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A Numerical Convergence Study of some Open
Boundary Conditions for Euler Equations

Clément Colas, Martin Ferrand, Jean-Marc Hérard, Olivier Hurisse, Erwan Le
Coupanec and Lucie Quibel

Abstract We discuss herein the suitability of some open boundary conditions. Con-5

sidering the Euler system of gas dynamics, we compare approximate solutions of
one-dimensional Riemann problems in a bounded sub-domain with the restriction
in this sub-domain of the exact solution in the infinite domain. Assuming that no
information is known from outside of the domain, some basic open boundary con-
dition specifications are given, and a measure of the L1-norm of the error inside the10

computational domain enables to show consistency errors in situations involving
outgoing shock waves, depending on the chosen boundary condition formulation.
This investigation has been performed with Finite Volume methods, using approxi-
mate Riemann solvers in order to compute numerical fluxes for inner interfaces and
boundary interfaces.15
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1 Introduction

Concerning computational fluid dynamics, industrial simulations are frequently per-20

formed with a partial or total unknown fluid state outside of the computational do-
main. How are boundary conditions dealt with when no information is known out-
side? Here the one-dimensional Euler equations governing inviscid compressible
fluid flows are considered. The unknowns ρ , u, P respectively denote the density,
the velocity and the pressure of the fluid, while the momentum is Q = ρu. The total25

energy E is such that E = ρ

(
u2

2 + ε

)
. The internal energy ε(P,ρ) is prescribed by

the EOS (Equation Of State). In the sequel, we denote by WWW = (ρ,Q,E)t the con-
servative variable, YYY = (s,u,P)t the non-conservative variable, with s the entropy,
and FFF (WWW ) = (Q,Qu+P,(E +P)u)t the flux function, so that the set of governing
equations reads:30

∂tWWW +∂xFFF (WWW ) = 0 . (1)

The speed of sound, denoted by c, is such that c2 =
(

P
ρ2 −

∂ε(P,ρ)
∂ρ

)
/
(

∂ε(P,ρ)
∂P

)
.

There exists a huge literature on open boundary problems [11, 6, 10, 12]. Among
these, one pioneering work on boundary conditions for bounded domain may be
found in [1]. Actually, the present work addresses the issue of open numerical
boundary conditions to get waves outside of the computational domain and can35

be connected to the work of [7]. The solution of Euler system (1) is sought in
R× (0,T ), with time T ∈R∗+, without boundary conditions, see [14]. This solution,
expected to be known and unique, is denoted by WWW exact

Ω∞
(x, t) for (x, t) ∈ R× (0,T ).

x

t

0 Ω Ω∞ = R

T

R+

αL

Fig. 1 Bounded computational domain Ω  Ω∞, with Ω∞ a spatial infinite domain.

In contrast, the numerical approximations, denoted by WWW ∆x,∆ t
Ω

(x, t) for (x, t) ∈
Ω × (0,T ), are performed in a bounded computational sub-domain Ω  Ω∞ (see40

Fig. 1) with prescribed open inlet/outlet boundary conditions on ∂Ω .
For this purpose, artificial boundaries are introduced on ∂Ω . Then, numerical

boundary conditions, depending on the time and space steps, must be prescribed
on ∂Ω . When (∆x,∆ t)→ (0,0), we assume that some (unique) converged approx-
imation, denoted by WWW 0,0

Ω
(x, t) for (x, t) ∈ Ω × (0,T ), is obtained. Eventually, we45

wonder whether WWW 0,0
Ω
(x, t) for (x, t) ∈ Ω × (0,T ), coincides with the restriction of
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the exact solution to Ω , WWW exact
Ω∞

(x, t) for (x, t) ∈Ω × (0,T ), or not. In the latter case,
the converged approximation WWW 0,0

Ω
will be said to be non-consistent.

For the Euler system (1), a measure of a subsonic state in the last inner cell N
(eigenvalues λ1(Wn

N)< 0 and λ2,3(Wn
N)> 0) at a right outlet will require one scalar50

external information, whereas in the supersonic case (λ1,2,3(Wn
N) > 0), the upwind

state will be privileged. Actually, we recall that in the subsonic case, the approach
of [4, 5] may provide some way to cope with the lack of information.

A first drawback of the latter approach is that the sign of eigenvalues may eas-
ily change: signs of eigenvalues λk(Wn

N) are not necessarily representative of what55

happens really at the right boundary when computing true waves associated with
the 1D Riemann problem with the initial condition: WWW L = Wn

N and WWW R = Wn
ext (un-

less when Wn
ext = Wn

N). A very instructive example is given in [7] Sect. 3.2, while
restricting on a scalar problem (Burgers equation). A second question is: assuming
that nothing is known about the exterior state Wn

ext , how does the solution, inside60

the computational sub-domain, depend on the choice of Wn
ext?

Herein, the aim consists in testing suitable numerical boundary conditions in the
sense that they converge towards the – not necessarily regular – exact solution.

2 Finite volume method

We briefly recall the basis of the explicit finite volume scheme VFRoe-ncv, an ap-65

proximate Godunov scheme using non conservative variables [9, 8]. For the sake of
simplicity, regular meshes of the one-dimensional computational domain are con-
sidered of size ∆x = xi+1/2− xi−1/2, i ∈ {1, ...,N}, and ∆ tn = tn+1− tn is the time
step, n ∈N. The time step is given by some CFL condition in order to gain stability.

Let Wn
i be an approximation of the mean value

1
∆x

∫ xi+1/2

xi−1/2

W(x, tn)dx. Time-space70

integration of system (1) over
[
xi−1/2,xi+1/2

]
×
[
tn, tn+1

]
provides the standard fol-

lowing scheme:

∆x(Wn+1
i −Wn

i )+∆ tn
(

gn
i+ 1

2
−gn

i− 1
2

)
= 0 , (2)

where gn
i+1/2 is the numerical flux through the interface

{
xi+1/2

}
×
[
tn, tn+1

]
. For

so-called spatially first-order scheme, gn
i+1/2 = g(Wn

i ,Wn
i+1). The numerical flux

gn
i+1/2 is obtained by solving the linearized Riemann problem:75 

∂tYYY +BBB(ỸYY )∂xYYY = 0 ,

YYY (xxx, tn) =

{
Yn

i if x < xi+ 1
2
,

Yn
i+1 if x > xi+ 1

2
,

(3)

where ỸYY = (Yn
i +Yn

i+1)/2 and BBB(YYY ) stands for the following matrix:
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BBB(YYY ) = (∂YYYWWW )−1
∂WWW FFF(WWW )∂YYYWWW .

Once the exact solution YYY ?
(

x−xi+1/2
t ;Yn

i ,Yn
i+1

)
of problem (3) is computed, the

numerical flux is defined as:

gn
i+ 1

2
= g(Wn

i ,W
n
i+1) = FFF(WWW (YYY ?(0;Yn

i ,Y
n
i+1)) . (4)

This numerical flux will be used for both inner interfaces and boundary interfaces.

3 Numerical boundary conditions for outgoing waves

We propose numerical artificial boundary conditions when no information is given80

on the open boundary of the computational sub-domain. One possible approach is
to determine an artificial state Wn

ext in the virtual cell, symmetric of the boundary
cell Wn

i , outside of the sub-domain. The numerical boundary flux is then obtained
by gn

1/2 = g(Wn
ext,1,W

n
1) and gn

N+1/2 = g(Wn
N ,Wn

ext,N). In the following, we assume
that the exterior state is connected to the interior state either by a rarefaction wave85

or a shock wave.

3.1 Outgoing rarefaction wave

a. Formulation assuming the invariance of the interior state BC0

The first boundary condition, widely used in industrial simulations, simply consists
in taking the interior state Wn

i of the boundary cell at each time step tn
90

Wn
ext = Wn

N . (5)

The numerical boundary flux thus reads gn
N+1/2 = g(Wn

N ,Wn
N) =FFF(Wn

N). This tech-
nique does not need any knowledge about the wave structure.

b. Formulation using the wave structure and an extrapolation of the interior state BCr

The second boundary condition is built by using the two associated Riemann invari-
ants of the regular wave and a third additional scalar relation. Note that, for an ideal
gas, the exact velocity profile is linear w.r.t. x at time tn. Thus, for an ideal gas EOS
such that ρε = P/(γ−1), with γ > 1, we get:

ρ
n
ext = ρ

n
N

(
1− γ−1

2
un

N−1−un
N

cn
N

) 2
γ−1

, Pn
ext = Pn

N

(
1− γ−1

2
un

N−1−un
N

cn
N

) 2γ

γ−1

and un
ext = 2un

N − un
N−1. The numerical boundary flux is computed by gn

N+1/2 =

g(Wn
N ,Wn

ext). This technique connects the interior state with the exterior virtual95

state by using the rarefaction wave structure.
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3.2 Outgoing shock wave

c. Formulation assuming the invariance of the interior state BC0

Same as for rarefaction wave, see case a. (5).

d. Formulation using the far-field state BCs100

The boundary interior cell N is connected with the right initial state WWW 0
R by a virtual

exterior cell of physical size αL, with L the domain length and α ∈R∗+ a parameter,
see Fig. 1. Inspired by [3], this exterior state Wn

ext is updated with the numerical flux
and the known state WWW 0

R such that:

αL
(
Wn

ext −Wn−1
ext
)
+∆ tn−1 (g(Wn−1

ext ,W0
R)−g(Wn−1

N ,Wn−1
ext )

)
= 0 . (6)

This technique gives the following asymptotic update of the exterior state Wn
ext105

when α →+∞ for a finite time step ∆ tn−1: lim
α→+∞

Wn
ext = Wn−1

ext . The exterior state

is steady and therefore equal to its initial state W0
ext , which is the right state WWW 0

R.
The numerical boundary flux thus yields: gn

N+1/2 = g(Wn
N ,W0

R). This asymptotic
boundary condition amounts to impose, in the virtual exterior cell, the right state
WWW 0

R known from the initial condition of the Cauchy problem.110

4 Numerical results

We discuss below some results of this preliminary study. Other results with distinct
EOS are available in [2]. Two subsonic test cases, corresponding to 1D Riemann
problems with a diatomic ideal gas EOS (γ = 7

5 ), are performed with CFL= 0.5.
The first one is a pure left outgoing 1-rarefaction wave with the initial condition:{

(ρL,uL,PL) =
(
1kg/m3,0m/s,105 Pa

)
,

(ρR,uR,PR) =
(
0.5kg/m3,242.2m/s,3.789×104 Pa

)
.

The second one is a pure right outgoing 3-shock wave with the initial condition:{
(ρL,uL,PL) =

(
1kg/m3,418.3m/s,2.75×105 Pa

)
,

(ρR,uR,PR) =
(
0.5kg/m3,0m/s,105 Pa

)
.

The numerical convergence of the scheme, when waves are gone out of the bounded
computational domain Ω = (−200m,200m), is measured with the L1-norm of the
error.

For smooth waves, the boundary conditions BC0 and BCr enable to guarantee115

consistency when waves are going out (t0 < t < t1) or are gone out (t > t1) of Ω . The
numerical errors and the rates of convergence are collected in Table 1 and Fig. 2 for
an outgoing rarefaction wave, and in Table 2 and Fig. 3 when the whole rarefaction
wave has left the computational domain. As expected for an ideal gas EOS [8], the
numerical rates of convergence for variables (u,P) are approximately 0.85 – close120
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to 1 – when t < t1 (see Table 1), and thus similar to those arising for t < t0, see
[8, 9]. Table 2 shows greater orders of convergence which may be due to the fact
that the exact solution becomes fully constant for t > t1. The BCr condition gives
very similar errors and does not provide more accurate approximations.

In contrast, the BC0 condition does not ensure the consistency of the scheme125

for an outgoing shock wave (at t > t0, shock is outside of Ω ), see Fig. 4: clearly,
approximate solutions converge towards another solution when (∆x,∆ t)→ (0,0).

The BCs boundary condition, for a finite value of the parameter α > 0, is still not
consistent, see Fig. 5. At the limit α→+∞, the asymptotic condition BCs allows to
retrieve the consistency of the approximate solution with the exact solution.130

Further works aim at considering another boundary condition for outgoing shock
waves based on an imposed scalar value outside and the Rankine-Hugoniot rela-
tions. The issue of the supersonic shock wave case and of the dependence on the
scheme [13] are being examined. To our knowledge, this measured loss of consis-
tency has not been pointed out before.

103 104 10510−4

10−3

10−2

order 1

order 1
2

N

L1 -e
rr

or

Density
Velocity
Pressure

Fig. 2 BC0: L1 convergence curves for the rarefaction wave at t0 < t < t1.

Table 1 BC0: L1 convergence orders for the rarefaction wave at t0 < t < t1.

∆x (m) N ρ L1-error ρ cnv. order u L1-error u cnv. order P L1-error P cnv. order

5e-1 800 5.172e-3 8.868e-3 2.371e-3
2.5e-1 1600 2.925e-3 0.8221 5.009e-3 0.8241 1.335e-3 0.8243
1.25e-1 3200 1.631e-3 0.8426 2.798e-3 0.8403 7.478e-4 0.8402
6.25e-2 6400 8.984e-4 0.8605 1.550e-3 0.8518 4.194e-4 0.8516
3.125e-2 12800 4.891e-4 0.8774 8.548e-4 0.8587 2.379e-4 0.8582
1.5625e-2 25600 2.691e-4 0.8621 4.714e-4 0.8588 1.386e-4 0.8579
7.8125e-3 51200 1.489e-4 0.8533 2.617e-4 0.8491 8.461e-5 0.8474

135
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Fig. 3 BC0: L1 convergence curves for the rarefaction wave at t > t1.

Table 2 BC0: L1 convergence orders for the rarefaction wave at t > t1.

∆x (m) N ρ L1-error ρ cnv. order u L1-error u cnv. order P L1-error P cnv. order

5e-1 800 1.279e-3 2.462e-4 2.562e-4
2.5e-1 1600 6.755e-4 0.9211 1.284e-4 0.9384 1.337e-4 0.9383
1.25e-1 3200 3.522e-4 0.9395 6.557e-5 0.9700 6.826e-5 0.9700
6.25e-2 6400 1.823e-4 0.9502 3.265e-5 1.0061 3.399e-5 1.0061
3.125e-2 12800 9.423e-5 0.9521 1.565e-5 1.0608 1.629e-5 1.0609
1.5625e-2 25600 4.904e-5 0.9420 6.962e-6 1.1687 7.247e-6 1.1687
7.8125e-3 51200 2.604e-5 0.9134 2.551e-6 1.4486 2.655e-6 1.4486

103 104 10510−5
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Fig. 4 BC0: L1 convergence curves for the shock wave at t > t0.
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Fig. 5 BCs: L1 convergence curves for the shock tube at t > t0.
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V. Dolejšı́, P. Knobloch, K. Najzar (eds.) Numerical Mathematics and Advanced Applications,
pp. 39–55. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)155
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13. Quibel, L.: Simulation d’écoulements diphasiques eau-vapeur avec un modèle homogène.
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