Learning a local symmetry with neural networks - Archive ouverte HAL
Article Dans Une Revue Physical Review E : Statistical, Nonlinear, and Soft Matter Physics Année : 2019

Learning a local symmetry with neural networks

Résumé

We explore the capacity of neural networks to detect a symmetry with complex local and non-local patterns: the gauge symmetry Z2. This symmetry is present in physical problems from topological transitions to quantum chromodynamics, and controls the computational hardness of instances of spin-glasses. Here, we show how to design a neural network, and a dataset, able to learn this symmetry and to find compressed latent representations of the gauge orbits. Our method pays special attention to system-wrapping loops, the so-called Polyakov loops, known to be particularly relevant for computational complexity.

Mots clés

Fichier principal
Vignette du fichier
1904.07637 (952.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02403561 , version 1 (13-12-2023)

Identifiants

Citer

Aurélien Decelle, Victor Martin-Mayor, Beatriz Seoane. Learning a local symmetry with neural networks. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2019, 100 (5), pp.050102. ⟨10.1103/PhysRevE.100.050102⟩. ⟨hal-02403561⟩
52 Consultations
28 Téléchargements

Altmetric

Partager

More