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Abstract. This paper presents a multidisciplinary case study of practice with
machine learning for computer music. It builds on the scientific study of two
machine learning models respectively developed for data-driven sound synthesis
and interactive exploration. It details how the learning capabilities of the two
models were leveraged to design and implement a musical interface focused on
embodied musical interaction. It then describes how this interface was employed
and applied to the composition and performance of ægo, an improvisational piece
with interactive sound and image for one performer. We discuss the outputs of our
research and creation process, and expose our personal reflections and insights on
transdisciplinary research opportunities framed by machine learning for computer
music.

Keywords: Machine Learning, Interface Design, Composition, Performance, Trans-
disciplinarity

1 Introduction

Machine learning is a field of computer science that studies statistical models able
to automatically extract information from data. The statistical learning abilities of the
models induced a paradigm shift in computer science, which reconsidered mechanistic,
rule-based models, to include probabilistic, data-driven models. Recent applications of
machine learning led to critical advances in disciplinary fields as diverse as robotics,
biology, or human-computer interaction. It also contributed to new societal representa-
tions of computers through the loosely-defined notion of Artificial Intelligence (AI).

Computer music also witnessed an increased interest in machine learning. Research
has mostly been scientific in focus, using and studying models to automatically anal-
yse musical data—e.g., extracting symbolic information related to pitch or timbre from
audio data. This led to technical advances in the field of music information retrieval
[1], while also benefiting the field of musicology, notably through large-scale compu-
tational analysis [2]. In parallel, machine learning also enabled the building of many
automatic music generation systems, which are currently being invested by the industry
in the wave of AI [3].

* Equal contribution.
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Importantly, these scientific investigations of machine learning have also enabled
the birth of new musical practices. For example, gesture modelling, as a scientific chal-
lenge, opened new design perspectives on body-based musical interfaces that adapts
to one’s way of playing it [4]. Similarly, symbolic sequence modelling created new
human-machine improvisational situations where the machine learns to imitate a musi-
cian’s style [5]. Reciprocally, artistic investigations of machine learning began taking a
complementary approach, using the models themselves as material for composition of
sound [6] and image [7].

We are interested in adopting a joint scientific and musical approach to machine
learning research. We are inspired by the computer music pioneer Jean-Claude Risset
[8], whose research and creation approach to computer science enabled new scientific
understandings of sound as a physical and perceptual phenomenon, jointly with an artis-
tic commitment toward computing aesthetics. His work and personal approach gave
insight to both scientists—ranging from formal science to humanities—and artists—
ranging from composers and performers to interface designers. Our wish is to perpet-
uate his multidisciplinary impetus toward contemporary computer music issues related
to machine learning.

The work that we present here is a step toward this direction. We led a scientific
investigation of two machine learning models that jointly frame new data-driven ap-
proaches to sound synthesis. We then adopted a musical approach toward these models,
leveraging their interactive learning abilities to design a musical interface, for which
we created an improvisational piece. Rather than seeking general abstractions or uni-
versal concepts, our wish was to test these models through a practical case study to
develop a personal reflection that inquires, or even challenge, their current applications
to computer music. Our hope is that our idiosyncratic research and creation process will
help open new perspectives for computer music multidisciplinary research on machine
learning.

The paper is structured as follows. We start by the scientific foundations of our
work, describing the two models that we developed for two musical issues—sound
analysis-synthesis, and sonic exploration. Next, we present the design of our musical
interface, describing its embodied musical interaction workflow and implementation.
We then describe ægo, an improvisational piece with interactive sound and image for
one performer, which we created for our interface. Finally, we discuss our research and
creation process, and share our personal reflections as computer music practitioners and
researchers to draw insight on contemporary machine learning from crossed science,
design, and art perspectives.

2 Scientific Modelling

In this section, we describe our two machine learning models, based on unsupervised
learning and reinforcement learning, from a computer science perspective. We explain
how they respectively address two specific musical issues: sound synthesis-analysis and
sonic exploration.
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2.1 Unsupervised Learning for Sound Analysis and Synthesis

Musical Issue. Most sound analysis-synthesis techniques, such as the phase vocoder
[9] or the wavelet transform [10], are based on invertible transforms that are indepen-
dent of the analyzed sounds. Such transforms provide frameworks that can be applied
regardless to the nature of the signal, but in return impose a determined structure such
that the extracted features are not corpus-dependant. Conversely, could we think about a
method retrieving continuous parameters from a given set of sounds, but rather aiming
to recover its underlying structure?

Model. The recent rise of unsupervised generative models can provide a new ap-
proach to sound analysis-synthesis, by considering each item of a given audio dataset
{xn}n∈1...D—here, a collection of spectral frames—as draws from an underlying prob-
ability distribution p(x) that we aim to recover. The introduction of latent variables
z allows us to control a synthesis process by modelling the joint distribution p(x,z) =
p(x|z)p(z), such that these variables act as parameters for the generative process p(x|z).
The full inference process, that would here correspond to the analysis part, leverages
the Bayes’ rule p(z|x) = p(x|z)p(z)

p(x) to recover the distribution p(z|x), called the posterior.

Fig. 1. Unsupervised learning for sound analysis and synthesis. The variational auto-encoder
(VAE) encodes a sound dataset into a high-dimensional latent space, which can be parametri-
cally controlled to synthesize new sounds through a decoder.

To improve expressiveness of inference and generation, we propose to investigate
variational learning, a framework approximating the true posterior p(z|x) by a dis-
tribution q(z|x), such that both inference and generative processes can be freely and
separately designed, with arbitrary complexity. The variational auto-encoder (VAE) is
representative of such methods [11]. In this model (Fig. 1), inference and generation
processes are held by two jointly trained separated networks, respectively the encoder
and the decoder, each modelling respectively the distributions q(z|x) and p(x|z). The
inherent Bayesian nature of variational learning enforces the smoothness of the latent
space, a high-dimensional, non-linear sonic space, whose parametric dimensions can
be freely explored in the manner of a synthesizer.

In related work, we show how this latent space can be regularized according to
different criteria, such as enforcing perceptual constraints related to timbre [12]. We
refer the reader to the latter paper for technical details on the model and quantitative
evaluation on standard sound spectrum datasets.
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2.2 Reinforcement Learning for Sonic Exploration

Musical Issue. Sonic exploration is a central task in music creation [13]. Specifically,
exploration of digital sound synthesis consists in taking multiple steps and iterative ac-
tions through a large number of technical parameters to move from an initial idea to a
final outcome. Yet, the mutually-dependent technical functions of parameters, as well
as the exponential number of combinations, often hinder interaction with the under-
lying sound space. Could we imagine a tool that would help musicians explore high-
dimensional parameter spaces?

Model. We propose to investigate reinforcement learning to support exploration of
large sound synthesis spaces. Reinforcement learning defines a statistical framework
for the interaction between a learning agent and its environment [14]. The agent can
learn how to act in its environment by iteratively receiving some representation of the
environment’s state S, taking an action A on it, and receiving a numerical reward R. The
agent’s goal, roughly speaking, is to maximize the cumulative amount of reward that it
will receive from its environment.

Fig. 2. Reinforcement learning for sonic exploration. The agent learns which actions to take on a
sound synthesis environment based on reward given by the musician. The agent implements an
exploration method to foster discovery along interaction.

For our case of sonic exploration, we propose that the musician would listen to the
agent exploring the space, and teach it how to explore by giving reward data (Fig. 2).
Formally, the environment’s state is constituted by the numerical values of all synthe-
sis parameters. The agent’s actions are to move one of the parameters up or down at
constant frequency. Finally, the musician communicates positive or negative reward to
the agent as a subjective feedback to agent actions. We implemented a deep reinforce-
ment learning model to support learning from human reward signal in high-dimensional
parametric spaces [15].

A crucial requirement for reinforcement learning agents is to autonomously explore
their environment, to keep on discovering which actions would yield the most reward.
We developed a statistical method, based on intrinsic motivation, which pushes the
agent to “explore what surprises it”. The resulting interactive learning workflow was
found to be useful to relax musicians’ control over all synthesis parameters, while also
provoking discoveries by exploring uncharted parts of the sound space. We report the
reader to [16,17] for technical details on the model and qualitative evaluation from
expert sound designers.
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3 Interface Design

In this section, we present our musical interface that combines our two models and
leverages their learning capabilities from a design perspective. We describe how inter-
action design was framed in joint coordination with hardware and software engineering
to support embodied musical interaction.

3.1 Interaction Design

Motivation. Our main design motivation was to use our reinforcement learning agent
to support musical exploration of high-dimensional latent sound spaces built by our
unsupervised learning model.

Specifically, our aim was to exploit the exploration behaviour of our reinforcement
learning agent to support improvisation by feedback inside the spaces. Instead of acting
as a tool, we used machine learning as an expressive partner [5] that would be playable
by musicians using positive or negative feedback.

A complementary aim was to use the generative abilities of our unsupervised learn-
ing model to support customization of synthesis spaces. Instead of accurately modelling
sounds, we used machine learning as a creative interface [18] supporting experimenta-
tion with the intrinsic non-linearities of latent spaces.

Fig. 3. The interactive workflow that we designed for our interface.

Workflow. We designed a two-phase interactive workflow, shown in Fig. 3.
The setup phase allows musicians to configure the interface. They can create a cus-

tomized sound dataset for the unsupervised learning model, experiment with various
training parameters, or also load a previously-built latent sound space. They can also
change dimensionality of the reinforcement learning agent to explore specific dimen-
sions of the latent sound space, as well as the frequency at which it would take actions
inside the latent space.

The playing phase allows musicians to improvise with the agent by means of feed-
back. The agent produces a continuous layer of sound from the spectrum output of the
VAE. Musicians can either cooperate with its learning to attain a sonic goal by giv-
ing consistent feedback data. Or, they can obstruct its learning to improvise in sonic
exploration by giving inconsistent feedback data.
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3.2 Engineering

Implementation. Technically (see Fig. 4), the reinforcement learning agent receives a
representation of the environment’s state S as a position in the latent space z. Then, it
takes an action A corresponding to a displacement along some dimension of the latent
space. The resulting position has the unsupervised learning model generate a sound
spectrum x. Based on the sound, the musician would communicate reward R to the
agent. The latter would progressively learn to explore the latent space in relation to the
musician’s feedback data.

Fig. 4. Schematic representation for the engineering of our interface.

Hardware. We designed a hardware prototype to support embodied musical interaction
(see Fig. 4, left). It consists in two velcro rings, each of them equipped with a wireless
inertial measurement unit1. We took each unit angular rotation about each forearm axis
and summed them to compute a single, normalized numerical reward signal. This, com-
bined with the lightweight, nonintrusive velcro rings, lets musicians experiment with a
wide range of gesture vocabulary [19] to communicate positive or negative feedback to
the agent.

Software. We implemented our two machine learning models as Python libraries23.
We developed a Max/MSP patch to implement a user interface for the setup phase, as
well as a hardware data converter for the playing phase. We leveraged the OSC protocol
to bridge hardware data, reinforcement learning agent, unsupervised latent space, and
sound spectra together into the patch.

4 Musical Artwork

In this section, we present ægo, an improvisational piece that we created for our musical
interface, premiered at the 14th International Symposium on Computer Music Multidis-
ciplinary Research on 16 October 2019, in Marseille, France. We describe how its aes-
thetics intend to challenge current views on AI and music, and detail how composition
and performance were handled within our interface.

1http://ismm.ircam.fr/riot/
2https://github.com/domkirke/vschaos_package
3https://github.com/Ircam-RnD/coexplorer

http://ismm.ircam.fr/riot/
https://github.com/domkirke/vschaos_package
https://github.com/Ircam-RnD/coexplorer
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4.1 Description

Intention. Our artistic intention for ægo was to emphasize the human learnings that
machine learning could enable toward sound and music—rather than the opposite, as is
often framed in contemporary AI applications.

We opted for a performance format showing a human and a machine improvising
together—respectively using feedback, and an exploration method—to learn to interact
with latent sound spaces—on an embodied level for the performer, and on a compu-
tational level for the machine. The slow-paced spectromorphologies, synthesized and
projected in real-time over the stage and the performer, encourages meditation on this
joint human-machine learning.

Crucially, we directed the performance so that the human would progressively relin-
quish communication of accurate feedback to the machine, thus leaving the machine’s
learning indeterminate on purpose. Released from the obligation of teaching and con-
trolling its artificial alter ego, the human is allowed to let his or her embodied mind
unify with sound, eventually learning to interact with music.

Fig. 5. Pictures taken from ægo.

Aesthetics. The piece’s aesthetics result from two artistic choices, which conceptually
and technically intertwine sound, body, and image (see Fig. 5).

Our first choice consisted in exploiting artifacts of sound synthesis produced by the
unsupervised learning model to compose unheard-of timbral spaces for the piece. We
built latent sound spaces using datasets of sounds that were commonly used in pio-
neering works of computer music to accentuate audience perception of sonic artifacts
produced by learning. In addition, we projected the spectrogram image over the stage
and the performer in real-time to provide the audience with a visual representation of
artifacts. The blending of sound and performer representations symbolically accounts
for the unification of performer and sound.

Our second choice consisted in creating indeterminacy of composition using the
exploration behaviour of the reinforcement learning agent. We used the performer’s
body as a symbolic element to communicate kinesthetic information to the audience on
how indeterminacy may be experienced while performing with sound. We also added
raw textual information on the machine’s learning at top left of the projected image to
reinforce audience perception of machine’s unpredictability. The indeterminacy pushes
the performer to relinquish control over the machine’s learning to fully focus on sound
and its timbral attributes.
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4.2 Writing

Composition. The piece was composed at three temporal scales (see Fig. 6).
The first scale is that of exploration. It consists in the improvisational paths taken

by the reinforcement learning agent in response to performer’s feedback data. We set
the frequency of agent actions between 30 and 100 milliseconds. This choice resulted
in slow and continuous evolution of spectromorphologies, which let the performer im-
provise at similar temporal scales than the agent.

Fig. 6. Temporal structure composed for the piece.

The second scale is that of latent space dimensionality. It consists in defining the
axis of the latent spaces that the reinforcement learning agent will explore. We set the
dimensions to 1, 2, 4, and 8, respectively. This allowed us to write a specific kind of
musical form inside the latent space: the more dimensions we open to the agent, the
more sonic variance the performer and audience may experience—the harder it may be
for the performer to teach the agent.

The third scale is that of latent space itself. It consists in connecting the reinforce-
ment learning agent to another type of latent space. We built two latent spaces using
synthesis sounds (additive and frequency modulation) and one using physical instru-
ments recordings (flute, saxophone, piano, violin, bassoon [20]). This enabled us to
build a narrative through the use of different soundscapes (here, going from elementary
sinusoidal spectra to richer instrumental timbres).

Performance. While the piece is intended to be improvised, our sole direction toward
the stage performer is that she or he may perform with the machine with deep attentive-
ness toward sound4. We proposed that the performer would start the piece facing the
audience, relaxed, using small wrist rotations to communicate feedback through our in-
terface. As the piece unfolds, the performer would freely adapt its gestures in response
to sound, possibly forgetting the presence of the machine, as well as the mapping be-
tween gesture and feedback.

A second contributor is required to manage the two remaining temporal scales of
the piece—i.e., changing dimensionalities, and switching latent spaces.

4See these video excerpts from early rehearsals: https://vimeo.com/418787133

https://vimeo.com/418787133
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5 Discussion

In this section, we discuss our research and creation process, starting by providing
contextual information about our case study. We then expose our personal reflections
emerging from music practice with machine learning, and present insight for future
multidisciplinary and transdisciplinary approaches to computer music practice and re-
search.

5.1 Contextual Information about our Case Study

Process. The work presented here relates a practical case study with machine learning
in the frame of computer music. We leveraged both conceptual and technical aspects
of machine learning to jointly produce scientific knowledge with our two models for
sound synthesis, as well as musical creations through the design of our interface and the
writing of our improsivational piece. In this sense, our work emerged from a research
and creation process, in which we closely articulated a creation project within a research
methodology.

We followed a sequential multidisciplinary agenda (see Fig. 7, solid lines and ar-
rows). We started by the scientific modelling of sonic exploration and sound synthesis,
which took us two years to date. We then planned a one-month residency to design the
interface and write the musical piece. This research and creation agenda was opted for
because our work occupation at that time—doctoral researchers in machine learning
applied to computer music—required a more important focus on computer science than
on music creation.

While many researchers of our laboratory were involved in scientific modelling, we
(the two coauthors) managed interface design and musical artwork as a pair. Impor-
tantly, both of us have professional experience in music composition and performance,
and followed a dual training in science and music. These dual skills were central to indi-
vidually work, as well as to effectively collaborate, on conceptual and technical aspects
related to music and machine learning throughout the process.

Output. The relatively short period dedicated to music creation pushed us to take prag-
matic decisions about the form of outputs, notably by relinquishing certain technical
developments. For example, using the unsupervised learning model to learn temporal
features of sound spectrums could have improved the dynamical richness of the gen-
erated sounds, as well as supported other musical forms than slow spectral evolution.
Other agent parameters could have been used to create quicker or more discontinuous
exploration behaviours, as well as other commands than feedback data to give the per-
former more control over reinforcement learning. Finally, many other musical forms
could have been conceived, using other sound datasets—e.g., voice corpora or envi-
ronmental sounds—and investigating other temporal writings for dimensionality and
exploration. Future continuation of our work may consider addressing these research
questions to evolve the created outputs. Meanwhile, we do believe that interesting in-
sights have already thrived out of the present case study.
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5.2 Authors’ Personal Reflections on Practicing with
Machine Learning for Computer Music

Beyond the created outputs, the process of practicing with the two machine learning
models gave us insight on the particular interests that they may have for computer mu-
sic. In the next two sections, we successively share our personal reflections on compos-
ing with unsupervised learning (Axel Chemla–Romeu-Santos), and performing with
reinforcement learning (Hugo Scurto). We use first-person narratives to make it clear
that our personal approaches as musician-researchers will be exposed here, rather than
general analyses or evaluations.

Axel Chemla–Romeu-Santos. (On composing with unsupervised learning.) The topic
of my doctoral work, initiated in September 2016, targeted the investigation of machine
learning-based generative models as a novel method of sound synthesis. This project
was innovative, as most approaches developed so far were mainly focused on symbolic
generation, due to the challenging density of audio signals. However, such symbolic
approaches were rather aiming to model specific genres or authors and had, to my opin-
ion, modest creative interests and ambiguous motivations. We decided to rather address
the generation of audio signals, positing that the high-capacity modelling capacity of
neural networks could disclose a novel approach with sound synthesis, nonconflicting
with existing musical practises. This postulate hence enforced the use of representation-
based methods, such as variational auto-encoders, allowing to directly control the gen-
eration through higher-order features, used as automatically extracted synthesis param-
eters (contrary to systems like adversarial methods, whose generation were initially
only based on sampling). This choice was also partly inspired by my parallel prac-
tice of composition in electroacoustics, where I discovered among various composition
processes (fortunately non-exclusive) the specificity of what I would call an experimen-
tal approach. This approach can be described by focusing on a physical (mechanical,
analogical, digital...) or abstract (symbolic systems, generation rules...) object, and re-
alizing them into whether compositions (hence allowing an iterative workflow, delin-
eating composition and realization times) or performances (entangling composition and
execution time, emphasizing the reflective interaction between involved agents). This
approach, mandatory for the research and creation process I was coveting, drove my
activity during the three years of the doctoral work.

This positioning, jointly with the musical interest aroused by the development of
these methods, motivated simultaneously the writing of this paper and the composition
of the piece. Hence, using these models to conceptualize a musical performance raised
two ontological questions: first, how to compose with the developed models (distribut-
ing musical elements through time), and how to interact with it. Hugo and I quickly
drew the conclusion after some initial experiments that the architecture of the varia-
tional auto-encoding system presented an inner explorational creativity (in the sense of
Boden [25]), proposing a generative space that could be interestingly navigated by an
agent (human, machine, or hybrid as we did in our performance). Hence, we chose to
let the navigation of the latent space to the performer (Hugo), the compositional aspect
then consisting in the dynamical determination of the performance frame. Therefore we
had to split architectural decisions between, from the one hand the free parameters that
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can be handled through time, and from the other hand the fixed parameters that are kept
fixed among the performance. We left free the decisions that we found most decisive
for both the diversity and the morphology of the produced output: the amount of ex-
plored dimensions, that had a direct impact on the complexity of the space (and hence
on the performer’s choices), and the explored models, trained on different datasets and
then providing different spectromorphologies. This step, quite common in experimental
music (that we can call setup design), then drove the subsequent experiments about the
precise composition of the piece. We adopted a recursive compositional process, first
by exploring generative spaces and several projections “at hand”, and then including the
navigation with the exploratory agent. This procedure naturally led us to a distribution
of live actions between the performer and an operator, setting the refreshment rate of
the agent and triggering the transitions between the successive episodes, then amount-
ing to a three-agent improvisational setup. This choice has been made to extend the
flexibility of the piece, allowing to dynamically adapt the frame of the improvisation to
its realization, but also to face hypothetical technical issues arising from the prototype
interface.

Hence, the compositional process adopted in this piece was rather close to the exper-
imental method I described, first crafting models that were trained on different datasets,
exploring their properties jointly with the performer, and giving the composition a
macro-structure distributing in time the parameters considered as the most determin-
ing for the performance. If we analyze the shift that recent machine learning techniques
proposed in the domain of scientific knowledge, that we can describe as modelling func-
tions by with automatic determination techniques rather than an explicit formulation of
targeted dependencies, what would mean the transposition of this shift in musical prac-
tises? Clearly, our work is more based on the objectisation of these techniques for its
use in existing musical paradigms (that I call here experimental), rather than a compo-
sitional processed based on automatic generation of musical content through high-level
attributes. I think that this question would be very interesting to investigate more deeply
into artistic and scientific communities, in order to reconcile “AI-luthery” with “high-
level composition” approaches.

Hugo Scurto. (On performing with reinforcement learning.)

Then the answers, instead of coming from my likes and dislikes, come from
chance operations, and that has the effect of opening me to possibilities that I
hadn’t considered. Chance-determined answers will open my mind to the world
around. (John Cage, 1982 [22])

Rather than a fortunate introduction, this quote on composition and indeterminancy
by John Cage actually embodies my very own reflections on performing with rein-
forcement learning—that is, switching from instrumental control of sound to spiri-
tual unification with music. These reflections drove the artistic direction of our mu-
sical artwork—showing a human favouring unification with sound over the control of a
machine’s learning—, and were further fostered through improvisational practice with
reinforcement learning. Below is an attempt to describe how these reflections progres-
sively crystallised for me through experimentation within the setup designed with Axel.
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Reinforcement learning enables humans to interact with sound using positive or
negative feedback—a standardized form of likes and dislikes. The agent may explore
and learn how to synthesize sound based on this feedback data, eventually providing
humans with a certain degree of instrumental control over sound. In relatively small
parameter spaces (for example the one- and two-dimensional spaces composed for our
musical artwork), I was able to rapidly teach the agent my preferences toward sound,
and gain control over the synthesis process. In spaces of higher dimensions (where the
agent needed more feedback data to properly learn to behave), I was not necessarily
able to tell whether I could teach the agent, or if it was acting by chance toward a
desired sound—thus convincing myself of having some influence, instead of control,
over sound synthesis.

This “mind game”, as I would call it, pushed me to open my expectations as a per-
former away from gaining instrumental control over sound. I began mindfully listening
to timbral attributes of generated sound, as timbre was the only clue for me to actu-
ally know if the agent was learning from my likes and dislikes. Entering this state of
heightened listening, I observed myself oscillating between two mental postures toward
sound: one that was performative—where I attempted to grasp control over timbre by
producing very precise feedback—, and one that was meditative—where I carefully
listened to sound as if it existed by itself, detached from my very own influence. In
both cases, heightened listening almost had me forgetting about the technicality of the
agent for the benefit of sound and its timbral attributes. This mental exercise eventually
freed my physical movements from the task of being performative toward feedback,
which unexpectedly let me contemplate new bodily sensations in relation to timbre
over time—such as the apparent interdependence between my inner breathing motions
and the perpetual unfolding of sound.

The enabling of these mental and physical practices by reinforcement learning
paved the way, I believe, to a spiritual practice that I regularly undertake within mu-
sical performance, which I may refer to as unification with music. Unification with
music seeks to relinquish instrumental control of sound in performance and cultivate
awareness that its organisation over time is already part of one’s self—echoing Cage’s
definition of music as an “affirmation of [the very] life” that we are living [23]. Of
course, unification with music may be witnessed and practised through performance
and improvisation with many other interactive music systems. However, I would argue
that the intrinsic operations of reinforcement learning facilitate awakening in unification
with music, compared to the logical, verbal, and embodied operations conventionally
used in interactive music systems—e.g., parametric, note-based, or gestural control of
sound synthesis.

By releasing my mind from technical conventions, feedback allowed me to exper-
iment with basic forms of nonverbal communication with sound. Reflecting on the
symbolic and performative aspects of these communication forms, I ended up think-
ing of them as invocation rituals for sound, which may be characterized by the fol-
lowing sequence: first, focusing the mind on timbral attributes, then using the body to
summon acoustic presence, and eventually letting one’s self identify with sound. In a
complementary manner, by systematically yet unpredictably responding to my acts of
communication, the reinforcement learning agent—i.e., its algorithmic operations and
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exploration methods—helped me awaken to the affirmation of an external agency in
the organisation of sound over time. Assuming that reinforcement learning remained
a tool for performing a piece of music, I learned from this awakening that music was
that actual affirmation of agency. Through invocation of a rapport with this agency—
i.e., through feedback on sound synthesized by the agent—I was able to witness and
cultivate unification with music in ways I had not experienced in performance yet.

On a lighter note and to come full circle, I must agree that performing with rein-
forcement learning certainly opened my mind to the world around.

5.3 Insight for Computer Music Transdisciplinary Research

Our personal reflections gave us insight on the artistic, design, and scientific aspects
of computer music research on machine learning (see Fig. 7, dashed arrows), whose
multidisciplinarity may be rethought as transdisciplinary.

Fig. 7. Our case study. Solid arrows: The sequential research and creation process that we took
to lead multidisciplinary research on machine learning. Dashed arrows: Insight gathered for a
transdisciplinary approach in the frame of computer music.

Critical Music Practices with Machine Learning. Composition and performance of
our musical artwork (see Section 4) allowed us to challenge current applications of
machine learning to computer music, in a way that could have not been experimented
within the standard scientific approach. Many applications of AI to music arguably seek
to produce impressive results in terms of automatic generation of music, often leaving
musical and aesthetic aspects behind. Conversely, our unconventional use of machine
learning in our improvisational piece was intentionally deceptive toward these shared
expectations. We deliberately composed with sound synthesis artifacts produced by un-
supervised learning, as well as with the indeterminacy of reinforcement learning, to
realise novel musical forms linked to our personal spiritualities before seeking to obtain
innovative scientific results through the lens of machine learning. Also, we purposefully
displayed a music performer progressively relinquishing control over a machine’s learn-
ing to promote attentive musical listening over the fast-paced quest for technological
progress typical of many contemporary AI applications to music. Our artistic choices
could thus be described as critical music practices with machine learning, inquiring the
musical representations and experiences that the formalism of machine learning models
may implicitly encapsulate.
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Intrinsic Design of Machine Learning for Music. Designing our musical interface let
us reflect on our peculiar design approach to machine learning for music (see Section
3). Standard engineering of machine learning usually employs quantitative evaluation
frameworks, mostly focused on measuring a model’s performance regarding a set of
explicit tasks, generally also involved in the training—and then raising legitimate sus-
picions about their intrinsic tautology. Such evaluations, that we call extrinsic, tend to
prune out the emergent behavior of the trained system in favor to a measurable idea of
efficiency, hence denoting a certain statistical materialism that is regularly castigated
in this new trend of computer science. At the opposite, our use of latent spaces as cus-
tomizable sound spaces, as well as our use of feedback as modality for improvisation,
rather employed the intrinsic properties of such models, hence redefining their original
purpose. Such qualitative, creativity-oriented evaluations targeted different interaction
design properties, detached from the idea of measurable efficiency, but rather foster-
ing high-level attributes—e.g., expressiveness, compliance, richness, or empowerment.
While marginally investigated so far within machine learning engineering, these inter-
active properties are actually substantially solicited within computer music design, such
as in gesture modelling and symbolic sequence modelling applications to music prac-
tice. Our musical interface could thus be related to such an intrinsic approach to the
design of machine learning for music.

The Formal and Humanistic Dimensions of the Sciences of Computer Music. In
the present case study, we took a multidisciplinary approach to machine learning, suc-
cessively assuming the roles of scientists, engineers, designers, and musicians along
research. As a consequence, we do not pretend to provide a formal, quantitative, or
universal evaluation of machine learning for computer music, as we did in our two sci-
entific modelling studies (see Section 2). Rather, we believe that our research approach
does constitute one example of machine learning research led by specific computer
music practitioners—a complementary type of qualitative and humanistic evaluation,
perhaps sharing similarities with the joint scientific and musical approach to comput-
ers of Jean-Claude Risset [24]. We hope that the present paper convinced the reader
of our diligence toward switching these roles and approaches throughout research and
creation.

More generally, we believe that this multidisciplinary approach to machine learning
could be likened to a transdisciplinary approach to computer music research, consid-
ering the current social and industrial context surrounding AI. Historically, multidis-
ciplinary collaboration between engineers and musicians has enabled discoveries and
innovations that jointly benefited scientists and computer musicians [8]. Nowadays,
rapid advances in digital technology—especially in machine learning engineering—put
strong infrastructural pressures on computer musicians, arguably not leaving substantial
time for equitable scientific and musical contributions as framed by standard multidis-
ciplinary collaboration.

As researchers in computer science upon leading this case study, we took a modest
step toward countering this trend, by letting our computer music practices and per-
sonal reflections reassign the scientific ontology of machine learning models, possibly
at the expense of standard evaluation approaches of computer science and engineering.
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Without depreciating nor seeking to relinquish multidisciplinary collaboration at all, we
believe that such transdisciplinary approaches are increasingly becoming crucial nowa-
days, not only to build new practices for the development and evaluation of machine
learning models, but also to construct a collective discourse about these technologies
that critically considers their ecological integration in human practices—and philo-
sophically speaking, a phenomenological understanding of their behavior. We hope that
these insights will resonate with other computer music practitioners and researchers
wishing to further contemporary cultivation of the formal and humanistic dimensions
of the sciences of computer music.

6 Conclusion

We presented a practical case study of machine learning for computer music. We studied
two machine learning models, from which we designed a musical interface, and wrote
a musical piece for it. We discussed our research and creation process and our personal
reflections and insight as computer music practitioners and researchers. Future work
may explore transdisciplinary music research approaches that complement computer
music multidisciplinary collaboration.
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