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Abstract—Learning representations of nodes in a low dimen-
sional space is a crucial task with many interesting applications
in network analysis, including link prediction and node classifi-
cation. Two popular approaches for this problem include matrix
factorization and random walk-based models. In this paper, we
aim to bring together the best of both worlds, towards learning
latent node representations. In particular, we propose a weighted
matrix factorization model which encodes random walk-based
information about the nodes of the graph. The main benefit of
this formulation is that it allows to utilize kernel functions on
the computation of the embeddings. We perform an empirical
evaluation on real-world networks, showing that the proposed
model outperforms baseline node embedding algorithms in two
downstream machine learning tasks.

Index Terms—Network representation learning, node embed-
ding, link prediction, node classification, kernel functions

I. INTRODUCTION

With the advancements in data production, storage and
consumption, networks are becoming omnipresent; data from
diverse disciplines can be represented as graph structures with
prominent examples here being various social, information,
technological and biological networks. Developing machine
learning algorithms to analyze, predict and make sense of
the structure of graph data has become a crucial task with a
plethora of cross-disciplinary applications [1], [2]. The major
challenge in machine learning on graph data concerns the
encoding of information about its structural properties into
the learning model. To this direction, a recent paradigm in
network analysis, known as network representation learning
(NRL), aims at embedding the nodes of the graph into a lower-
dimensional space, in such a way that similarity among nodes
in the graph is captured by the similarity of the embeddings
in the latent space [3], [4], [5], [6], [7], [8]. Many of the
proposed models in network representation learning have
mostly concentrated on computing node embeddings relying
on matrix factorization techniques that encode information
about structural node similarity [5], [6], [7]. Nevertheless, the
majority of those approaches are not efficient for large scale
networks, mainly due to the high computational cost required
to perform matrix factorization [1], [2].

Being inspired by the field of natural language processing
[9], random-walk based models have gained considerable
attention [3], [4], [10], [11]. Typically, these methods first
generate a set of node sequences (i.e., context nodes) for every
node (i.e., center) in the network, based on some random walk

strategy; then, node representations are learned by predicting
context-center node co-occurrences within the random walks.

In this paper, we aim at combining the previously proposed
broad modeling approaches for NRL – namely matrix factor-
ization and random walks. In particular, we focus on modeling
the interactions between nodes based on random walks, under
a weighted matrix factorization framework. The potential
advantage of such a modeling approach is that it allows to
take advantage of and combine the elegant mathematical for-
mulation that matrix factorization can offer with the expressive
power of random walks to capture a notion of “stochastic”
node similarity in an efficient way. More importantly, this
formulation allows us to utilize kernel functions in the node
representation learning task.

Kernel functions have mostly been introduced along with
popular learning algorithms, such as PCA [12], SVMs [13],
Spectral Clustering [14] and Collaborative Filtering [15]. The
idea is to map non-linearly separable points into a (generally)
higher dimensional feature space, so that the inner product in
the new space can be computed without needing to compute
the exact feature maps. Here, we aim at obtaining embeddings,
given values that represent the relationships among nodes.
Because of the nature of matrix factorization-based methods,
these values are viewed as an inner product of vectors lying on
a latent space, which allows us to utilize kernels interpreting
the embeddings in a higher dimensional feature space using
non-linear maps. The main contributions of the paper are the
following:
• We propose a novel approach for learning node embed-

dings by incorporating kernel functions with models re-
lying on weighted matrix factorization, encoding random
walk-based structural information of the graph.

• We extensively evaluate the performance of the proposed
method in the downstream tasks of node classification
and link prediction and we show that the model generally
outperforms the well-known baseline methods on various
network datasets.

Notation. We use the notation M to denote a matrix, Mi,j

points out the entry located at the i’th row and j’th column
of the matrix, and Mi,: indicates the i’th row of the matrix.

Source code. The C++ implementation of the proposed
methodology and the networks used in the study, can be
reached at: https://abdcelikkanat.github.io/projects/kernelNE/.



II. MODELING AND PROBLEM FORMULATION

Let G = (V, E) be a graph where V = {1, ..., n} and
E ⊆ V × V are the vertex and edge sets, respectively.
Our goal is to find node representations in a latent space,
preserving properties of the network. More formally, we define
the general objective function of our problem as a weighted
matrix factorization [16], as follows:

arg min
A,B

1

2

∥∥∥W � (M−AB>)
∥∥∥2
F
, (1)

where M ∈ Rn×n is the target matrix constructed based on the
desired properties of a given network, which is used to learn
node embeddings A,B ∈ Rn×d. W ∈ Rn×n is the weight
matrix in which each element Wv,u captures the importance
of the approximation error between nodes v and u, and �
indicates the Hadamard product. Depending on the desired
graph properties that we are interested to encode, there are
many possible alternatives to choose matrix M; such include
the number of common neighbors between a pair of nodes,
higher-order node proximity based on the Adamic-Adar or
Katz indices [7], as well based on k-hop information [6].
Here, we will design M as a sparse binary matrix utilizing
information of random walks over the network. Note that,
matrices M and W do not need to be symmetric.

Random walk-based node embedding models [3], [4], [10],
[17], [18], [19] have received great attention because of their
good prediction performance and efficiency on large scale
networks. Typically, those models generate a set of node
sequences by simulating random walks; node representations
are then learned by optimizing a model which defines the
relationships between nodes and their contexts within the
walks. More formally, for a random walk w = (w1, ..., w`),
the context of the center node wl ∈ V at position l in the walk
w is defined as Cw(wl) := (wl−γ , ..., wl−1, wl+1, ..., wl+γ),
where γ is called the window size and it denotes the furthest
distance between the center and context nodes wk ∈ V for
l − γ ≤ k ≤ l + γ and k 6= l. The embedding vectors are
then obtained by maximizing the likelihood of occurrences of
nodes within the context of given center nodes. Here, we will
also follow a similar random walk strategy, formulating the
problem under a matrix factorization framework.

Let Mv,u be a binary value representing if node u appears
in the context of v in any walk. Also, let Fv,u be the number
of occurrences of node u in the contexts of v in the generated
walks. Setting each term Wv,u as the square root of Fv,u,
the objective function in (1) can be expressed under a random
walk-based formulation as follows:

arg min
A,B

1

2

∥∥∥√F� (M−AB>
)∥∥∥2
F

= arg min
A,B

1

2

∑
v∈V

∑
u∈V

Fv,u

(
Mv,u − 〈Av,:,Bu,:〉

)2
= arg min

A,B

1

2

∑
w∈W

∑
wl∈w

∑
u∈V

(
Mw

wl,u
− 〈Awl,:,Bu,:〉

)2
, (2)

where each w ∈ V` indicates a random walk of length ` in the
collectionW and Mw

wl,u
represents the occurrence of u in the

context Cw(wl). Matrix A in Eq. (2), contains the embedding
vectors of nodes when they are considered as centers; those
will be the embeddings that are used in the experimental
evaluation. The choice of matrix M and the reformulation of
the objective function as stated above, offers a computational
advantage during the optimization step. More importantly, as
we will present in the next section, we can further benefit from
a kernelized version of the objective function.

III. KERNEL-BASED REPRESENTATION LEARNING

Similar to other matrix factorization techniques that aim
at finding latent representations in a lower dimensional space
(d� n) (e.g., [20], [21], [22]), one can adopt Singular Value
Decomposition (SVD) to provide the best approximation of
the objective function in (1), as long as the weight matrix is
uniform [23]. It is also implicitly assumed that every element
of the target matrix M can be written as inner product of
vectors in the latent space, and in that case, it becomes difficult
to obtain an exact low-rank decomposition. To overcome this
limitation, in our approach we utilize kernel functions to learn
node representations via matrix factorization.

Let (X, dX) be a metric space and H be a Hilbert space
of real-valued functions defined on X. A Hilbert space is
called reproducing kernel Hilbert space (RKHS) if the point
evaluation map over H is a continuous linear functional. Fur-
thermore, a feature map is defined as a function Φ : X → H,
H is referred to as feature space and every feature map defines
a kernel κ : X× X→ R as follows:

κ(x, y) := 〈Φ(x),Φ(y)〉 ∀(x, y) ∈ X2.

It can be seen that κ(·, ·) is symmetric and positive definite
due to the properties of an inner product space.

A function g : X → R is called induced by κ, if there exists
h ∈ H such that g = 〈h,Φ(·)〉, for a feature vector Φ of kernel
κ (note that, the definition is independent of the feature map
Φ and space H) [24]. Let Iκ := {g : X→ R | ∃h ∈ H s.t. g =
〈h,Φ(·)〉} be the set of induced functions by kernel κ. Then,
a continuous kernel κ on a compact metric space (X, dX) is
called universal, if the set Iκ is dense in C(X). In other words,
for any function f ∈ C(X) and ε > 0, there exists gh ∈ Iκ
satisfying

‖f − gh‖∞ ≤ ε,

where gh is defined as 〈h,Φ(·)〉 for some h ∈ H. We use the
next proposition as the basis for our approach.

Proposition 1 ([24]). Let (X, d) be a compact metric space
and κ(·, ·) be a universal kernel on X. Then, for all compact
and mutually disjoint subsets K1, ...,Kn ⊂ X, all α1,...,αn
∈ R, and all ε > 0, there exists a function g induced by κ
with ‖g‖∞ ≤ maxi |αi|+ ε such that∥∥∥∥∥∥g|K −

n∑
i=1

αi1Ki

∥∥∥∥∥∥
∞

≤ ε,



where K :=
⋃n
i=1Ki and g|K is the restriction of g to K.

The universality property of a kernel helps us in finding the
decomposition of matrix M in the feature space. Following
Proposition (1), for each row of M, we can always find h ∈ H
to approximate the row values in a higher dimensional inner
product space. We can choose node representations from the
disjoint subsets, but note that, each element h ∈ H does not
have to be in the image of the feature map.

Based on the above, we move the inner product from space
X to the feature space H, by reformulating Eq. (2) as follows:

arg min
A,B

1

2

∑
w∈W

∑
wl∈w

∑
u∈V

(
Mw

wl,u
− 〈Φ(Awl,:),Φ(Bu,:)〉

)2
= arg min

A,B

1

2

∑
w∈W

∑
wl∈w

∑
u∈V

(
Mw

wl,u
− κ(Awl,:,Bu,:)

)2
. (3)

That way, we obtain a kernelized matrix factorization model
for node embeddings based on random walks. For the numer-
ical evaluation of our method, we use the following universal
kernels [25], [24]:

κG(x, y) = exp

(
−‖x− y‖2

σ2

)
σ ∈ R

κS(x, y) =
1(

1 + ‖x− y‖2
)α α ∈ R+

where κG and κS correspond to the Gaussian and Schoenberg
kernels respectively. We will refer to the proposed kernel-
based node embeddings methodology as KERNELNE (the two
different kernels will be denoted by GAUSS and SCH).

Model Optimization. For the optimization step, we employ
Stochastic Gradient Descent (SGD) [26]. Note that, Eq. (3) can
be divided into two parts with respect to the values of Mw

v,u ∈
{0, 1}. That way, we apply negative sampling [9] which is a
variant of noise-contrastive estimation [27], proposed as an
alternative to solve the computational problem of hierarchical
softmax. For each context node u+ ∈ Cw(wl), we sample k
negative instances u− from the noise distribution p−:

(
1− κ(Av,:,Bu+,:)

)2
+

∑
u−∼p−

(
κ(Av,:,Bu−,:)

)2
.

Each sample is generated proportionally to its frequency raised
to the power of 0.75 and the number of negative instances is
chosen as 5. In our experiments, we set the initial learning rate
of SGD to 0.025; then it decreases linearly according to the
number of processed nodes. The dimension of the embedding
vectors is selected as d = 128 and the window size for the
random walks as γ = 10.

IV. NUMERICAL TESTS

We evaluate the performance of our approach on the node
classification and link prediction tasks. The experiments have
been performed on a server with 60Gb RAM. Table I gives

TABLE I
STATISTICS OF NETWORKS USED IN THE EXPERIMENTS. |V|: NUMBER OF

NODES, |E|: NUMBER OF EDGES, |K|: NUMBER OF LABELS AND |C|:
NUMBER OF CONNECTED COMPONENTS.

|V| |E| |K| |C| Avg. Degree Type
CiteSeer [28] 3,312 4,660 6 438 2.814 Citation

Cora [29] 2,708 5,278 7 78 3.898 Citation
DBLP [30] 27,199 66,832 4 2,115 4.914 Co-authorship

AstroPh [31] 17,903 19,7031 - 1 22.010 Collaboration
HepTh [31] 8,638 24,827 - 1 5.7483 Collaboration

Facebook [32] 4,039 88,234 - 1 43.6910 Social
Gnutella [31] 8,104 26,008 - 1 6.4186 Peer-to-peer

the statistics of the network datasets used in the experiments
(all the networks are considered as undirected).

A. Baseline Methods

We consider five widely used baseline models to compare
the performance of our approach. DEEPWALK [3] performs
uniform random walks to generate the context of a node; then,
the Skip-Gram model is used to learn node representations.
NODE2VEC [4] combines Skip-Gram with biased random
walks, using two extra parameters that control the walk to
simulate a BFS or DFS exploration. In the experiments, we
set those parameters to 1.0, the number of walks to 80 and
walk length to 10. In our approach, we sample context nodes
using NODE2VEC’s random walk strategy. LINE [21] learns
embeddings relying on first-order and second-order proximity
information of nodes. HOPE [7] is a matrix factorization
approach aiming at capturing higher-order node similarity
patterns based on the Katz index. Lastly, NETMF [22] targets
to factorize the matrix approximated by the pointwise mutual
information of center and context pairs. Those methods are
compared against the KERNELNE-GAUSS and KERNELNE-
SCH models.

B. Node Classification

Experimental set-up. In the node classification task, we have
access to the labels of a certain fraction of nodes in the
network (training set), and our goal is to predict the labels
of the remaining nodes (test set). In the experiments, we
learn embeddings on varying sizes of training data, ranging
from 1% up to 90%. The experiments have been carried out
by applying an one-vs-rest logistic regression classifier with
L2 regularization; the average scores of 50 experiments are
reported.

Experimental results. Table II shows the Micro-F1 scores
for each network. For the CiteSeer network, KERNELNE
outperforms the baselines for all training sizes. The SCH kernel
with α = 1 gives gain of up to 7.0% against the best baseline
model, while KERNELNE-GAUSS with σ2 = 2 has the best
performance for larger training sizes. For the Cora network,
the GAUSS kernel with σ2 = 2 also performs quite well
especially for small training ratios (gain 0.91% up to 7.60%.
Lastly, in the DBLP network, we choose σ = 0.3 for the
GAUSS kernel, which is the best performing model. The SCH



TABLE II
MICRO-F1 SCORES FOR THE NODE CLASSIFICATION TASK.

2% 4% 6% 8% 10% 30% 50% 70% 90%
DEEPWALK 0.416 0.460 0.489 0.505 0.517 0.566 0.584 0.595 0.592
NODE2VEC 0.450 0.491 0.517 0.530 0.541 0.585 0.597 0.601 0.599

LINE 0.323 0.387 0.423 0.451 0.466 0.532 0.551 0.560 0.564
HOPE 0.196 0.205 0.210 0.204 0.219 0.256 0.277 0.299 0.320

NETMF 0.451 0.496 0.526 0.540 0.552 0.590 0.603 0.604 0.608

GAUSS 0.479 0.514 0.535 0.548 0.560 0.603 0.615 0.623 0.630
SCH 0.482 0.519 0.538 0.552 0.561 0.599 0.613 0.620 0.627

(a) CiteSeer

2% 4% 6% 8% 10% 30% 50% 70% 90%
DEEPWALK 0.621 0.689 0.715 0.732 0.747 0.802 0.819 0.826 0.833
NODE2VEC 0.656 0.714 0.743 0.757 0.769 0.815 0.831 0.839 0.841

LINE 0.450 0.544 0.590 0.633 0.661 0.746 0.765 0.774 0.775
HOPE 0.277 0.302 0.299 0.302 0.302 0.301 0.302 0.303 0.302

NETMF 0.636 0.716 0.748 0.767 0.773 0.821 0.834 0.841 0.844
GAUSS 0.706 0.746 0.761 0.774 0.782 0.815 0.830 0.837 0.842

SCH 0.693 0.733 0.753 0.761 0.769 0.799 0.810 0.819 0.824

(b) Cora

2% 4% 6% 8% 10% 30% 50% 70% 90%
DEEPWALK 0.545 0.585 0.600 0.608 0.613 0.626 0.628 0.628 0.633
NODE2VEC 0.575 0.600 0.611 0.619 0.622 0.636 0.638 0.639 0.639

LINE 0.554 0.580 0.590 0.597 0.603 0.618 0.621 0.623 0.623
HOPE 0.379 0.378 0.379 0.379 0.379 0.379 0.379 0.378 0.380

NETMF 0.577 0.589 0.596 0.601 0.605 0.617 0.620 0.623 0.623

GAUSS 0.611 0.621 0.626 0.628 0.630 0.637 0.641 0.642 0.644
SCH 0.610 0.616 0.622 0.624 0.625 0.633 0.636 0.637 0.638

(c) DBLP

TABLE III
AREA UNDER CURVE (AUC) SCORES FOR THE LINK PREDICTION TASK.

DEEPWALK NODE2VEC LINE HOPE NETMF GAUSS SCH

CiteSecer 0.837 0.762 0.557 0.756 0.742 0.886 0.875
Cora 0.778 0.724 0.554 0.728 0.755 0.819 0.814

DBLP 0.944 0.905 0.590 0.930 0.930 0.963 0.958
AstroPh 0.960 0.935 0.679 0.967 0.897 0.978 0.970

HepTh 0.897 0.830 0.633 0.875 0.882 0.920 0.915
Facebook 0.983 0.988 0.696 0.980 0.987 0.987 0.987
Gnutella 0.680 0.498 0.702 0.599 0.651 0.766 0.677

kernel with α = 3.0, also performs better than the baselines,
especially for small training sizes.

C. Link Prediction

Experimental set-up. For the link prediction task, we remove
half of the edges of the network in order to obtain positive
samples for the test set; the same number of node pairs, not
existing in the initial graph, are added to the test set. We then
learn node embedding using the residual network; the feature
vector of an edge (v, u) is formed with the operation |xvi −
yui |2 for each coordinate i of the embedding vectors x and y
corresponding to nodes v and u. In the experiments, we use
logistic regression with L2 regularization.
Experimental results. Table III shows the area under curve
(AUC) scores for the link prediction task. We choose kernel
parameters as σ = 0.3 and α = 2 except the Gnutella
network in which σ = 3.0. In all cases, the largest connected
component of the datasets is used. As we can observe, in
almost all cases, the proposed kernel-based models outperform
the baselines. The only exception is the Facebook dataset,
where NODE2VEC is just slightly better than KERNELNE.
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Fig. 1. Influence of the dimension size d on the CiteSeer network.
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Fig. 2. Influence of kernel parameters on the CiteSeer network.

D. Parameter Sensitivity

The effect of dimension size. Figure 1 shows the Micro-
F1 scores of the proposed models for varying embedding
dimension sizes, ranging from d = 32 up to d = 224. As
it can be seen, both of the kernel instances have the same
tendency, where the performance increases proportionally to
the size of the embedding vectors.

The effect of kernel parameters. In Figure 2, we study
the behaviour of kernel functions with respect to the chosen
parameters. The GAUSS kernel shows comparable results for
values of σ2 between 0.4 and 4.0. In addition, we observed
that its performance is limited for very big or very small values
of this parameter. The SCH kernel also behaves similarly.We
have reached the highest score with parameter values around
α = 1.0. Lastly, we observed poor performance for very small
values of α, which are not included in the figure.

V. CONCLUSION

We have introduced the KERNELNE model for learn-
ing node embeddings. We interpret our random-walk based
method under a weighted matrix factorization framework,
which is then generalized to kernel functions. The numerical
evaluation showed that the proposed kernel-based models
substantially outperform baseline NRL methods in both node
classification and link prediction tasks. An interesting future
research direction concerns the extension of the proposed
methodology to the multiple kernel learning framework [33].
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