BOUNDS ON THE MINIMUM DISTANCE OF ALGEBRAIC GEOMETRY CODES DEFINED OVER SOME FAMILIES OF SURFACES
Résumé
We prove lower bounds for the minimum distance of algebraic geometry codes over surfaces whose canonical divisor is either nef or anti-strictly nef and over surfaces without irreducible curves of small genus. These lower bounds are sharpened for surfaces whose arithmetic Picard number equals one, surfaces without curves with small self-intersection and fibered surfaces. What characterizes the bounds we obtain is that they involve a measure of closeness of the divisor defining the code to the ample cone in the Néron-Severi group.
Fichier principal
Aubry_Berardini_Herbaut_Perret_Bounds_on_the_minimum_distance_of_algebraic_geometry_codes_defined_over_some_families_of_surfaces.pdf (283.17 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...