to the relative integral basis
(ζ3, ζ3 − 1).

The action of [γ] ∈ O−5[ζ3] is now given as follows: on MN, [γ] acts by multipli-
cation with ζ3; and on M/MN

∼= a, [γ] acts by sending an element x ∈ a to x+λ(x)
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where λ : a→MN
∼= b · ζ3 ⊕O−5 · (ζ3 − 1) is an O−5-linear map. To describe such

a linear map, we note that we have an isomorphism

φ : a→ b : 2 7→ −(
√
−5− 1),

√
−5 + 1 7→ 3

The fact that this is a well-defined map (as well as the well-definedness of the
inverse) follows from the well-known equality 2 · 3 + (

√
−5 + 1)(

√
−5− 1) = 0. In

particular, the composition a
λ−→MN

pr1−−→ b is an O−5-multiple of this isomorphism
(because HomO−5(a, b) ∼= a∨ ⊗ b ∼= O−5). The second component of a linear map
λ : a → MN is a linear form a → O−5 which can be described as follows: from
before, we know a⊗b = ab = (−

√
−5+1)O−5, hence a linear map a→ O−5 always

has the form

ψ : a→ O−5 : x 7→ x · y
(−
√
−5 + 1)

for an element y ∈ b. More precisely, for an element 3a+(
√
−5+1)b with a, b ∈ O−5,

we have ψ(2) = (−1−
√
−5)a− 2b and ψ(

√
−5 + 1) = (2−

√
−5)a+ (1 +

√
−5)b.

We are now ready to combine everything to obtain representing matrices rep-
resenting multiplication with [γ] in the respective O−5[C3]-module structures. We
use the basis (−3·ζ3, 0,−2), (0, 1, 0) and ((−

√
−5+1)·ζ3, 0,−

√
−5+1) given above.

Multiplication by [γ] is given by multiplication with ζ3 on the first two summands
and by addition of λ(x) on the third summand. This leads to the following (1−

√
−5)x− 8 3 (

√
−5 + 2)x− 3

√
−5 + 3

−3− (1 +
√
−5)a+ 2b 1 −

√
−5 + 1 + 3a+ (

√
−5− 1)b

2x− 3
√
−5− 3

√
−5 + 1 (

√
−5− 1)x+ 7


where x, a, b ∈ O−5 give rise to the linear map

λ : a→ b⊕O−5 : z 7→
(
x · φ(z),

z(3a+ (
√
−5 + 1)b)

(−
√
−5 + 1)

)
.

According to Theorem 4.4 resp. Proposition 4.7, the matrices written above
provide representatives for all conjugacy classes of C3-subgroups in GL3(O−5).

It remains to discuss conjugacy relations among the infinitely many matrices
written out above. The first case corresponding to the principal ideal class is easier:
conjugation by e13(b) and e23(x) allows to reduce to matrices of the form 0 −1 a

1 −1 0
0 0 1


where the conjugacy class only depends on the residue of a ∈ O−5 modulo (3).
Moreover, as in the proof of Theorem 4.4, scaling by global units from O−5[ζ3]
is allowed. In particular, we get 5 conjugacy classes, using the representatives
a ∈ {0, 1,

√
−5, 1+

√
−5, 1−

√
−5} of the O−5[ζ3]×-orbits on O−5/(3). We can also

see that conjugation by  0 1 a
1 0 0
0 0 1


takes the square of a matrix as above (with (3,1)-entry a) to one with (3,1)-entry 2a
which mod 3 is in the same global unit orbit as the original matrix. In particular,
all the above matrices are conjugate to their squares, hence the corresponding cyclic
groups embed in dihedral groups.

The conjugacy relations between the matrices arising from the non-trivial ideal
class are not so easy to identify. In particular, choosing suitable bases as before is
significantly more difficult because we can only choose a basis in the full module
MN ⊕M/MN but not in the individual summands. A discussion as before for the
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trivial ideal class is therefore not possible. At this point, we do not know what the
appropriate generalization of Theorem 4.4 or Proposition 4.7 should be, and how
to properly identify the number of conjugacy classes of elements resp. subgroups.
The computer calculations for the case O−5 suggest that there are six conjugacy
classes of order 3 elements related to the non-trivial ideal class; and the Galois
group of Q(ζ3,

√
−5)/Q(

√
−5) fixes four of these classes (which hence acquire a

dihedral overgroup) and interchanges the remaining two.
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[16] Sebastian Schönnenbeck, Resolutions for unit groups of orders, Journal of Homotopy and

Related Structures 12 (2017), no. 4, 837–852, DOI 10.1007/s40062-016-0167-6.

Bui Anh Tuan, Faculty of Mathematics and Computer Science, University of Science,
VNU-HCM, 227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City, Vietnam

E-mail address: batuan@hcmus.edu.vn
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