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Auto-encoders (AE) is a particular type of unsupervised neural

networks that aim at providing a compact representation of a signal

or an image [1]. Such AEs are useful for data compression but most

of the time the representations they provide are not appropriate as is

for a downstream classification task. This is due to the fact that they

are trained to minimize a reconstruction error and not a classification

loss. Classification attempts with AEs have already been proposed

such as contractive AEs [2], correspondence AEs [3] and stacked

similarity-aware AEs [4], for instance. Inspired by label-consistent K-

SVD (LC-KSVD) [5], we propose a novel supervised version of AEs

that integrates class information within the encoded representations.

I. LABEL-CONSISTENT SPARSE CODING (LC-KSVD)

Sparse Coding (SC) and (sparse) AEs share a similar objective

of providing compact data representations. LC-KSVD consists in

adding to the standard SC reconstruction error objective: i) a label

consistency constraint (a ”discriminative sparse-code error”), ii) a

classification error term. It results in a unified objective function that

can be solved with the standard K-SVD algorithm. To do this, Jiang

et al [5] defined the following objective function:

(D,A,W, γ) = argmin
D,γ,A,W

‖X −Dγ‖22 + λ‖γ‖0

+ µ‖Q−Aγ‖22
︸ ︷︷ ︸

label−consistent term

+ β‖H −Wγ‖22
︸ ︷︷ ︸

consistency term

(1)

where D and γ are respectively the dictionary and sparse codes to

be estimated, Q is a matrix of discriminative sparse codes of the input

signals X , A a linear transformation matrix, W a linear classifier and

H the labels associated to X . Q arbitrarily associates to an input

signal a number of dictionary atoms, with non-zero values occurring

when signal i and atom ki share the same label (see Fig 1). Q is

arbitrarily defined by the user with the possibility to let some atoms

”empty” by not assigning them any class (in white in Fig. 1).

II. PROPOSED LABEL-CONSISTENT SPARSE AUTOENCODERS

(LC-SAE)

Fig. 2 shows the architecture of the proposed LC-SAE comprised

of a standard sparse convolutional AE central part, completed with a

”H branch” the consistency terms from (2). These branch is a fully-

connected layer with softmax activation layer. The AE was trained

with the cross-entropy cost function, the categorical variant for the

classification H-branch.

Inspired by (1) we proposed the following loss function for our LC-

SAE training:

LLC−SAE = LAE + λLSparse + βLlabel (2)

Where LAE is the mean squared error between the reconstructed

signal and the original signal. LSparse is the L1 regularization (i.e.

Sparse regularization) with an arbitrary weight λ weight. Finally,

LLabel is the categorical cross-entropy between the output of the

classification branch and the actual label, with β arbitrary weight.

III. EXPERIMENTS

We compare the feature representation methods on MNIST. After

extracting the sparse discriminative representations with each method,

we train and test k-means and SVM with radial kernel (RBF) on

the training and evaluation subsets of MNIST comprised of 50k

and 10k images, respectively. SVM and k-means allow to compare

the discriminative power of the representations in supervised and

unsupervised settings.

The hyperparameters were tuned for classification. For the sparse

coding approaches (standard SC and LC-KSVD), we used 1024

(about twice the dimension of the images d = 728) atoms for the

dictionaries and λ = 1.2/
√
728 as suggested in [6]. For LC-KSVD,

we used µ = 5.0 and β = 2.0, which are large values to promote

discriminative power over reconstruction [5].

For the proposed LC-SAEs, the encoder part is comprised of three

3×3 convolution layers (16-10-10 filters respectively) with a rectifier-

linear unit activation function, each followed by a 2×2 max-pooling

layer for sub-sampling. The encoder output representations are 160-d

vectors. Six variants of the proposed model are compared:

• Label-Consistent AE, without the sparse regularization with

three different β values (0,1,2)

• Label-consistent Sparse AE with the ℓ1-norm sparse regular-

ization coefficient was tuned to 1e-7. Using the same three β
values (0, 1, 2).

IV. RESULTS

Fig. 3 shows examples of nine digit images from the MNIST

eval subset with the original, reconstructed images on the first and

second rows. The third row shows the sparse and the discriminative

representations obtained with our method. These correspond to vector

outputted by the AE that we reshaped in 2-d images for illustration.

As can be seen, the reconstructed images are close to their original

counterparts. Regarding the encoded activations shown in the third

row, one can identify patterns similar between two instances of

the same digit. Indeed, figure 4 represents the mean square error

between all element corresponding to their classes. We can see that

the minimum error is achieved for between all elements from the

same class. That confirms our hypothesis that the extracted features

are discriminative.

Table I gives a performance comparison between the different

methods when using k-means (purity) and SVM (accuracy). For

AEs, we always score the representation outputted by the encoder

part of the model. As can be seen, SC and the sparse AE are not

successful in providing discriminative representations that work with

both clustering and SVM since purity values are close to chance

(10%). Adding label-consistency constraints with, either to SC or

AEs, drastically improve the representation separability, with 78%



purity for LC-KSVD, and 97-98% purity for LC-SAEs with β > 0.

Finally, the LC-SAEs give the best results with the SVM classifier,

showing that with only 16 atoms (i.e filter in the first layer) per

class instead of about 100 with LC-KSVD, these models provide

very discriminative encoded representations.

We showed in this work that the proposed LC-SAEs are effective

in providing representations that allow for satisfactory image recon-

structions and that embed discriminative information about the image

classes. Ongoing experiments on other datasets are being conducted,

such as tiny-imagenet and sound recordings (ESC-10), and similar

trends are observed. It could also be interesting to add a constraint

term α to the reconstruction loss LAE in order to control perfectly

the reconstruction power and discriminative power of our method.

ACKNOWLEDGMENT

This work was partly supported by the LABEX AMIES-UMS

3458, within the PEPS REP4SPEECH project, and the Agence

Nationale de la Recherche LUDAU (Lightly-supervised and Unsu-

pervised Discovery of Audio Units using Deep Learning) project

(ANR-18-CE23-0005-01).

REFERENCES

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 1,”
D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group,
Eds. Cambridge, MA, USA: MIT Press, 1986, ch. Learning Internal
Representations by Error Propagation, pp. 318–362. [Online]. Available:
http://dl.acm.org/citation.cfm?id=104279.104293

[2] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: Explicit invariance during feature extraction,” in Proceed-

ings of the 28th International Conference on International Conference on

Machine Learning. Omnipress, 2011, pp. 833–840.
[3] H. Kamper, M. Elsner, A. Jansen, and S. Goldwater, “Unsupervised neural

network based feature extraction using weak top-down constraints,” in
Proc. ICASSP. IEEE, 2015, pp. 5818–5822.

[4] W. Chu and D. Cai, “Stacked similarity-aware autoencoders.” in IJCAI,
2017, pp. 1561–1567.

[5] Z. Jiang, Z. Lin, and L. S. Davis, “Label Consistent K-SVD: Learning a
Discriminative Dictionary for Recognition,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 35, no. 11, pp. 2651–2664, Nov
2013.

[6] Mairal, Bach, Ponce, and Sapiro, “Online dictionary learning for
sparse coding,” in Proceedings of the 26th Annual International

Conference on Machine Learning, ser. ICML ’09. New York,
NY, USA: ACM, 2009, pp. 689–696. [Online]. Available:
http://doi.acm.org/10.1145/1553374.1553463

Fig. 1. Example for the user-defined Q matrix , each color corresponds to
a class. In this example, signals 1, 3 and 6 belong to class 1; signals 2 and 5
to class 2 and signal 5 to class 3. Atom k8 is unassigned.

Fig. 2. The proposed LC-AE architecture.

Fig. 3. MNIST samples and representations obtained with a Sparse
LC-AE: original images (top row), reconstructed images (second-top row),
classification branch (bottom row)

Fig. 4. Reconstruction error matrix for all elements of a class with all
elements of the all other classes

Approach K-means SVM (RBF) MSE loss

Sparse Coding 0.13 0.90
LC-KSVD 0.78 0.91
AE 0.19 0.96

LC-AE (β = 0) 0.62 0.970 0.0155
LC-AE (β = 1) 0.95 0.990 0.0219
LC-AE (β = 2) 0.95 0.990 0.0237

LC-SAE (β = 0) 0.65 0.920 0.0173
LC-SAE (β = 1) 0.98 0.992 0.0237
LC-SAE (β = 2) 0.97 0.991 0.0232

TABLE I
PERFORMANCE COMPARISON IN TERMS OF PURITY FOR K-MEANS AND

ACCURACY FOR SVM.




