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ABSTRACT
We present an extended conjugate duality for a generalized semi-infinite program-
ming problem (P). The extended duality is defined in the context of the absence
of convexity of problem (P), by means of a decomposition into a family of convex
subproblems and a conjugate dualization of the subproblems. Under appropriate
assumptions, we establish strong extended duality and provide necessary and suffi-
cient optimality conditions for problem (P). These extended conjugate duality and
optimality conditions are new in the literature of generalized semi-infinite program-
ming.
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1. Introduction

We are concerned with the following generalized semi-infinite programming
problem

(P) : minF (x)

subject to

{
x ∈ X
f(x, y) ≥ 0,∀y ∈ Y (x)

where F : Rn −→ R and f : Rn × Rm −→ R are convex functions, X is a full-
dimensional convex compact subset of Rn, and Y (x) is an index subset of Rm depend-
ing on x defined by

Y (x) = {y ∈ Rm : g(x, y) ≤ 0}
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where g = (g1, ..., gp)
T : Rn × Rm −→ Rp is a convex function. Note that when the

multifunction Y (·) is constant, (P) becomes a semi-infinite programming problem.

As it is well known, generalized semi-infinite programming (GSIP) problems
have several concrete and theoretical applications; we cite for example engineering,
transportation problems, economics, optimal control and approximation theory (see
[24]). Due to its importance, in the last three decades, generalized semi-infinite pro-
gramming has attracted many researchers in different areas. In particular, several
works on optimality conditions have been devoted to this class of problems. For pa-
pers dealing with this topic, we cite for example [2], [7], [10]-[14], [20]-[23], [30] and [31].

The problem (P) with the same convex data has been considered, e.g., in [2] and
[13]. The case where the function f is assumed to be convex has been also considered in
[14], [25] and [31]. Let us summarize some works on optimality conditions for the class
of generalized semi-infinite programming problems. In [2], for problem (P) necessary
and sufficient global optimality conditions are given by using tools from convex analysis
combined with a notion of stability of optimization problems. In particular, by means
of an optimality condition, the initial problem is reduced to a min-max problem.
In [13] and [14], Kanzi provided for problem (P) necessary optimality conditions of
Fritz-John type. The study in these papers was based on the respective use of the
subdifferential of marginal functions and some constraint qualifications. In [30], the
authors first established optimality conditions for a class of semi-infinite programming
problems by using penalty functions. Then they derived optimality conditions for a
class of generalized semi-infinite programming problems via semi-infinite programming
ones. In [31], Ye and Wu provided first order optimality conditions for a class of
generalized semi-infinite programming problems where all functions are assumed to
be continuously differentiable. These optimality conditions are obtained under various
extended well-known constraint qualifications.

Our aim in this paper is to define an extended conjugate duality and provide
optimality conditions for the global optimization problem (P). The duality that we
will use in our study is the so-called Fenchel-Lagrange duality. It was introduced by
Boţ and Wanka in [29] for convex programming problems. But our problem (P) is not
convex, and consequently this duality cannot be applied directly. However, according
to our data, and via some transformations using reverse convex and DC problems
(that is problems with objective and/or constraint functions are difference of two
convex functions) we decompose it into a family of convex minimization subproblems
(Px∗)x∗∈Rn\{0}. These subproblems have the same objective function F as (P), and
their constraints are expressed in terms of the conjugate of the function f . As a first
step in our procedure of dualization of (P), we give the Fenchel-Lagrange duality
and provide necessary and sufficient global optimality conditions for every convex
subproblem (Px∗), x∗ ∈ Rn \ {0}. Then by means of the duality given for the family
of subproblems, we define an extended duality and provide necessary and sufficient
global optimality conditions for (P). This optimality conditions are expressed in terms
of subdifferentials and normal cones in the sense of convex analysis. We note that these
extended duality and optimality conditions are new in the literature of generalized
semi-infinite programming. An illustrative example is given at the end of the paper.

The paper is organized as follows. In Section 2, we recall some definitions and
results related to convex analysis that we will need for our investigation. In Section
3, we give the decomposition of problem (P) into the family of convex minimization
subproblems. In Section 4, after studying the subproblems, we define the extended
Fenchel-Lagrange duality and provide necessary and sufficient global optimality con-
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ditions for (P).

2. Preliminaries

In what follows, the set Rn is equipped with its usual topology and the following
conventions in R = R ∪ {±∞}, will be adopted:

(+∞)− (+∞) = (−∞)− (−∞) = (+∞) + (−∞) = +∞{
0× (+∞) = +∞,
0× (−∞) = 0,

{
r × (−∞) = −∞, r × (+∞) = +∞, for r ∈ R∗+,
r × (−∞) = +∞, r × (+∞) = −∞, for r ∈ R∗−.

For the definitions and details concerning such conventions in R we refer to [18].
Let A be a nonempty subset of Rn. We shall denote by ψA and σA the indicator and
the support functions of the set A respectively, defined on Rn by

ψA(x) =

{
0, if x ∈ A,
+∞, otherwise,

and σA(x) = sup
s∈A
〈s, x〉

where 〈., .〉 denotes the inner product of two vectors in Rn, i.e., for x = (x1, . . . , xn)T

and y = (y1, . . . , yn)T ∈ Rn, 〈x, y〉 =
∑n

i=1 xiyi. Let aff(A) denote the smallest affine
manifold containing A. Then the relative interior of A denoted by riA is the interior
of A relative to aff(A). Note that if A is convex, then riA is nonempty ([19]).

Let f̂ : Rn → R be a function. The conjugate function of f̂ relative to the set A is
denoted by f̂∗A and defined on Rn by

f̂∗A(x∗) = sup
x∈A

{
〈x∗, x〉 − f̂(x)

}
.

When A = Rn, we obtain the classical Legendre-Fenchel conjugate function of f̂
denoted by f̂∗. We denote by dom(f̂) = {x ∈ Rn : f̂(x) < +∞} the effective domain

of f̂ . The function f̂ is called proper if f̂(x) > −∞, for all x ∈ Rn and dom(f̂) 6= ∅.
Let now f̂ : Rn −→ R ∪ {+∞} be a convex function and x̄ ∈ dom(f̂). The subdif-

ferential of f̂ at x̄ is the set defined by

∂f̂(x̄) = {x∗ ∈ Rn : 〈x∗, x− x̄〉 ≤ f̂(x)− f̂(x̄),∀x ∈ Rn}.

The elements of ∂f̂(x̄) are called subgradients of f̂ at x̄.

Remark 1. We have the following properties ([19]:

i) x∗ ∈ ∂f̂(x̄) ⇐⇒ f̂∗(x∗) + f̂(x̄) = 〈x∗, x̄〉,
ii) 〈x∗, x〉 ≤ f̂∗(x∗) + f̂(x), for all x, x∗ ∈ Rn, called the Fenchel

inequality.

Let C be a nonempty convex subset of Rn and x̄ be an element of C. The normal
cone of C at x̄ denoted by NC(x̄) is defined by

NC(x̄) = {x∗ ∈ Rn : 〈x∗, x− x̄〉 ≤ 0, ∀x ∈ C}.
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It is not difficult to verify that ∂ψC(x̄) = NC(x̄), and when intC 6= ∅ and x̄ ∈ intC,
we have NC(x̄) = {0Rn}, where intC denotes the topological interior of C.

We recall the following result on the addition rule of subdifferential calculus that
will be used later.

Theorem 2.1. ([19]) Let f̂ and ĝ : Rn −→ R∪{+∞} be two proper convex functions.

Assume that dom(f̂) ∩ int(dom(ĝ)) 6= ∅. Then for all x ∈ Rn, we have

∂(f̂ + ĝ)(x) = ∂f̂(x) + ∂ĝ(x).

3. The convex decomposition of problem (P)

In this section, via some transformations using reverse convex and DC problems,
we give a decomposition of (P) into a family of convex minimization subproblems.
These subproblems have the same objective function as (P) and their feasible sets are
expressed in terms of the conjugate of the function f .

Set

v(x) = inf
y∈Y (x)

f(x, y).

Then problem (P) can be rewritten as follows

(P) : min
x∈X

v(x)≥0

F (x).

Throughout the paper we will make the following assumptions:

(H1) inf
x∈X

F (x) < inf(P),

(H2) For every x ∈ X, Y (x) is a nonempty compact subset of Rm.

When assumption (H1) is satisfied, the reverse convex constraint v(x) ≥ 0 is called
essential, and (P) is termed a reverse convex problem. Note that such an assumption
is natural. In fact, in its absence we have inf

x∈X
F (x) = inf(P). So, any solution x̂ of

problem

(P̂) : min
x∈X

F (x)

satisfying the constraint v(x̂) ≥ 0 is a solution of problem (P).

Let us summarize the following properties that will be useful for our investigation.

Remark 2. 1) Since F and f are convex functions, then they are continuous on the
interior of their effective domains which are equal respectively to Rn and Rn×Rm (see
[19]).

2) Assume that assumption (H2) is satisfied.

i) From the convexity of X, we have riX is nonempty, and since aff(X) = Rn, then
riX = intX.
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ii) Since for every x ∈ X, the function f(x, .) is lower semi-continuous, the prob-
lem min

y∈Y (x)
f(x, y) admits at least one solution. So, for every x ∈ X, v(x)

is a finite real number. Hence X ⊂ domv(·). Then aff(domv(·)) = Rn, and
intX ⊂ int(domv(·)).

iii) We have v(·) : Rn → R ∪ {+∞} a proper convex function. So, it is continuous
on int(domv(·)) (see [19]) and hence it is continuous on intX.

Proposition 3.1. ([1], [26]) Let assumptions (H1) and (H2) be fulfilled and let x̂ ∈ X
be a solution of problem (P). Then v(x̂) = 0.

Proof. Assume the contrary, that is v(x̂) > 0. Assumption (H1) implies that there
exists x̄ ∈ X such that

F (x̄) < inf(P) and v(x̄) < 0.

Since v(x̄) < 0 and v(x̂) > 0, then by the continuity of the marginal function v(·) on
intX, there exists x̃ ∈ ]x̄, x̂[ such that v(x̃) = 0. Let α ∈ ]0, 1[ such that

x̃ = αx̄+ (1− α)x̂

which belongs to X. Hence, x̃ is a feasible point of problem (P). Furthermore, the
convexity of F yields

F (x̃) ≤ αF (x̄) + (1− α)F (x̂)

< inf(P)

which contradicts the optimality of x̂. �

Remark 3. 1) According to Proposition 3.1 the formulation of (P) is reduced to
the following

(P) : min
x∈X

v(x)=0

F (x).

2) According to the proof, the result of Proposition 3.1 remains true if we replace the
marginal function v(·) by a continuous function ṽ(·) : Rn → R. More precisely,
let the problem

(P̃) : min
x∈X̃

ṽ(x)≥0

F̂ (x)

where X̃ is a nonempty convex compact subset of Rn (not necessarily full-
dimensional) and F̃ , ṽ(·) : Rn → R are respectively convex and continuous
functions. Then under the following assumption

inf
x∈X̃

F̃ (x) < min
x∈X̃

ṽ(x)≥0

F̃ (x).

the constraint ṽ(x) ≥ 0 is active at the solution set of problem (P̃).
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Let

A = {x ∈ X : v(x) ≥ 0}

denote the feasible set of problem (P) and define the following functions on Rn

ĝ1(x) = ψX(x), ĝ2(x) = υ(x) and h(x) = 0.

Then the constraint set A can be rewritten as

A = {x ∈ Rn : ĝ1(x)− h(x) ≤ 0, h(x)− ĝ2(x) ≤ 0}

and accordingly, (P) can be viewed as a DC problem. Let GrY (·) be the graph of the
multifunction Y (·), i.e.,

GrY (·) = {(x, y) ∈ Rn × Rm : y ∈ Y (x)}.

The following result expresses the set A by means of conjugate functions.

Proposition 3.2. We have

A =
⋃

(x∗,t∗) ∈ Rn×Rn

h∗(x∗)−ĝ∗1 (x∗)≤0
ĝ∗2 (t∗)−h∗(t∗)≤0

{
x ∈ Rn : ĝ1(x) + h∗(x∗)− 〈x∗, x〉 ≤ 0, h(x) + ĝ∗2(t∗)

−〈t∗, x〉 ≤ 0
}
.

Proof. The result is a direct application of Lemma 2.1 in [16].

Let us calculate the conjugates on Rn of the constraint functions ĝi, i = 1, 2, and h.

Proposition 3.3. Let x∗ ∈ Rn. Then we have

i) ĝ∗1(x∗) = σX(x∗),
ii) ĝ∗2(x∗) = f∗GrY (·)(x

∗, 0Rm),

iii) h∗(x∗) = ψ{0Rn}(x
∗).

Proof. We have

i) ĝ∗1(x∗) = sup
x∈Rn

{〈x∗, x〉 − ψX(x)} = sup
x∈X
〈x∗, x〉 = σX(x∗),

ii)

ĝ∗2(x∗) = sup
x∈Rn

{〈x∗, x〉 − v(x)} = sup
x∈Rn

{〈x∗, x〉 − inf
y∈Y (x)

f(x, y)}

= sup
x∈Rn,y∈Y (x)

{〈x∗, x〉 − f(x, y)} = sup
(x,y)∈GrY (·)

{〈x∗, x〉 − f(x, y)}

= sup
(x,y)∈GrY (·)

{〈( x∗

0Rm

)
,

(
x

y

)〉
− f(x, y)

}
= f∗GrY (·)(x

∗, 0Rm),

iii) h∗(x∗) = sup
x∈Rn

〈x∗, x〉 =

{
+∞, if x∗ 6= 0,
0, if x∗ = 0.

So, h∗(x∗) = ψ{0Rn}(x
∗). �
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For x∗ ∈ Rn, set

Ax∗ = {x ∈ X : f∗GrY (·)(x
∗, 0Rm)− 〈x∗, x〉 ≤ 0}

which is a convex set. By a simple calculation and using the expression of the set A
given in Proposition 3.2, we obtain the following new expression of A using the sets
Ax∗ , x

∗ ∈ Rn.

Proposition 3.4. We have A =
⋃

x∗∈Rn\{0}

Ax∗.

Proof. According to Propositions 3.2 and 3.3 the set A is defined by the following
two systems {

ψX(x) + ψ{0Rn}(x
∗)− 〈x∗, x〉 ≤ 0, (1)

ψ{0Rn}(x
∗)− σX(x∗) ≤ 0, (2)

and {
f∗GrY (·)(t

∗, 0Rm)− 〈t∗, x〉 ≤ 0, (3)

f∗GrY (·)(t
∗, 0Rm)− ψ{0Rn}(t

∗) ≤ 0. (4)

Then the inequalities (1) and (2) yield x∗ = 0 and x ∈ X. On the other hand, according
to our hypothesis (H1) the inequality (4) yields that t∗ 6= 0. In fact, assume that t∗ = 0.
Then inequality (4) yields

f∗GrY (.)(t
∗, 0Rm) = − inf

x∈Rn
v(x) ≤ 0.

So v(x) ≥ 0, for all x ∈ Rn. This contradicts the hypothesis (H1) which says that the
constraint v(x) ≥ 0 is essential. That is (see the proof of Proposition 3.1) there exists
x̄ ∈ X such that

F (x̄) < inf(P) and v(x̄) < 0.

Therefore, A =
⋃

t∗∈Rn\{0}

At∗ . �

For x∗ ∈ Rn \ {0}, we consider the following convex minimization subproblem

(Px∗) : min
x∈Ax∗

F (x).

Remark 4. Let x̄ be a solution of problem (P). Then from Proposition 3.4, there
exists x∗ ∈ Rn\{0} such that x̄ solves problem (Px∗), and inf(P) = inf(Px∗). Therefore,
we get a decomposition of problem (P) into the family of convex subproblems (Px∗),
x∗ ∈ Rn \ {0}, which we term a convex decomposition.
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4. Extended Fenchel-Lagrange duality and optimality conditions for
problem (P)

In this section, we define an extended conjugate duality and provide necessary and
sufficient global optimality conditions for the generalized semi-infinite programming
problem (P). This extended duality is defined by means of the so-called Fenchel-
Lagrange duality. This latter was first introduced by Boţ and Wanka in [29] for convex
programming problems, and afterwards extended to some generalized convex pro-
gramming problems (see [5] and [6]). In fact, since our study is based on convexity
and problem (P) is not convex, this duality cannot be applied directly. So, using the
above convex decomposition of (P), we first give the Fenchel-Lagrange dual to each
convex minimization subproblem (Px∗), x∗ ∈ Rn \ {0}, and then define the extended
Fenchel-Lagrange duality for our initial global optimization problem (P).

4.1. Fenchel-Lagrange duality and optimality conditions for the
subproblems

In this subsection, first we give the Fenchel-Lagrange duality for the subproblems
(Px∗), x∗ ∈ Rn \ {0}. Before going further, let us recall this duality. Consider the
following minimization problem

(P̃) : min
x∈X̃

g̃(x)≤0

f̃(x)

where X̃ is a nonempty convex subset of Rn, f̃ : Rn −→ R and g̃ = (g̃1, . . . , g̃m)T :
Rn −→ Rm are convex functions, with dom(f̃) = X̃, and m ≥ 1. The Fenchel-Lagrange
dual (D̃) of problem (P̃) is defined as follows ([29])

(D̃) : sup
p∈Rn

q∈Rm
+

{
−f̃∗(p)− (qT g̃)∗

X̃
(−p)

}

where for q = (q1, . . . , qm)T , the function qT g̃(·) is defined on Rn by qT g̃(x) =
m∑
i=1

qig̃i(x).

We say that we have strong Fenchel-Lagrange duality between problems (P̃) and
(D̃), if inf(P̃) = sup(D̃) and the dual problem (D̃) admits a solution. We note that the
Fenchel-Lagrange duality is a combination of the well-known Lagrange and Fenchel
dualities.

Let us return to our problem (P). Define on Rn the function

gx∗(·) = f∗GrY (·)(x
∗, 0Rm)− 〈x∗, .〉

and write the problem (Px∗) under the formulation

(Px∗) : min
x∈X

gx∗ (x)≤0

F (x).

8



Let (Dx∗) denote the Fenchel-Lagrange dual to (Px∗). Then according to the above
definition of duality, (Dx∗) has the following form

(Dx∗) : sup
p∈Rn

q∈R+

{−F ∗(p)− (qgx∗)
∗
X(−p)} .

By using the explicit expression of (qgx∗)
∗
X , we obtain

(Dx∗) : sup
p∈Rn

q∈R+

inf
x∈X

{
−F ∗(p) + 〈p− q x∗, x〉+ qf∗GrY (·)(x

∗, 0Rm)
}
.

Then we have the following results on weak and strong dualities for the primal-dual
pair (Px∗)-(Dx∗).

Theorem 4.1. (Weak Fenchel-Lagrange duality) Let x∗ ∈ Rn \ {0} and assume that
assumptions (H1) and (H2) are fulfilled. Then weak duality always holds between prob-
lems (Px∗) and (Dx∗), i.e.,

sup(Dx∗) ≤ inf(Px∗).

Proof. See for example [29].

In order to establish our main results, we will use the following classical Slater
constraint qualification ([4]):

(CQ) For every x∗ ∈ Rn \ {0}, there exists xx∗ ∈ X such that:

f∗GrY (·)(x
∗, 0Rm)− 〈x∗, xx∗〉 < 0.

Theorem 4.2. (Strong Fenchel-Lagrange duality) Let x∗ ∈ Rn \ {0} and assume that
assumptions (H1) and (H2) and the constraint qualification (CQ) are fulfilled. Then
strong duality holds between problems (Px∗) and (Dx∗), i.e.,

inf(Px∗) = sup(Dx∗)

and the dual (Dx∗) has a solution.

Proof. See Theorem 3.3 in [8].

4.2. Optimality conditions for the subproblems

In this subsection, using the previous result on strong duality, we provide necessary
and sufficient global optimality conditions for the primal-dual pair (Px∗)-(Dx∗), x

∗ ∈
Rn \ {0}.

Theorem 4.3 (Necessary optimality conditions). Let x∗ ∈ Rn \ {0} and x̄ be a so-
lution of problem (Px∗). Assume that assumptions (H1) and (H2) and the constraint
qualification condition (CQ) are fulfilled. Then there exists (p̄, q̄) ∈ Rn×R∗+ a solution
of the dual problem (Dx∗) such that the following optimality conditions are satisfied

i) p̄ ∈ ∂F (x̄),

9



ii) there exists ȳ ∈ Y (x̄) such that
(

x∗

0Rm

)
∈ ∂f(x̄, ȳ) +NGrY (·)(x̄, ȳ),

iii) q̄x∗ − p̄ ∈ NX(x̄).

Proof. Since the constraint qualification condition (CQ) is fulfilled, then by adopting
for the dual problem (Dx∗) the formulation

(Dx∗) : sup
p∈Rn

q∈R+

{−F ∗(p)− (qgx∗)
∗
X(−p)}

we deduce from Theorem 3.2 in [4] that there exists (p̄, q̄) ∈ Rn × R+ such that the
following optimality conditions are satisfied

a) F ∗(p̄) + F (x̄) = 〈p̄, x̄〉,
b) q̄gx∗(x̄) = q̄ (f∗GrY (·)(x

∗, 0Rm)− 〈x∗, x̄〉) = 0,

c) (q̄ gx∗)
∗
X (−p̄) = 〈−p̄, x̄〉.

We have

(q̄gx∗)
∗
X (−p̄) = sup

x∈X

{
〈−p̄, x〉 − q̄ (f∗GrY (·)(x

∗, 0Rm)− 〈x∗, x〉)
}

= sup
x∈X
{〈q̄x∗ − p̄, x〉} − q̄ f∗GrY (·)(x

∗, 0Rm)

= σX(q̄x∗ − p̄)− q̄ f∗GrY (·)(x
∗, 0Rm).

Then condition c) can be rewritten as

σX(q̄x∗ − p̄)− q̄ f∗GrY (·)(x
∗, 0Rm) = 〈−p̄, x̄〉. (5)

Let us show that q̄ > 0. Assume that q̄ = 0. Then

σX(−p̄) = 〈−p̄, x̄〉.

Since x̄ ∈ X and σX = (ψX)∗, we have

(ψX)∗(−p̄) + ψX(x̄) = 〈−p̄, x̄〉.

That is

−p̄ ∈ ∂ψX(x̄) = NX(x̄). (6)

Moreover, equation a) is equivalent to the following

p̄ ∈ ∂F (x̄). (7)

Then, adding (6) and (7), we obtain

0 ∈ ∂F (x̄) +NX(x̄).
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That is x̄ is a solution of the following problem

min
x∈X

F (x).

So that

inf(Px∗) = inf
x∈X

F (x).

Using the fact that inf(P) ≤ inf(Px∗), we obtain

inf(P) ≤ inf
x∈X

F (x)

which contradicts the hypothesis (H1). So, q̄ > 0. Therefore, the complementary slack-
ness condition b) yields

f∗GrY (.)(x
∗, 0Rm)− 〈x∗, x̄〉 = 0.

Let ȳ ∈ Y (x̄) such that υ(x̄) = f(x̄, ȳ) [such a point exists according to 2)-ii) of
Remark 2]. By using Proposition 3.1, we have v(x̄) = 0. Hence

f∗GrY (.)∗(x
∗, 0Rm) + f(x̄, ȳ) =

〈( x∗

0Rm

)
,

(
x̄

ȳ

)〉
.

By the subdifferential calculus, the above equation can be written as(
x∗

0Rm

)
∈ ∂(f + ψGrY (·))(x̄, ȳ)

= ∂f(x̄, ȳ) +NGrY (·)(x̄, ȳ)

where the equality follows from Theorem 2.1 (dom(f) = Rn×Rm). That is the property
ii) is satisfied.

In order to show the property iii), let us write the equation (5) as follows

(ψX)∗(q̄x∗ − p̄)−〈q̄x∗, x̄〉+ q̄ f∗GrY (·)(x
∗, 0Rm)︸ ︷︷ ︸

=0

−q̄ f∗GrY (·)(x
∗, 0Rm) = 〈−p̄, x̄〉

where the equality −〈q̄x∗, x̄〉+ q̄ f∗GrY (·)(x
∗, 0Rm) = 0 follows from property b). Then

(ψX)∗(q̄x∗ − p̄) = 〈q̄x∗ − p̄, x̄〉

which is equivalent to

(ψX)∗(q̄x∗ − p̄) + ψX(x̄) = 〈q̄x∗ − p̄, x̄〉.

That is

q̄x∗ − p̄ ∈ ∂ψX(x̄) = NX(x̄).

11



Hence, property iii) is satisfied. �

Corollary 4.4. Let x∗ ∈ Rn \ {0} and x̄ be a solution of problem (Px∗). Let assump-
tions of Theorem 4.3 be satisfied. Then there exists q̄ ∈ R∗+ such that x̄ solves the
problem

min
x∈X
{F (x)− 〈q̄x∗, x〉}.

Proof. From Theorem 4.3, there exists (p̄, q̄) ∈ Rn × R∗+, such that

p̄ ∈ ∂F (x̄) and q̄x∗ − p̄ ∈ NX(x̄).

So

q̄x∗ ∈ ∂F (x̄) +NX(x̄).

Then

0 ∈ ∂F (x̄) +NX(x̄)− q̄x∗.

That is x̄ solves the problem

min
x∈X
{F (x)− 〈q̄x∗, x〉}. �

For a given x∗ ∈ Rn \ {0}, the following result gives sufficient optimality conditions
for the subproblem (Px∗).

Theorem 4.5 (Sufficient optimality conditions). Let x∗ ∈ Rn \ {0}. Assume that
assumptions (H1) and (H2) are fulfilled. Let x̄ ∈ X and (p̄, q̄) ∈ Rn × R∗+ satisfy the
conditions i)− iii) in Theorem 4.3. Then x̄ and (p̄, q̄) solve respectively the problems
(Px∗) and (Dx∗). Furthermore, strong Fenchel-Lagrange duality holds between them.

Proof. In the same way as in the proof of Theorem 4.3, we show that

f∗GrY (.)(x
∗, 0Rm)− 〈x∗, x̄〉 = 0.

So, x̄ ∈ Ax∗ . That is x̄ is a feasible point of problem (Px∗). On the other hand,
conditions i) in Theorem 4.3 is equivalent to

F ∗(p̄) + F (x̄) = 〈p̄, x̄〉. (8)

Moreover, from the last part of the proof of Theorem 4.3, the condition iii) in this
theorem can be rewritten as

(q̄gx∗)
∗
X(−p̄) = 〈−p̄, x̄〉. (9)

Then adding the equations (8) and (9), we obtain

F ∗(p̄) + F (x̄) + (q̄gx∗)
∗
X(−p̄) = 0.

12



Therefore

inf(Px∗) ≤ F (x̄) = −F ∗(p̄)− (q̄gx∗)
∗
X(−p̄) ≤ sup(Dx∗).

By weak duality, we deduce that

inf(Px∗) = F (x̄)

= sup(Dx∗)

= −F ∗(p̄)− (q̄gx∗)
∗
X(−p̄).

It follows that x̄ and (p̄, q̄) solve (Px∗) and (Dx∗) respectively. Moreover, (Px∗) and
(Dx∗) are in strong Fenchel-Lagrange duality. �

4.3. Extended Fenchel-Lagrange duality and optimality conditions for
problem (P)

As we have mentioned in the introduction, since problem (P) is not convex, we
cannot apply directly the Fenchel-Lagrange duality. However, thanks to the convex
decomposition of (P) into the family of subproblems (Px∗)x∗∈Rn \ {0} we can define
an extended Fenchel-Lagrange duality for (P) in the following sense.

Definition 4.6. We say that the generalized semi-infinite programming problem (P)
is in

i) weak extended Fenchel-Lagrange duality if there exists x∗ ∈ Rn \ {0} such that
inf(P) ≥ sup(Dx∗),

ii) strong extended Fenchel-Lagrange duality if there exists x∗ ∈ Rn \ {0} such that
inf(P) = sup(Dx∗), and problem (Dx∗) admits a solution,

where we recall that (Dx∗) denotes the dual of the subproblem (Px∗).

Theorem 4.7 (Weak extended Fenchel-Lagrange duality). Assume that assumptions
(H1) and (H2) are fulfilled. Then the generalized semi-infinite programming problem
(P) is always in weak extended Fenchel-Lagrange duality.

Proof. Let x̄ ∈ A be a solution of problem (P). Since

A =
⋃

x∗∈Rn\{0}

Ax∗

then there exists x∗ ∈ Rn \ {0}, such that x̄ ∈ Ax∗ and x̄ solves the problem

(Px∗) : min
x∈Ax∗

F (x).

On the other hand, Theorem 4.1 implies that

inf(Px∗) ≥ sup(Dx∗).

Finally, using the fact that inf(P) = inf(Px∗), we obtain the result. �
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Theorem 4.8 (Strong extended Fenchel-Lagrange duality). Assume that assumptions
(H1) and (H2) and the constraint qualification condition (CQ) are fulfilled. Then the
problem (P) is in strong extended Fenchel-Lagrange duality.

Proof. The proof is similar to the one of Theorem 4.7 by using Theorem 4.2 instead
of Theorem 4.1. �

4.4. Optimality conditions for problem (P)

In this subsection, by means of the duality given for the family of subproblems,
we provide necessary and sufficient optimality conditions for problem (P).

Theorem 4.9 (Necessary optimality conditions). Assume that assumptions (H1) and
(H2) and the constraint qualification condition (CQ) are fulfilled. Let x̄ be a solution of
the generalized semi-infinite programming problem (P). Then there exist x∗ ∈ Rn \{0}
and (p̄, q̄) ∈ Rn × R∗+ a solution of the dual problem (Dx∗) such that

i) p̄ ∈ ∂F (x̄),
ii) there exists ȳ ∈ Y (x̄) verifying

(
x∗

0Rm

)
∈ ∂f(x̄, ȳ) +NGrY (.)(x̄, ȳ),

iii) q̄x∗ − p̄ ∈ NX(x̄).

Proof. Using the fact that A =
⋃

x∗∈Rn\{0}Ax∗ , we deduce that there exists x∗ ∈
Rn \ {0} such that x̄ ∈ Ax∗ and x̄ solves problem (Px∗). Then the result follows from
Theorem 4.3. �

Corollary 4.10. Assume that assumptions of Theorem 4.9 are fulfilled. Let x̄ be a
solution of problem (P). Then there exist x∗ ∈ Rn \ {0} and q̄ ∈ R∗+ such that x̄ solves
the problem

min
x∈X
{F (x)− 〈q̄x∗, x〉}.

Proof. From Theorem 4.9, there exist x∗ ∈ Rn \ {0} and (p̄, q̄) ∈ Rn × R∗+ a solution
of the dual problem (Dx∗) of (Px∗) such that

p̄ ∈ ∂F (x̄) and q̄x∗ − p̄ ∈ NX(x̄).

Then the rest of the proof is identical to the one of Corollary 4.4. �

For x ∈ Rn, define on Rm the function fx(.) by

fx(y) = f(x, y).

The following theorem provides sufficient optimality conditions for problem (P).

Theorem 4.11 (Sufficient optimality conditions). Let x̄ ∈ X. Assume that assump-
tions (H1) and (H2) are fulfilled. If moreover, there exist ȳ ∈ Rm, x∗ ∈ Rn \ {0}, and
(p̄, q̄) ∈ Rn × R∗+, such that the following conditions are satisfied

i) 0Rm ∈ ∂fx̄(ȳ) +NY (x̄)(ȳ), g(x̄, ȳ) ≤ 0, and f(x̄, ȳ) = 0,
ii) p̄ ∈ ∂F (x̄),

iii) q̄x∗ − p̄ ∈ NX(x̄),
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iv) (x̄, ȳ) solves the problem

(Qx∗) : max
(x,y)∈X×Rm

g(x,y)≤0

{f(x, y)− 〈x∗, x〉}

then x̄ is a solution of the generalized semi-infinite programming problem (P).

Proof. Feasibility: According to Proposition 3.1, problem (P) can be rewritten as

(P) : min
x∈X

v(x)=0

F (x).

From condition i), we have

0Rm ∈ ∂fx̄(ȳ) +NY (x̄)(ȳ) and g(x̄, ȳ) ≤ 0.

That is ȳ solves the problem

min
y∈Y (x̄)

fx̄(y).

It follows that v(x̄) = f(x̄, ȳ) = 0. Therefore, x̄ is a feasible point of (P).

Optimality: In order to prove the optimality of x̄ for problem (P), let x ∈ X be
such that v(x) = 0 [see 1) of Remark 3]. From the property p̄ ∈ ∂F (x̄), we have

F (x′) ≥ F (x̄) + 〈p̄, x′ − x̄〉, ∀x′ ∈ Rn.

In particular

F (x) ≥ F (x̄) + 〈p̄, x− x̄〉. (10)

Property iii) yields

〈x∗, x− x̄〉 ≤
〈 p̄
q̄
, x− x̄

〉
.

Furthermore, since (x̄, ȳ) solves the problem (Qx∗), it follows that

f(x̄, ȳ)− 〈x∗, x̄〉 ≥ f(x, y)− 〈x∗, x〉, ∀y ∈ Y (x).

Let y ∈ Y (x). We have

f(x̄, ȳ)− v(x) ≥ f(x̄, ȳ)− f(x, y)

≥ 〈x∗, x̄− x〉
≥

〈 p̄
q̄
, x̄− x

〉
(11)

where the first inequality follows from that v(x) ≤ f(x, y). On the other hand, we
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have v(x) = 0 and f(x̄, ȳ) = 0. Then, from (11) we deduce that

0 ≤ f(x, y)

≤ 〈x∗, x− x̄〉

≤
〈 p̄
q̄
, x− x̄

〉
.

Hence

〈p̄, x− x̄〉 ≥ 0.

Finally, using (10) we obtain

F (x) ≥ F (x̄).

Therefore, x̄ solves problem (P). �

To illustrate our study, let us consider the following simple example in which we
apply Theorem 4.11.

Example 4.12. Let X = [−1
2 ,

1
2 ], F : R→ R, and f, gi : R× R2 → R, i = 1, ..., 4, be

the functions defined by

F (x) = x2 + |x|+ 1, f(x, y) = x2 + 2x+ y1 + y2,

{
g1(x, y) = y1 + 3

4 , g2(x, y) = x2 − 1− y1,

g3(x, y) = y2 + 1
2 , g4(x, y) = x− 1− y2.

Then the problem that we are concerned with is

(P) : min(x2 + |x|+ 1)

subject to


x ∈ X
x2 + 2x+ y1 + y2 ≥ 0
for all (y1, y2) ∈ R2 such that
y1 + 3

4 ≤ 0, x2 − 1− y1 ≤ 0
y2 + 1

2 ≤ 0, x− 1− y2 ≤ 0.

For x ∈ X, we have Y (x) = [x2− 1, −3
4 ]× [x− 1, −1

2 ], which is a compact subset of R2.
That is assumption (H2) is satisfied. Moreover, X is a convex compact set and F , gi,
i ∈ {1, ..., 4}, and f are convex functions. Let us apply our duality approach to solve
problem (P).

Let x̄ ∈ X. We will impose on x̄ the sufficient optimality conditions i) − iv) in
Theorem 4.11 (if such a point exists).

Condition i): Let ȳ = (ȳ1, ȳ2)T ∈ R2 be a solution of problem min
y∈Y (x̄)

f(x̄, y), verifying

f(x̄, ȳ) = 0 (if it exists). By simple calculation, we find ȳ = (ȳ1, ȳ2)T = (x̄2−1, x̄−1)T ,
and then f(x̄, ȳ) = 2x̄2 + 3x̄ − 2. The equation f(x̄, ȳ) = 0 gives two values x̄ = −2,
and x̄ = 1

2 . But only x̄ = 1
2 is feasible for (P). It follows that ȳ1 = −3

4 , and ȳ2 = −1
2 .
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Now, let us verify if there exist p̄ ∈ R, q̄ > 0 and x∗ ∈ R \ {0}, such that the
conditions ii)− iv) are satisfied.

Condition ii): We have ∂F (x) =

 {2x− 1}, if x ∈ [−1
2 , 0[,

[−1, 1], if x = 0,
{2x+ 1}, if x ∈]0, 1

2 ].

For x̄ = 1
2 , the condition p̄ ∈ ∂F (x̄) yields p̄ = 2.

Condition iii): We must have q̄x∗ − p̄ ∈ NX(1
2). We have NX(1

2) = R+. So, q̄x∗ ≥
p̄ = 2.

Condition iv): The element x∗ must be chosen such that (x̄, ȳ) solves the problem

(Qx∗) : max
x∈[−1

2
, 1
2
]

y1∈[x2−1,−3
4

]

y2∈[x−1,−1
2

]

{
x2 + 2x+ y1 + y2 − x∗x

}
.

We have

sup(Qx∗) = sup
x∈[−1

2
, 1
2
]

{x2 + 2x− x∗x+ sup
y1∈[x2−1,−3

4
]

y2∈[x−1,−1
2

]

(y1 + y2)}

= sup
x∈[−1

2
, 1
2
]

{x2 + (2− x∗)x− 5
4}

which corresponds to a maximization problem of a convex function over a convex
compact set. Then the supremum is attained at one of the extremal points of the set
[−1

2 ,
1
2 ], which are 1

2 and −1
2 . The values of the function: x → x2 + (2 − x∗)x − 5

4 at

these points are respectively −1
2x
∗ and 1

2x
∗− 2. Then according to condition i) above,

we must choose x∗ such that −1
2x
∗ > 1

2x
∗ − 2. That is x∗ < 2. Since we must have

q̄ > 0 and q̄x∗ ≥ 2, we take for example x∗ = 1 and q̄ = 3. Therefore, according to
Theorem 4.11, x̄ = 1

2 solves the problem (P) with min(P) = 7
4 (we verify that actually

assumption (H1) is satisfied).

5. Conclusion

In this paper, for a generalized semi-infinite programming problem (P) we have
defined an extended Fenchel-Lagrange duality and provided necessary and sufficient
conditions for global optimality. This extended duality is defined in the context that the
Fenchel-Lagrange duality cannot be applied directly to the nonconvex minimization
problem (P). So, in a first step, we have decomposed (P) into a family of convex min-
imization subproblems. Then for each subproblem we have given its Fenchel-Lagrange
dual and provided necessary and sufficient optimality conditions. Thanks to the convex
decomposition and the duality given for the family of subproblems, we have defined the
extended conjugate duality and provided necessary and sufficient optimality conditions
for problem (P). The optimality conditions are expressed in terms of subdifferentials
and normal cones in the sense of convex analysis. We note that these extended du-
ality and optimality conditions are new in the literature of generalized semi-infinite
programming. It will be interesting to construct some algorithms from the obtained
optimality conditions to solve (P), and also to test our approach on concrete examples.
This will be the subject of a forthcoming work.
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