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BOUNDS ON THE MINIMUM DISTANCE OF ALGEBRAIC

GEOMETRY CODES DEFINED OVER SOME FAMILIES OF

SURFACES

YVES AUBRY, ELENA BERARDINI, FABIEN HERBAUT AND MARC PERRET

Abstract. We prove lower bounds for the minimum distance of algebraic

geometry codes over surfaces whose canonical divisor is either nef or anti-

strictly nef and over surfaces without irreducible curves of small genus. These

lower bounds are sharpened for surfaces whose arithmetic Picard number equals

one, surfaces without curves with small self-intersection and fibered surfaces.

What characterizes the bounds we obtain is that they involve a measure of

closeness of the divisor defining the code to the ample cone in the Néron-Severi

group.
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1. Introduction

After the construction of Goppa codes over algebraic curves ([10]) and their
successful use by Tsfaman, Vlăduţ and Zink in beating the Gilbert-Varshamov
bound ([21]), algebraic geometry codes over curves have been largely studied.
Even though the same construction holds on varieties of higher dimension, the
literature is less abundant in this context. However one can consult [17] for a
survey of Little and [14] for an extensive use of intersection theory involving
the Seshadri constant proposed by S. H. Hansen. Some work has also been
undertaken in the direction of surfaces. Rational surfaces yielding to good codes
were constructed by Couvreur in [8] from some blow-ups of the plane and by
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Blache et al. in [6] from Del Pezzo surfaces. Codes from cubic surfaces where
studied by Voloch and Zarzar in [24], from toric surfaces by J. P. Hansen in [13],
from Hirzebruch surfaces by Nardi in [18], from ruled surfaces by one of the
authors in [1] and from abelian surfaces by Haloui in [12] in the specific case
of simple Jacobians of genus 2 curves, and by the authors in [5] for general
abelian surfaces. Following the classification of algebraic surfaces according to
their Kodaira dimension κ ∈ {−1, 0, 1, 2}, this means that up to now most of
the work on algebraic geometry codes over surfaces was devoted to surfaces of
Kodaira dimension −1 (this is the case of rational and ruled surfaces) and 0 (this
is for instance the case of abelian surfaces). As far as we know, no author have
paid attention to other surfaces, except Zarzar ([25]) and Little and Schenck ([16])
who studied surfaces whose arithmetic Picard number is one.

The aim of this paper is to provide a study of the minimum distance d(X,G, S)
of the algebraic geometry code C(X,G, S) constructed from an algebraic surface
X , a set S of rational points onX and a rational effective divisor G on X avoiding
S.

We prove in Section 3 lower bounds for the minimum distance d(X,G, S) under
some specific assumptions on the geometry of the surface itself. Two quite wide
families of surfaces are studied. The first one is that of surfaces whose canonical
divisor is either nef or anti-strictly nef. The second one consists of surfaces which
do not contain irreducible curves of low genus. We obtain the following theorem,
where we denote, as in the whole paper, by Fq the finite field with q elements and
where we set m := ⌊2√q⌋.
Theorem. (Theorem 3.3 and Theorem 3.5) Let X be an absolutely irreducible
smooth projective algebraic surface defined over Fq whose canonical divisor is
denoted by KX . Consider a set S of rational points on X, a rational effective
divisor G avoiding S and an ample divisor H on X. We set

α(G,H) :=
(G.H)2

2H2
+

1

2
G.KX and

d∗(X,G, S,H) := ♯S −G.H(q + 1 +m)−mα(G,H).

1) (i) If KX is nef, then

d(X,G, S) ≥ d∗(X,G, S,H).

(ii) If −KX is strictly nef, then

d(X,G, S) ≥ d∗(X,G, S,H) +
m

2
G.(H +KX).

2) If there exists an integer ℓ > 0 such that any Fq-irreducible curve lying on
X and defined over Fq has arithmetic genus strictly greater than ℓ, then

d(X,G, S) ≥ d∗(X,G, S,H) +

(

G.H − α(G,H)

ℓ

)

(q + 1 +m).
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Inside both families, adding some extra geometric assumptions on the surface
yields in Section 4 to some improvements for these lower bounds. This is the
case for surfaces whose arithmetic Picard number is one, for which we obtain
general bounds (see Remark 4.4). This is also the case for surfaces without
irreducible curves defined over Fq with small self-intersection, so as for fibered
surfaces with nef canonical divisor. Theorems 4.8 and 4.9 (that hold for fibered
surfaces) improve the bounds of Theorems 3.3 and 3.5 (that hold for the whole
wide family). Indeed the bound on the minimum distance d(X,G, S) is increased
by the non-negative defect δ(B) = q + 1 + mgB − ♯B(Fq) of the base curve B.
Finally in Section 5 we specify our bounds to the case of surfaces of degree d ≥ 3
embedded in P3.

Let us emphasize that most of the lower bounds we obtain depend on the
geometry of the divisor G through its position in the Néron-Severi group NS(X).
Precisely these bounds depend on the choice of an auxiliary ample divisor H

through the quantities G.H and α(G,H) = (G.H)2

2H2 + 1
2
G.KX . If we denote by πG

the virtual arithmetic genus of G, then α(G,H) is greater than πG − 1, with
equality if and only if G is ample and H is numerically proportional to G. So
an interesting perspective could be to say that our bounds depend on α(G,H)−
πG+1, which will be interpreted in Remark 3.1 as a measure of closeness of G to
the ample cone in NS(X). If G is ample, the best choice for H will be G itself (or
any divisor numerically proportional to G), for then α(G,H) = πG − 1. In case
G is not ample, the closer πG − 1 and α(G,H) are, the better the lower bounds
are.

2. Background

Codes from algebraic surfaces are defined in the same way as on algebraic
curves: we evaluate some functions with prescribed poles on some sets of rational
points. Whereas the key tool for the study of the minimum distance in the 1-
dimensional case is the mere fact that a function has as many zeroes as poles, in
the 2-dimensional case most of the proofs rest on intersection theory.

We recall in this section the few results on intersection theory we need. Follow-
ing the authors cited in the Introduction we define the algebraic geometry code.
We recall quickly how the dimension of the code can be lower bounded under the
assumption of the injectivity of the evaluation map. Thus we prove a lemma that
will be used in the course of the paper to bound below the minimum distance of
the code for several families of surfaces. Finally, we recall some results on the
number of rational points on curves over finite fields.

2.1. Intersection theory. Intersection theory has almost become a mainstream
tool to study codes over surfaces (see [1], [14], [24], [25], [16], [5]) and it is also
central in our proofs. We do not recall here the classical definitions of the different
equivalent classes of divisors and we refer the reader to [15, §V] for a presentation.
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We denote by NS(X) the arithmetic Néron-Severi group of a smooth surface X
defined over Fq whose rank is called the arithmetic Picard number ofX , or Picard
number for short. Recall that a divisor D on X is said to be nef (respectively
strictly nef ) if D.C ≥ 0 (respectively D.C > 0) for any absolutely irreducible
curve C on X . A divisor D is said to be anti-ample if −D is ample, anti-nef
if −D is nef and anti-strictly nef if −D is strictly nef. Let us emphasize three
classical results we will use in this paper.

The first one is (a generalisation of) the adjunction formula (see [15, §V, Ex-
ercise 1.3]). For any Fq-irreducible curve D on X of arithmetic genus πD, we
have

(1) D.(D +KX) = 2πD − 2

where KX is the canonical divisor of X . This formula allows to define the virtual
arithmetic genus of any divisor D on X .

The second one is the corollary of the Hodge index theorem stating that if H
and D are two divisors on X with H ample, then

(2) H2D2 ≤ (H.D)2,

where equality holds if and only if H and D are numerically proportional.
The last one is a simple outcome of Bézout’s theorem in projective spaces (and

the trivial part of the Nakai-Moishezon criterion). It ensures that for any ample
divisor H on X and for any irreducible curve C on X , we have H2 > 0 and
H.C > 0.

2.2. Algebraic geometry codes.

2.2.1. Definition of AG codes. We study, as in the non-exhaustive list of papers
[1], [24], [8], [14], [25], [12], [16] and [5], the generalisation of Goppa algebraic
geometry codes from curves to surfaces. In the whole paper we consider an
absolutely irreducible smooth projective algebraic surface X defined over Fq and
a set S of rational points on X . Given a rational divisor G on X avoiding S,
the algebraic geometry code, or AG codes for short, is defined by evaluating the
elements of the Riemann-Roch space L(G) at the points of S. Precisely we define
the linear code C(X,G, S) as the image of the evaluation map ev : L(G) −→ F♯S

q .

2.2.2. Length and dimension of AG codes. From the very definition, the length
of the code is ♯S. As soon as the morphism ev is injective - see (7) for a sufficient
condition - the dimension of the code equals ℓ(G) = dimFq

L(G) which can be
easily bounded from below using standard algebraic geometry tools as follows.
By Riemann-Roch theorem (see [15, V, §1]), we have

ℓ(G)− s(G) + ℓ(KX −G) =
1

2
G.(G−KX) + 1 + pa(X)
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where pa(X) is the arithmetic genus of X , and where the so-called superabun-

dance s(G) of G in X , being in fact itself a dimension of some vector space, is
non-negative.

Now, under the assumption that

(3) KX .H < G.H,

for some ample divisor H , we have from [15, V, Lemma 1.7] that ℓ(KX −G) = 0.
Thus, if the evaluation map ev is injective and under assumption (3), then we
get the lower bound

(4) dim C(X,G, S) = ℓ(G) ≥ 1

2
G.(G−KX) + 1 + pa(X)

for the dimension of the code C(X,G, S).
2.2.3. Toward the minimum distance of AG codes. It follows that the difficulty
lies in the estimation of the minimum distance d(X,G, S) of the code. For any
non-zero f ∈ L(G), we introduce as in [12] the number N(f) of zero coordinates
of the codeword ev(f). The Hamming weight w(ev(f)) of the codeword ev(f)
satisfies

(5) w(ev(f)) ≥ ♯S −N(f),

from which it follows that

(6) d(X,G, S) ≥ ♯S − max
f∈L(G)\{0}

N(f).

We also deduce from (5) that

(7) ev is injective if max
f∈L(G)\{0}

N(f) < ♯S.

We now broadly follow the way of [12]. We associate to any non-zero function
f ∈ L(G) the rational effective divisor

(8) Df := G + (f) =
k
∑

i=1

niDi ≥ 0,

where (f) is the principal divisor defined by f , the ni are positive integers and
each Di is a reduced Fq-irreducible curve.

Note that in this setting, the integer k and the curves Di’s depend on f ∈ L(G).
Several lower bounds for the minimum distance d(X,G, S) in this paper will follow
from the key lemma below.

Lemma 2.1. Let X be a smooth projective surface defined over Fq, S be a set of
rational points on X and G be a rational effective divisor on X avoiding S. Set
m = ⌊2√q⌋ and keep the notations introduced in (8). If there exist real numbers
a, b1, b2, c, such that for any non-zero f ∈ L(G) the three following assumptions
are satisfied

(1) k ≤ a
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(2)
∑k

i=1 πDi
≤ b1 + kb2 and

(3) for any 1 ≤ i ≤ k we have ♯Di(Fq) ≤ c+mπDi

then the minimum distance d(X,G, S) of C(X,G, S) satisfies
d(X,G, S) ≥ ♯S − a(c+mb2)−mb1.

Proof. Let us write the principal divisor (f) = (f)0 − (f)∞ as the difference
of its effective divisor of zeroes minus its effective divisor of poles. Since G is
effective and f belongs to L(G), we have (f)∞ ≤ G. Hence, formula (8) reads

G+ (f)0 − (f)∞ =
∑k

i=1 niDi, that is

(f)0 =
k
∑

i=1

niDi + (f)∞ −G ≤
k
∑

i=1

niDi.

This means that any Fq-rational point of (f)0 lies in some Di so

(9) N(f) ≤
k
∑

i=1

♯Di(Fq).

Then it follows successively from the assumptions of the lemma that

N(f) ≤
k
∑

i=1

(c+mπDi
) ≤ kc+m(b1 + kb2) ≤ mb1 + a(c+mb2).

Finally Lemma 2.1 follows from (6). �

2.3. Two upper bounds for the number of rational points on curves. We
manage to fulfill assumption (3) in Lemma 2.1 using the bounds on the number
of rational points given in Theorem 2.2 and Proposition 2.3 below. Point (2) of
Theorem 2.2 appears in the proof of Theorem 3.3 of Little and Schenck in [16]
within a more restrictive context, whereas point (1) follows from [2]. We state a
general theorem and give here the full proof for the sake of completeness following
[16].

Theorem 2.2 (Aubry-Perret [2] and Little-Schenck [16]). Let D be an Fq-irreducible
curve of arithmetic genus πD lying on a smooth projective algebraic surface. Then,

(1) we have ♯D(Fq) ≤ q + 1 +mπD.
(2) (Little-Schenck) If moreover D is not absolutely irreducible, we have

♯D(Fq) ≤ πD + 1.

Proof. We first prove the second item, following the proof of [16, Th. 3.3]. Since
D is Fq-irreducible, the Galois group Gal(Fq/Fq) acts transitively on the set of its
r̄ ≥ 1 absolutely irreducible components D1, . . . , Dr̄. Since a Fq-rational point on

D is stable under the action of Gal(Fq/Fq), it lies in the intersection ∩1≤i≤r̄Di.
Under the assumption thatD is not absolutely irreducible, that is r̄ ≥ 2, it follows
that ♯D(Fq) ≤ ♯(Di ∩Dj)(Fq) ≤ Di.Dj for every couple (i, j) with i 6= j.
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As a divisor, D can be written over Fq as D =
∑r̄

i=1 aiDi. By transitivity of
the Galois action, we have a1 = · · · = ar̄ = a. Now since D can be assumed to
be reduced, we have a = 1, so that finally D =

∑r̄

i=1Di. Using the adjonction
formula (1) for D and each Di, and taking into account that πDi

≥ 0 for any i,
we get

2πD − 2 = (KX +D).D

=
r̄
∑

i=1

(KX +Di).Di +
∑

i 6=j

Di.Dj

=

r̄
∑

i=1

(2πDi
− 2) +

∑

i 6=j

Di.Dj

≥ −2r̄ +
∑

i 6=j

Di.Dj .

Since there are r̄(r̄ − 1) pairs (i, j) with i 6= j, we deduce that for at least one
such pair (i0, j0), we have

Di0 .Dj0 ≤
2(πD − 1 + r̄)

r̄(r̄ − 1)
.

It is then easily checked that the left hand of the former inequality is a decreasing
function of r̄ ≥ 2, so that we obtain

♯D(Fq) ≤ Di0 .Dj0 ≤
2(πD − 1 + 2)

2(2− 1)
= πD + 1

and the second item is proved.
The first item follows from Aubry-Perret’s bound in [2] in case D is absolutely

irreducible, that is in case r̄ = 1, and from the second item in case D is not
absolutely irreducible since πD + 1 ≤ q + 1 +mπD. �

The following bound will be useful in Subsection 4.3 for the study of codes
from fibered surfaces.

Proposition 2.3 (Aubry-Perret [4]). Let C be a smooth projective absolutely
irreducible curve of genus gC over Fq and D be an Fq-irreducible curve having r̄
absolutely irreducible components D1, . . . , Dr̄. Suppose there exists a regular map
D → C in which no Fq-irreducible component does map to a point. Then

|♯D(Fq)− ♯C(Fq)| ≤ (r − 1)q +m(πD − gC).

Proof. Since C is smooth and no geometric component of D does map to a point,
the map D → C is flat. Hence by [4, Th.14] we have

|♯D(Fq)− ♯C(Fq)| ≤ (r − 1)(q − 1) +m

(

r
∑

i=1

gDi
− gC

)

+∆D
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where ∆D = ♯D̃(Fq)− ♯D(Fq) with D̃ the normalization of D. The result follows

from [4, Lemma 2] where it is proved that m
∑r

i=1 gDi
+∆D − r̄+ 1 ≤ mπD. �

3. The minimum distance of codes from some families of algebraic

surfaces

We are unfortunately unable to fulfil simultaneously assumptions (1) and (2) of
Lemma 2.1 for general surfaces. So we focus on two families of algebraic surfaces
where we do succeed. To begin with, let us fix some common notations.

We consider a rational effective divisor G on the surface X avoiding a set S
of rational points on X and H a fixed auxiliary ample divisor on X . We study,
in accordance to Section 2.2, the evaluation code C(X,G, S) and we denote by
d(X,G, S) its minimum distance.

The role of the auxiliary ample divisor H is to enable us to establish some ex-
plicit lower bounds for d(X,G, S), depending on H through a decreasing function
of the quantity

(10) α(G,H) :=
(G.H)2

2H2
+

1

2
G.KX

that will appear in most of our statements. It is worth noticing that we have,
by (2) and (1),

α(G,H) ≥ G2H2

2H2
+

1

2
G.KX =

G2

2
+

1

2
G.KX = πG − 1,

with equality if and only if G and H are numerically proportional. In case G is
ample the best choice for H will be G itself. In case G is not ample, then we will
get some lower bound for the minimum distance depending on the choice of H .
The closer to πG − 1 this constant α(G,H) will be, the better the lower bound
for d(X,G, S) will be.

Remark 3.1. The geometric meaning of α(G,H)− πG +1 is the following. The
intersection product induces a non-degenerate bilinear pairing on NS(X) ⊗Z Q,
and the class of G can be uniquely written

G =
G.H

H2
H +

(

G− G.H

H2
H

)

as the sum of a multiple of H with p⊥(G) :=
(

G− G.H
H2 H

)

which is orthogonal to
H . Now, the Hodge index theorem states that the intersection product is definite
negative on the orthogonal of H , so its opposite induces a norm ‖.‖H on H⊥.
There α(G,H)− πG + 1 = −1

2
(G− G.H

H2 H)2 is nothing but 1
2
‖p⊥(G)‖2H.

3.1. Surfaces whose canonical divisor is either nef or anti-strictly nef.

We study in this section codes defined over surfaces such that either the canonical
divisor KX is nef, or its opposite −KX is strictly nef. This family is quite large.
It contains, for instance:
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- surfaces whose canonical divisor KX is anti-ample.
- Minimal surfaces of Kodaira dimension 0, for which the canonical divisor
is numerically zero, hence nef. These are abelian surfaces, K3 surfaces,
Enriques surfaces and hyperelliptic or quasi-hyperelliptic surfaces (see [7]).

- Minimal surfaces of Kodaira dimension 2. These are the so called minimal
surfaces of general type. For instance, surfaces in P3 of degree d ≥ 4,
without curves C with C2 = −1, are minimal of general type.

- Surfaces whose arithmetic Picard number is one.
- Surfaces of degree 3 embedded in P3.

The main theorem of this section (Theorem 3.3) rests mainly on the next
lemma, fulfilling assumptions (1) and (2) of Lemma 2.1.

Lemma 3.2. Let D =
∑k

i=1 niDi be the decomposition as a sum of Fq-irreducible
and reduced curves of an effective divisor D linearly equivalent to G. Assume
that H is an ample divisor on X. Then we have:

(1) k ≤ G.H ;

(2) (i) if KX is nef, then
∑k

i=1 πDi
≤ α(G,H) + k;

(ii) if −KX is strictly nef, then
∑k

i=1 πDi
≤ α(G,H)− 1

2
G.KX + 1

2
k.

Proof. Using that D is numerically equivalent to G, that ni > 0 and Di.H > 0
for every i = 1, . . . , k since H is ample, we prove item (1):

G.H = D.H =
k
∑

i=1

niDi.H ≥
k
∑

i=1

Di.H ≥ k.

Now we apply inequality (2) to H and Di for every i to get D2
iH

2 ≤ (Di.H)2.
We thus have, together with adjunction formula (1) and inequality H2 > 0,

(11) πDi
− 1 ≤ (Di.H)2/2H2 +Di.KX/2.

To prove point (i) of item (2) we sum from i = 1 to k and thus obtain

k
∑

i=1

πDi
− k ≤ 1

2H2

k
∑

i=1

(Di.H)2 +
1

2

k
∑

i=1

Di.KX

≤ 1

2H2

(

k
∑

i=1

niDi.H

)2

+
1

2

k
∑

i=1

niDi.KX

≤ (G.H)2

2H2
+
G.KX

2
= α(G,H),

(12)

where we use the positivity of the coefficients ni, the numeric equivalence between
D and

∑k
i=1 niDi, the amplitude of H and the hypothesis taken on KX .
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Under the hypotheses of point (ii) we have Di.KX ≤ −1, so replacing in the

first line of (12) gives
∑k

i=1 πDi
− k ≤ 1

2H2

∑k
i=1(Di.H)2 − k

2
. We conclude in the

same way. �

Theorem 3.3. Let G be a rational effective divisor on a surface X avoiding a
set S of rational points and H be any ample divisor. We set

(13) d∗(X,G, S,H) := ♯S −G.H(q + 1 +m)−mα(G,H).

(i) If KX is nef, then

d(X,G, S) ≥ d∗(X,G, S,H).

(ii) If −KX is strictly nef, then

d(X,G, S) ≥ d∗(X,G, S,H) +
m

2
G.(H +KX).

Proof. The theorem follows from Lemma 2.1 for which assumption (1) and (2)
hold from Lemma 3.2 and assumption (3) holds from Theorem 2.2. �

3.2. Surfaces without irreducible curves of small genus. We consider in
this section surfaces X with the property that there exists an integer ℓ ≥ 1 such
that any Fq-irreducible curve D lying on X and defined over Fq has arithmetic
genus πD ≥ ℓ + 1. It turns out that under this hypothesis, we can fulfil assump-
tions (1) and (2) of Lemma 2.1 without any hypothesis on KX contrary to the
setting of Section 3.1.

Examples of surfaces with this property do exist. For instance:

- simple abelian surfaces satisfy this property for ℓ = 1 (see [5] for abelian
surfaces with this property for ℓ = 2).

- Fibered surfaces on a smooth base curve B of genus gB ≥ 1 and generic
fiber of arithmetic genus π0 ≥ 1, and whose singular fibers are Fq-irreducible,
do satisfy this property for ℓ = min(gB, π0)− 1.

- Smooth surfaces in P3 of degree d whose arithmetic Picard group is gen-
erated by the class of an hyperplane section do satisfy this property for

ℓ = (d−1)(d−2)
2

− 1 (see Lemma 5.2).

Lemma 3.4. Let X be a surface without Fq-irreducible curves of arithmetic genus
less than or equal to ℓ for ℓ a positive integer. Consider a rational effective divisor
G and an ample divisor H on X. Let D =

∑k

i=1 niDi be the decomposition
as a sum of Fq-irreducible and reduced curves of an effective divisor D linearly
equivalent to G. Then we have

(1) k ≤ α(G,H)
ℓ

;

(2)
∑k

i=1 πDi
≤ α(G,H) + k.

In case X falls in both families of Section 3.1 and this Section 3.2, the present
new bound of the first item for k is better than the one of Lemma 3.2 if and only
if α(G,H) < ℓG.H . In the general setting, this inequality sometimes holds true,
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sometimes not. Let us consider for instance H = KX and G = rKX , where KX

is supposed to be ample. In this setting α(rKX , KX) = r(r + 1)K2
X/2 and thus

the inequality holds if and only if r < 2ℓ− 1.

Proof. By assumption, we have 0 ≤ ℓ ≤ πDi
− 1 and ni ≥ 1 for any 1 ≤ i ≤ k,

hence using adjunction formula (1), we have

2ℓk ≤ 2
k
∑

i=1

(πDi
− 1) ≤ 2

k
∑

i=1

ni(πDi
− 1) =

k
∑

i=1

niD
2
i +

k
∑

i=1

niDi.KX .

Moreover using (2) and (8), we get

2ℓk ≤
k
∑

i=1

ni

(Di.H)2

H2
+ (

k
∑

i=1

niDi).KX ≤
k
∑

i=1

n2
i

(Di.H)2

H2
+G.KX .

Since H is ample, we obtain

2ℓk ≤
k
∑

i,j=1

ninj

(Di.H)(Dj.H)

H2
+G.KX =

(
∑k

i,=1 niDi.H)2

H2
+G.KX .

By (8) and by definition of α(G,H), we conclude that

2ℓk ≤ (G.H)2

H2
+G.KX = 2α(G,H),

proving both items of Lemma 3.4. �

Theorem 3.5. Let X be a surface without Fq-irreducible curves of arithmetic
genus less than or equal to ℓ for ℓ a positive integer. Consider an effective divisor
G on X avoiding a finite set S of rational points, and H an ample divisor. Then
we have

d(X,G, S) ≥ d∗(X,G, S,H) +

(

G.H − α(G,H)

ℓ

)

(q + 1 +m).

Proof. The theorem follows from Lemma 2.1, for which items (1) and (2) hold
from Lemma 3.4 and item (3) holds from Theorem 2.2. �

4. Three improvements

We manage to obtain better parameters for the conditions (1), (2) or (3) of
Lemma 2.1 in three cases: surfaces of arithmetic Picard number one, surfaces
which do not contain Fq-irreducible curves of small self-intersection and whose
canonical divisor is either nef or anti-nef, and fibered surfaces with nef canonical
divisor.
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4.1. Surfaces with Picard number one. As mentioned in the introduction,
the case of surfaces X whose arithmetic Picard number equals one has already
attracted some interest (see [25], [24], [16], [6]). We prove in this subsection
Lemma 4.1 and Theorem 4.3 which improve, under this rank one assumption,
the bounds of Lemma 3.2 and Theorem 3.3. These new bounds depend on the
sign of 3H2 +H.KX , where H is the ample generator of NS(X).

Lemma 4.1. Let X be a smooth projective surface of arithmetic Picard num-
ber one. Let H be the ample generator of NS(X). Let G = rH for r a posi-
tive integer. For any non-zero function f ∈ L (rH) consider the decomposition

Df =
∑k

i=1 niDi into Fq-irreducible and reduced curves Di with positive integer
coefficients ni as in (8). Then the sum of the arithmetic genera of the curves Di

satisfies:

(i)
∑k

i=1 πDi
≤ (k − 1)πH + π(r−k+1)H if 3H2 +H.KX ≥ 0;

(ii)
∑k

i=1 πDi
≤ H2(r − k)2/2 +H2(r − 2k) + k if 3H2 +H.KX < 0.

Remark 4.2. Note that the condition 3H2 + H.KX ≥ 0 is satisfied as soon
as H.KX ≥ 0. It is also satisfied in the special case where KX = −H which
corresponds to Del Pezzo surfaces.

Proof. In order to prove the first item, we consider a non-zero function f ∈ L (rH)

and we keep the notations already introduced in (8), namely Df =
∑k

i=1 niDi. As
NS(X) = ZH , for all i we have Di = aiH and we know by Lemma 2.2 in [25] that
k ≤ r. Intersecting with the ample divisor H enables to prove that for all i we
have ai ≥ 1 and that

∑k

i=1 niai = r. Thus to get an upper bound for
∑k

i=1 πDi
=

∑k

i=1 πaiH , we are reduced to bounding
(

∑k

i=1 a
2
i

)

H2/2+
(

∑k

i=1 ai

)

H.KX/2+k

under the constraint
∑k

i=1 aini = r. Our strategy is based on the two following
arguments.

First, the condition 3H2+H.KX ≥ 0 guarantees that a 7→ πaH is an increasing
sequence. Indeed, for integers a′ > a ≥ 1 we have πa′H ≥ πaH if and only if
(a+a′)H2 ≥ −H.KX , which is true under the condition above because a+a′ ≥ 3.
As a consequence, if we fix an index i between 1 and k and if we consider that
the product niai is constant, then the value of πaiH is maximum when ai is, that
is when ai = niai and ni = 1.

Secondly, assume that all the ni equal 1 and that
∑k

i=1 ai = r. We are now

reduced to bounding
∑k

i=1 a
2
i . We can prove that the maximum is reached when

all the ai equal 1 except one which equals r − k + 1. Otherwise, suppose for
example that 2 ≤ a1 ≤ a2. Then a21 + a22 < (a1 − 1)2 + (a2 + 1)2 and

∑k

i=1 a
2
i is

not maximum, and the first item is thus proved.
For the second item, using the adjonction formula we get

k
∑

i=1

πDi
− k ≤ 1

2H2

k
∑

i=1

(Di.H)2 +
1

2

k
∑

i=1

Di.KX .
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Again as NS(X) = ZH , for all i we have Di = aiH . Thus we get

k
∑

i=1

πDi
− k ≤ 1

2H2

k
∑

i=1

a2i (H
2)2 +

1

2

k
∑

i=1

aiH.KX .

Now using that H.KX ≤ −3H2 by hypothesis, that
∑k

i=1 ai ≥ k since every

ai is positive and that since
∑k

i=1 ai ≤ r we can prove again that
∑k

i=1 a
2
i ≤

(r − k + 1)2 + (k − 1), we get

k
∑

i=1

πDi
− k ≤ H2

2
((r − k + 1)2 + (k − 1))− 3H2

2
k.

Some easy calculation shows that this is equivalent to our second statement. �

Theorem 4.3. Let X be a smooth projective surface of arithmetic Picard number
one. Let H be the ample generator of NS(X) and S a finite set of rational points
avoiding H. For any positive integer r, the minimum distance d(X, rH, S) of the
code C(X, rH, S) satisfies:

(i) if 3H2 +H.KX ≥ 0, then

d(X, rH, S) ≥
{

♯S − (q + 1 +mπrH) if r > 2(q + 1 +m)/mH2,

♯S − r(q + 1 +mπH) otherwise.

(ii) If 3H2 +H.KX < 0, then

d(X, rH, S) ≥
{

♯S − (q + 1 +m)−mH2(r2 − 3)/2 if r > 2(q + 1 +m)/mH2 − 3,

♯S − r(q + 1 +m−mH2) otherwise.

Proof. For any non-zero f ∈ L(rH), we have by (9) and by point (1) of Theorem
2.2

N(f) ≤ k(q + 1) +m
k
∑

i=1

πDi
.

We apply Lemma 4.1 to bound
∑k

i=1 πDi
. We get in the first case N(f) ≤ φ(k)

where φ(k) := mπ(r−k+1)H + k(q + 1 +mπH) −mπH . Remark that π(r−k+1)H is
quadratic in k and so φ(k) is a quadratic function with positive leading coefficient.
In [24, Lemma 2.2] Voloch and Zarzar proved that if X has arithmetic Picard
number one then k ≤ r. Thus φ(k) attends its maximum for k = 1 or for
k = r and N(f) ≤ max{φ(1), φ(r)}. A simple calculus shows that φ(1)− φ(r) >
0 if and only if r > 2(q + 1 + m)/mH2. Since we have d(X, rH, S) ≥ ♯S −
maxf∈L(G)\{0}N(f), part (i) of the theorem is proved.

The treatment of part (ii) is the same, except that we use Lemma 4.1 to bound
∑k

i=1 πDi
.

�
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Remark 4.4. Little and Schenck have given bounds in [16, §3] for the minimum
distance of codes from algebraic surfaces of Picard number one. In particular, they
obtain (if we keep the notations of Theorem 4.3): d(X, rH, S) ≥ ♯S−(q+1+mπH)
for r = 1 ([16, Th. 3.3]) and d(X, rH, S) ≥ ♯S − r(q + 1 +mπH) for r > 1 and
q large ([16, Th. 3.5]). Comparing their bounds with Theorem 4.3, one can see
that when 3H2 +H.KX ≥ 0 we get the same bound for r = 1 and also for r > 1
without any hypothesis on q. Moreover, when 3H2 + H.KX < 0, our bounds
improve the ones given by Little and Schenck, again without the hypothesis of q
large when r > 1.

4.2. Surfaces without irreducible curves defined over Fq with small self-

intersection and whose canonical divisor is either nef or anti-nef. We
consider in this section surfaces X such that there exists some integer β ≥ 0
for which any Fq-irreducible curve D lying on X and defined over Fq has self-
intersection D2 ≥ β. We prove in this case Lemma 4.5 below, from which we can
tackle assumption (1) in Lemma 2.1 in case β > 0. Unfortunately, Lemma 4.5
enables to fulfil assumption (2) of Lemma 2.1 only in case the intersection of the
canonical divisor with Fq-irreducible curves has constant sign, that is for surfaces
of Section 3.1. The lower bound for the minimum distance we get is better than
the one given in Theorem 3.3.

Let us propose some examples of surfaces with this property:

- abelian surfaces satisfy this property for β = 0 and even for β = 2 in the
case of simple abelian surfaces.

- Surfaces whose arithmetic Picard number is one. Indeed, let D be a
curve defined over Fq on X , and NS(X) = ZH with H ample. Then we
have that D = aH in NS(X) for some a ∈ Z. Since H is ample we get
1 ≤ D.H = aH2 hence a ≥ 1 and D2 = a2H2 ≥ H2.

- Surfaces whose canonical divisor is anti-nef and without irreducible curves
of arithmetic genus less or equal to ℓ. Indeed the adjunction formula gives
D2 = 2πD − 2−D.KX ≥ 2πD − 2 ≥ 2ℓ.

Lemma 4.5. Let X be a surface on which any Fq-irreducible curve has self-
intersection at least β ≥ 0. Assume that G is a rational effective divisor on
X and that H is an ample divisor. Let D =

∑k
i=1 niDi be the decomposition

as a sum of Fq-irreducible and reduced curves of an effective divisor D linearly
equivalent to G. Then we have

(a) if β > 0 then k ≤ G.H√
βH2

;

(b)
∑k

i=1(2πDi
− 2−Di.KX) ≤ ϕ(k), with

(14) ϕ(k) := (k − 1)β +

(

G.H√
H2

− (k − 1)
√

β

)2

.

Proof. Since by hypothesis we have
√
β ≤

√

D2
i , we deduce that k

√
β ≤

∑k

i=1 ni

√

D2
i .

By (2), we get k
√
β ≤

∑k
i=1 ni

Di.H√
H2

= G.H√
H2

, from which the first item follows.



ALGEBRAIC GEOMETRY CODES OVER SURFACES 15

Setting xi :=
√

2πDi
− 2−Di.KX , we have by adjunction formula xi =

√

D2
i ≥√

β. Moreover the previous inequalities ensure that
∑k

i=1 xi ≤
∑k

i=1 ni

√

D2
i ≤

G.H√
H2

. Then, the maximum of
∑k

i=1(2πDi
− 2 − Di.KX) =

∑k

i=1 x
2
i under the

conditions xi ≥
√
β and

∑k
i=1 xi ≤ G.H√

H2
is reached when each but one xi equals

the minimum
√
β, and only one is equal to G.H√

H2
− (k − 1)

√
β, which concludes

the proof. �

Theorem 4.6. Let X be a surface on which any Fq-irreducible curve has self-
intersection at least β. Consider an effective divisor G on X avoiding a set S of
rational points and an ample divisor H. Suppose β > 0. Then

d(X,G, S) ≥







♯S −max{ψ(1), ψ( G.H√
βH2

)} − m
2

G.H√
2βH2

if KX is nef,

♯S −max{ψ(1), ψ( G.H√
βH2

)} if −KX is nef

with

ψ(k) :=
m

2
ϕ(k) + k(q + 1 +m),

where ϕ(k) is given by equation (14).

Proof. For any non-zero f ∈ L(G), we have by (9) and by point (1) of Theorem

2.2 that N(f) ≤ k(q + 1) +m
∑k

i=1 πDi
. Lemma 4.5 implies that N(f) ≤ k(q +

1) + m
2

(

2k + ϕ(k) +
∑k

i=1Di.KX

)

. In case KX is nef, we have
∑k

i=1Di.KX ≤
∑k

i=1 niDi.KX = G.KX , and in case −KX is nef, we get
∑k

i=1Di.KX ≤ 0, and
the theorem follows. �

4.3. Fibered surfaces with nef canonical divisor. We consider in this sub-
section AG codes from fibered surfaces whose canonical divisor is nef. We adopt
the vocabulary of [20, III, §8] and we refer the reader to this text for the basic
notions we recall here. A fibered surface is a surjective morphism π : X → B
from a smooth projective surface X to a smooth absolutely irreducible curve B.
We denote by π0 the common arithmetic genus of the fibers and by gB the genus
of the base curve B. Here are some non-trivial examples of fibered surfaces:

- ruled surfaces (π0 = 0) and elliptic surfaces (π0 = 1).
- For any d ≥ 1, the dimension of the space of degree d homogeneous
polynomials in three variables is

(

d+2
2

)

, hence the space Pd of plane curves

of degree d is Pd = P(
d+2

2 )−1. Thus, any curve B drawn in Pd gives rise
to a fibered surface, whose fibers are plane curves of degree d, that is
with π0 = (d−1)(d−2)

2
. The locus of singular curves being a subvariety of

Pd, choosing B not contained in this singular locus yields to a fibered
surface with smooth generic fiber. As the locus of reducible curves has
high codimension in Pd, choosing B avoiding this locus yields to fibered
surfaces without reducible fibers.
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On a fibered surface, every divisor can be uniquely written as a sum of hori-
zontal curves (that is mapped onto B by π) and fibral curves (that is mapped on
a point by π).

Lemma 4.7. Let π : X → B be a fibered surface. Let G be an effective divisor
and H be an ample divisor on X. For any effective divisor D linearly equivalent to
G, consider its decomposition D =

∑k
i=1 niDi as a sum of reduced Fq-irreducible

curves. Denote by ri the number of absolutely irreducible components of Di.
Then, we have

k
∑

i=1

ri ≤ G.H.

Proof. Write D =
∑k

i=1 niDi =
∑k

i=1 ni

∑ri
j=1Di,j where the Di,j are the abso-

lutely irreducible components of Di.
Using that ni > 0, that D is numerically equivalent to G and that Di,j.H > 0,

we get

k
∑

i=1

ri ≤
k
∑

i=1

ri
∑

j=1

Di,j.H ≤
k
∑

i=1

ni

ri
∑

j=1

Di,j.H =

k
∑

i=1

niDi.H = G.H,

which proves the lemma. �

The next theorem involves the defect δ(B) of a smooth absolutely irreducible
curve B defined over Fq of genus gB, which is defined by

δ(B) := q + 1 +mgB − ♯B(Fq).

By the Serre-Weil theorem this defect is a non-negative number. The so-called
maximal curves have defect 0, and the smaller the number of rational points B
have, the greater the defect is.

Theorem 4.8. Let π : X → B be a fibered surface whose canonical divisor KX

is nef. Assume that G is an effective divisor on X having at least one horizontal
component and avoiding a set S of rational points, and that H is an ample divisor.
Then the minimum distance of C(X,G, S) satisfies

d(X,G, S) ≥ d∗(X,G, S,H) + δ(B)

where d∗(X,G, S,H) is given by formula (13).

Recall that the general bound we obtain in Theorem 3.3 in Section 3 for surfaces
with nef canonical divisor is d(X,G, S) ≥ d∗(X,G, S,H), thus the bound from
Theorem 4.8 is always equal or better. Actually Theorem 4.8 is surprising, since it
says that the lower bound for the minimum distance is all the more large because
the defect δ(B) is. Consequently it looks like considering fibered surfaces on
curves with few rational points and large genus could lead to potentially good
codes.
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Proof. Recall that for any non-zero f ∈ L(G), we have d(X,G, S) ≥ ♯S −N(f),

and that N(f) ≤∑k
i=1 ♯Di(Fq) if we use the notation Df := G+(f) =

∑k
i=1 niDi

introduced in (8). We again denote by ri the number of absolutely irreducible
components of Di. In order to introduce the Fq-irreducible components of Df ,
write k = h + v, where h (respectively v) is the number of horizontal curves
denoted by H1, . . . , Hh, (respectively fibral curves denoted by F1, . . . , Fv). Then

we get N(f) ≤
∑h

i=1 ♯Hi(Fq) +
∑v

i=1 ♯Fi(Fq). Since B is a smooth curve, the
morphisms Hi → B are flat. We can thus apply Proposition 2.3 to horizontal
curves and Theorem 2.2 to fibral curves and we obtain

N(f) ≤ h(♯B(Fq)−mgB) +m

h
∑

i=1

πHi
+ q

h
∑

i=1

(ri − 1) + qv + v +m

v
∑

i=1

πFi

= h(♯B(Fq)−mgB − q) +m

k
∑

i=1

πDi
+ q

k
∑

i=1

ri + v,

(15)

where we used the fact that v ≤
∑k

i=h+1 ri.
Since the canonical divisor of the fibered surface is assumed to be nef, Lemma 3.1

gives a bound for
∑k

i=1 πDi
. Then set v = k− h and use Lemma 4.7 with (15) to

obtain

N(f) ≤ h(♯B(Fq)−mgB − q) +mα(G,H) +mk + qG.H + v

= h(♯B(Fq)−mgB − q − 1) +mα(G,H) +mk + qG.H + k

= −hδ(B) +mα(G,H) +mk + qG.H + k.

Now, Df .F ≡ G.F > 0 since F is a generic fiber and G is assumed to have
at least one horizontal component. Thus, Df has also at least one horizontal
component, that is h ≥ 1. Moreover, we deduce k ≤ G.H from Lemma 4.1. As
the defect δ(B) is non-negative it follows that

N(f) ≤ −δ(B) +G.H(q + 1 +m) +mα(G,H)

and the theorem is proved. �

Now, we hypothesise that every singular fiber is Fq-irreducible. We consider
the case where π0 and gB are both at least 2. Set ℓ = min(π0, gB) − 1 ≥ 1.
We recall again that every divisor on X can be uniquely written as a sum of
horizontal and fibral curves. If we denote by H an horizontal curve and by V
a fibral curve defined over Fq, we have that πH ≥ gB and πV = π0. Therefore,
in this setting, X contains no Fq-irreducible curves defined over Fq of arithmetic
genus smaller than or equal to ℓ. Thus Lemma 3.4 applies for the number k of
Fq-irreducible components of Df and gives k ≤ α(G,H)/ℓ. Considering this new
bound for k in the proof of Theorem 4.8, we get instead the following result.
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Theorem 4.9. Let π : X → B be a fibered surface whose canonical divisor KX

is nef. We consider an effective divisor G on X having at least one horizontal
component and avoiding a set S of rational points, and H an ample divisor on
X. We denote by gB the genus of B and by π0 the arithmetic genus of the fibers
and we set ℓ = min(π0, gB)−1. Suppose that every singular fiber is Fq-irreducible
and that ℓ ≥ 1. Then the minimum distance of C(X,G, S) satisfies

d(X,G, S) ≥ d∗(X,G, S,H) +

(

G.H − α(G,H)

ℓ

)

(q + 1 +m) + δ(B),

where d∗(X,G, S,H) is given by formula (13).

Naturally this bound is better than the one in Theorem 4.8 if and only if
α(G,H) < ℓG.H . Furthermore it improves the bound of Theorem 3.5 by the
addition of the term δ(B).

5. An example: surfaces in P3

This section is devoted to the study of the minimum distance of AG codes over
a surface X of degree d ≥ 3 embedded in P3.

We consider the class L of an hyperplane section of X . So L is ample, L2 = d
and the canonical divisor of X is KX = (d−4)L (see [19, p.212]). In this setting,
we fix an effective divisor G and an ample divisor H . We apply our former
theorems to this context to give bounds on the minimum distance of the code
C(X,G, S).

We recall that cubic surfaces are considered by Voloch and Zarzar in [24] and
[25] to provide computationally good codes. In Section 4 of [16] Little and Schenck
propose theoretical and experimental results for surfaces in P3 always in the
prospect of finding good codes. We also contribute to this study with a view to
bounding the minimum distance according to the geometry of the surface.

Proposition 5.1. Let X be a surface of degree d ≥ 3 embedded in P3. Consider a
rational effective divisor G avoiding a set S of rational points on X and an ample
divisor H on X. Then the minimum distance of the code C(X,G, S) satisfies

(1) if X is a cubic surface, then

d(X,G, S) ≥ d∗(X,G, S,H) +
1

2
m(G.H −G.L).

(2) If X has degree d ≥ 4 then

d(X,G, S) ≥ d∗(X,G, S,H),

where

d∗(X,G, S,H) = ♯S −G.H(q + 1 +m)−mα(G,H)

is the function defined in (13).
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Proof. Since KX = (d− 4)L we have for cubic surfaces that KX = −L and thus
the canonical divisor is anti-ample, while for surfaces of degree d ≥ 4 the canonical
divisor ample or the zero divisor, thus is nef. Hence we can apply Theorem 3.3
from which the proposition follows. �

5.1. Surfaces in P3 without irreducible curves of low genus. In the com-
plex setting, the Noether-Lefschetz theorem asserts that a general surface X of
degree d ≥ 4 in P3 is such that Pic(X) = ZL, where L is the class of an hyper-
plane section (see [11]). Here, general means outside a countable union of proper
subvarieties of the projective space parametrizing the surfaces of degree d in P3.
Even if we do not know an analog of this statement in our context, it suggests
us the strong assumptions we take in this subsection, namely in Lemma 5.2 and
Proposition 5.3.

Lemma 5.2. Let X be a surface of degree d ≥ 4 in P3 of arithmetic Picard
number one. Suppose that NS(X) is generated by the class of an hyperplane
section L. Consider an Fq-irreducible curve D on X of arithmetic genus πD.
Then

πD ≥ (d− 1)(d− 2)/2.

Proof. Let a be the integer such that D = aL in NS(X). Since D is an Fq-
irreducible curve and L is ample, we must have a > 0. Then, using the adjonction
formula, we get

2πD − 2 = D2 +D.K = a2L2 + aL.(d− 4)L

= a2d+ ad(d− 4) ≥ d+ d(d− 4),

and thus πD ≥ (d− 1)(d− 2)/2. �

By the previous lemma it is straightforward that in our context X does not
contain any Fq-irreducible curves of arithmetic genus smaller than or equal to ℓ
for ℓ = (d− 1)(d− 2)/2− 1 = d(d− 3)/2. This allows us to apply Theorem 3.5,
and get the following proposition.

Proposition 5.3. Let X be a degree d ≥ 4 surface in P3 of arithmetic Picard
number one whose Néron-Severi group NS(X) is generated by the class of an
hyperplane section L. Assume that G = rL for a positive integer r and that S
is a set of rational points avoiding L. Then the minimum distance of the code
C(X, rL, S) satisfies

d(X, rL, S) ≥ d∗(X, rL, S, L) + rd

(

1− r + d− 4

d(d− 3)

)

(q + 1 +m)

where

d∗(X, rL, S, L) = ♯S − rd(q + 1 +m)−mrd(r + d− 4)/2.
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5.2. Surfaces in P3 of arithmetic Picard number one. In this subsection we
suppose that the arithmetic Picard number of X is one, but we do not take the
assumption that the Néron-Severi group is generated by an hyperplane section.
Also in this case we can apply Theorem 4.3 which brings us to the following
proposition.

Proposition 5.4. Let X be a surface of degree d ≥ 4 in P3. Assume that
NS(X) = ZH for an ample divisor H. We then consider L = hH, the class of
an hyperplane section of X, and G = rH. Let S be a set of rational points on X
avoiding H.

Then the minimum distance of the code C(X, rH, S) satisfies

d(X, rH, S) ≥
{

♯S − (q + 1 +m)− rH2(r + h(d− 4))/2 if r > 2(q + 1 +m)/mH2,

♯S − r(q + 1 +m)− rH2(1 + h(d− 4))/2 otherwise.

Proof. Since we have 3H2 +H.KX = 3H2 +H.(d − 4)L = 3H2 + h(d − 4)H2 =
H2(3 + h(d − 4)) ≥ 0, we can apply point (i) of Theorem 4.3 from which the
proposition follows. �
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