Machine Learning for Computer Music Multidisciplinary Research: A Practical Case Study - Archive ouverte HAL
Chapitre D'ouvrage Année : 2021

Machine Learning for Computer Music Multidisciplinary Research: A Practical Case Study

Résumé

This paper presents a multidisciplinary case study of practice with machine learning for computer music. It builds on the scientific study of two machine learning models respectively developed for data-driven sound synthesis and interactive exploration. It details how the learning capabilities of the two models were leveraged to design and implement a musical interface focused on embodied musical interaction. It then describes how this interface was employed and applied to the composition and performance of aego, an improvisational piece with interactive sound and image for one performer. We discuss the outputs of our research and creation process, and expose our personal reflections and insights on transdisciplinary research opportunities framed by machine learning for computer music.
Fichier principal
Vignette du fichier
scurto2021machine_authorsversion.pdf (3.3 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02408699 , version 1 (13-12-2019)
hal-02408699 , version 2 (17-03-2021)

Identifiants

Citer

Hugo Scurto, Axel Chemla--Romeu-Santos. Machine Learning for Computer Music Multidisciplinary Research: A Practical Case Study. Richard Kronland-Martinet; Sølvi Ystad; Mitsuko Aramaki. Perception, Representations, Image, Sound, Music. 14th International Symposium, CMMR 2019, Marseille, France, October 14–18, 2019, Revised Selected Papers, 12631, Springer, pp.665-680, 2021, Lecture Notes in Computer Science, 978-3-030-70209-0. ⟨10.1007/978-3-030-70210-6_43⟩. ⟨hal-02408699v2⟩
245 Consultations
248 Téléchargements

Altmetric

Partager

More