A Numerical Convergence Study of some Open Boundary Conditions for Euler equations - Archive ouverte HAL
Chapitre D'ouvrage Année : 2020

A Numerical Convergence Study of some Open Boundary Conditions for Euler equations

Résumé

We discuss herein the suitability of some open boundary conditions while comparing approximate solutions of one-dimensional Riemann problems in a bounded sub-domain with the restriction in this sub-domain of the exact solution in the infinite domain, considering the Euler system of gas dynamics. Assuming that no information is known from outside of the domain, some basic open boundary condition specifications are given, and a measure of the L 1 norm of the error inside the computational domain enables to show consistency errors in situations involving outgoing shock waves, depending on the chosen boundary condition formulation. This investigation has been performed with Finite Volume methods, using approximate Riemann solvers in order to compute numerical fluxes for both inner and boundary interfaces.
Fichier principal
Vignette du fichier
FVCA9revision-280120.pdf (134.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02422802 , version 1 (23-12-2019)
hal-02422802 , version 2 (28-01-2020)

Identifiants

Citer

Clément Colas, Martin Ferrand, Jean-Marc Hérard, Olivier Hurisse, Erwan Le Coupanec, et al.. A Numerical Convergence Study of some Open Boundary Conditions for Euler equations. PROMS, 2020, ⟨10.1007/978-3-030-43651-3_62⟩. ⟨hal-02422802v2⟩
211 Consultations
275 Téléchargements

Altmetric

Partager

More