Label-consistent sparse auto-encoders - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Label-consistent sparse auto-encoders

Résumé

Auto-encoders (AE) is a particular type of unsupervised neural networks that aim at providing a compact representation of a signal or an image [1]. Such AEs are useful for data compression but most of the time the representations they provide are not appropriate as is for a downstream classification task. This is due to the fact that they are trained to minimize a reconstruction error and not a classification loss. Classification attempts with AEs have already been proposed such as contractive AEs [2], correspondence AEs [3] and stacked similarity-aware AEs [4], for instance. Inspired by label-consistent K-SVD (LC-KSVD) [5], we propose a novel supervised version of AEs that integrates class information within the encoded representations.
Fichier principal
Vignette du fichier
rolland_25004.pdf (180.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02419439 , version 1 (19-12-2019)

Identifiants

  • HAL Id : hal-02419439 , version 1

Citer

Thomas Rolland, Adrian Basarab, Thomas Pellegrini. Label-consistent sparse auto-encoders. Workshop on Signal Processing with Adaptative Sparse Structured Representations (SPARS 2019), Jul 2019, Toulouse, France. pp.1-2. ⟨hal-02419439⟩
59 Consultations
46 Téléchargements

Partager

More