Kernel Node Embeddings - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Kernel Node Embeddings

Résumé

Learning representations of nodes in a low dimensional space is a crucial task with many interesting applications in network analysis, including link prediction and node classification. Two popular approaches for this problem include matrix factorization and random walk-based models. In this paper, we aim to bring together the best of both worlds, towards learning latent node representations. In particular, we propose a weighted matrix factorization model which encodes random walk-based information about the nodes of the graph. The main benefit of this formulation is that it allows to utilize kernel functions on the computation of the embeddings. We perform an empirical evaluation on real-world networks, showing that the proposed model outperforms baseline node embedding algorithms in two downstream machine learning tasks.
Fichier principal
Vignette du fichier
kernelNE_GlobalSIP_2019.pdf (352.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02423629 , version 1 (24-12-2019)

Identifiants

  • HAL Id : hal-02423629 , version 1

Citer

Abdulkadir Çelikkanat, Fragkiskos Malliaros. Kernel Node Embeddings. GlobalSIP 2019 - 7th IEEE Global Conference on Signal and Information Processing, Nov 2019, Ottawa, Canada. ⟨hal-02423629⟩
139 Consultations
77 Téléchargements

Partager

More