An extended conjugate duality for generalized semi-infinite programming problems via a convex decomposition - Archive ouverte HAL
Article Dans Une Revue Optimization Année : 2020

An extended conjugate duality for generalized semi-infinite programming problems via a convex decomposition

Résumé

We present an extended conjugate duality for a generalized semi-infinite programming problem (P). The extended duality is defined in the context of the absence of convexity of problem (P), by means of a decomposition into a family of convex subproblems and a conjugate dualization of the subproblems. Under appropriate assumptions, we establish strong extended duality and provide necessary and sufficient optimality conditions for problem (P). These extended conjugate duality and optimality conditions are new in the literature of generalized semi-infinite programming .
Fichier principal
Vignette du fichier
GSIP_Version24_4_19_Aboussoror_Adly_Salim.pdf (311.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02433103 , version 1 (08-01-2020)

Identifiants

Citer

A. Aboussoror, Samir Adly, S Salim. An extended conjugate duality for generalized semi-infinite programming problems via a convex decomposition. Optimization, In press, ⟨10.1080/02331934.2019.1655739⟩. ⟨hal-02433103⟩
39 Consultations
138 Téléchargements

Altmetric

Partager

More