
HAL Id: hal-02403561
https://hal.science/hal-02403561v1

Submitted on 13 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning a local symmetry with neural networks
Aurélien Decelle, Victor Martin-Mayor, Beatriz Seoane

To cite this version:
Aurélien Decelle, Victor Martin-Mayor, Beatriz Seoane. Learning a local symmetry with neural net-
works. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2019, 100 (5), pp.050102.
�10.1103/PhysRevE.100.050102�. �hal-02403561�

https://hal.science/hal-02403561v1
https://hal.archives-ouvertes.fr

Learning a Local Symmetry with Neural-Networks

A. Decelle,1 V. Martin-Mayor,2, 3 and B. Seoane4, 5

1Laboratoire de Recherche en Informatique, TAU - INRIA, CNRS,
Université Paris-Sud et Université Paris-Saclay, Bât. 660, 91190 Gif-sur-Yvette, France

2Departamento de F́ısica Teórica, Universidad Complutense, 28040 Madrid, Spain
3Instituto de Biocomputación y F́ısica de Sistemas Complejos (BIFI), 50018 Zaragoza, Spain

4Sorbonne Université, CNRS, IBPS, UMR 7238,
Laboratoire de Biologie Computationnelle et Quantitative (LCQB), 75005 Paris, France

5Sorbonne Université, Institut des Sciences, du Calcul et des Données (ISCD), 75005 Paris, France
(Dated: June 10, 2019)

We explore the capacity of neural networks to detect a symmetry with complex local and non-local
patterns : the gauge symmetry Z2. This symmetry is present in physical problems from topological
transitions to QCD, and controls the computational hardness of instances of spin-glasses. Here,
we show how to design a neural network, and a dataset, able to learn this symmetry and to find
compressed latent representations of the gauge orbits. Our method pays special attention to system-
wrapping loops, the so-called Polyakov loops, known to be particularly relevant for computational
complexity.

The physics community is now greatly excited by the
possibilities offered by machine learning tools, which
have reached superhuman performance in tasks of sig-
nificant complexity (think, for instance, of Go play-
ing [1]). Indeed, deep (convolutional) neural networks
(DCNN) [2, 3], initially developed for classification and
pattern recognition tasks, have been applied to the identi-
fication of phases of matter [4–10], including glasses [11–
13] and topological states [14], or even to seemingly for-
humans-only tasks, such as finding real-space renormal-
ization group transformations [15] (this is just a some-
what arbitrary selection of, literally, hundreds of appli-
cations to physics).

In this context, local -or gauge- symmetries pose a ma-
jor challenge due to the absence of any local or global or-
der parameter [16], which explains why only preliminary
studies have been conducted [5, 6] (we add to this list).
In fact, thanks to their convolutional layers, DCNN suc-
cessfully handle locally symmetries such as global trans-
lations and rotations: even if moved, DCNN still identify
a previously learned imaged. Therefore, the obvious next
step for Physicists is to consider more general symmetries
for practical purposes.

The specific question we had in mind was whether or
not DCNNs could be used to predict the computational
complexity of a particular instance of an optimization
problem. Spin glasses represent the perfect playground
to test this idea, because finding the ground state of a
simple Hamiltonian such as:

H = −
∑
〈x,y〉

Jxyσxσy , (σx = ±1 for all sites x) , (1)

is an NP-complete problem as soon as the underlying
interaction-graph is non-planar [17, 18] (we shall con-
sider statistically independent couplings Jxy = ±1 with
50% probability). The classification problem is moti-
vated because the computational difficulty of solving dif-
ferent problem instances of Eq. (1) spreads over several

orders of magnitude [19–24], even for such a modest num-
ber of spins as N ∼ 500 [25]. In spite of the question’s
practical relevance, it is still unknown which features of
the coupling matrix Jxy cause this tremendous dispar-
ity of computational cost [21]. DCNNs would be an ob-
vious choice to address the computational-cost classifi-
cation problem, were it not for the gauge symmetry of
Hamiltonian (1) (the εx = ±1 are arbitrary) [26]

Jxy → J̃xy = Jxyεxεy, and σx → σ̃x = εxσx . (2)

All problem instances related by this transformation be-
long to the same gauge orbit. Now, the difficulty for
solving problems from the same gauge orbit is identical.
Hence, our dreamed DCNN should first be able of telling
us with certainty whether or not two problem instances
belong to the same gauge orbit.

Here we present a machine-learning algorithm that
solves the problem of gauge-orbit identification as for-
mulated for spin glasses on the square lattice. The same
algorithm works in the cubic lattice, although we are lim-
ited to systems of smaller linear size due to the mem-
ory and computational costs. Interestingly, all the stan-
dard DCNNs for image classification tried, including the
ResNet [27], completely failed at this task. A careless
posing of the problem could make it wrongly seem triv-
ial. Indeed, instances from the same orbit share the value
of every Wilson loop [28] [the product of couplings along
a closed loop in the lattice, which is gauge-invariant (2)].
Attention immediately falls on the plaquette, the short-
est Wilson loop, see e.g. [5] or Fig. 1–left. However, two
instances sharing the value of every plaquette, but differ-
ing on the so-called Polyakov loops (the shortest Wilson
loops wrapping the system thanks to the periodic bound-
ary conditions), may have vastly different computational
complexity [23]. We improve over Ref. [5] by teaching
our machine to consider both local and non-local Wilson
loops when studying a Z2 gauge symmetry.

Let us highlight two other aspects of this problem that
machine-learning practitioners may find attractive: (i)

ar
X

iv
:1

90
4.

07
63

7v
2

 [
co

nd
-m

at
.d

is
-n

n]
 7

 J
un

 2
01

9

2

a training set of (essentially) arbitrary size can be easily
generated and (ii) an algorithm of polynomial complexity
provides an exact answer to the question of whether two
problem instances belong to the same gauge orbit.

Below, we present two different approaches to solve
this classification problem using DCNN (we employed
the Keras-tensorflow and scikit-learn libraries [29, 30]).
Our first algorithm tells us if two problem instances are
in the same gauge orbit. Our second algorithm is an
autoencoder, a DCNN capable of finding a latent repre-
sentation of a gauge orbit by means of an approximate
gauge-fixing. Although the latent representation can be
used for classification purposes as well, its strength is in
that it clusters problem instances by orbits.

For square lattices, it is natural to feed the coupling
matrix J to the neural network as an image. After con-
sidering several alternatives, our choice was to map our
physical square lattice of size L to a square image of size
2L through the chess transformation illustrated in Fig.
1–left (the chess-transformation generalizes to 3D). Al-
though one pixel out of two is wasted in the resulting
image, we found that the learning process and the inter-
pretation of results were easier with the chess transforma-
tion than with less memory-demanding representations.

Gauge transformations are also illustrated in Fig. 1–
right: the naked eye can hardly tell whether or not
the images corresponding to two coupling-matrices be-
long to the same gauge orbit. This question can be an-
swered by fixing the gauge [31], that is, to use a map

fG : JOk → ĴOk from any instance J from gauge orbit

Ok to a single representative of it, Ĵ . Thus, two instances
are in the same orbit if, and only if, fG(J) = fG(J ′).
We construct our mapping by changing the gauge: the
ε ≡ {εx} in Eq. (2) are chosen in such a way that

J̃x,y = 1 for any horizontal coupling x − y = (±1, 0)

(but for J̃x=(L−1,y),y=(0,y) which is equal to a gauge-

invariant Polyakov loop), as well as J̃x=(0,y),y=(0,y+1) = 1
for 0 ≤ y < L − 2. We include a code performing this
gauge-fixing in the Appendices.

Construction of the data set– We found inconve-
nient for our purposes the approach used in Ref. [5] to
detect the gauge symmetry, namely constructing a (bal-
anced) dataset of pairs of systems, a group with pairs of
instances from the same orbit an the other group with
pairs of randomly-chosen Js. Indeed, this classification
problem is too easy. Most of the time, and this is what
the DCNN will learn, the pair of randomly-chosen Js will
be so different that one could tell that they do not be-
long to the same orbit just by looking at a very reduced
number of plaquettes [32]. A DCNN trained in this way
would completely miss situations in which just a few cou-
pling changed, and it would be blind to extensive trans-
formations that leave every plaquettes unaltered. There-
fore, we need to ensure that in our dataset it will not be
enough for the DCNN to check one (or few) plaquette(s)
[neither fixed plaquettes nor randomly chosen ones].

Specifically, our data-set is composed of Ns pairs

Plaquette Line

Gauge
transform

comb-gauge

FIG. 1. (Left) Chess transformation from the lattice (x, y),
0 ≤ x, y ≤ L− 1, to the image (x1, x2), 0 ≤ x1, x2 ≤ 2L− 1.
Periodic boundary conditions (PBC) are implemented by two
additional rows and columns framing the image (for clarity, we
only show the additional row at x2 = −1 and the additional
column at x1 = 2L). The spin at site x = (x, y) is assigned
to the pixel (x1 = 2x, x2 = 2y) in the image, depicted as
dummy gray cells, which are set to zero when fed to the neural
network. The coupling Jx,y with x = (x, y) and y = (x+1, y)
is in the pixel (x1 = 2x + 1, x2 = 2y) which is set to black if
J = 1 (white if J = −1). Similarly, the pixel (x1 = 2x, x2 =
2y+1) contains the coupling between (x, y) and (x, y+1). The
remaining pixels at the center of each plaquette, i.e. (x1 =
2x+ 1, x2 = 2y + 1), are also fixed as dummy gray pixels. We
indicate with red dots the spin-pixels per site, while the blue
edges are in the J-pixels joining neighboring spin-pixels. We
also show a plaquette and a Polyakov loop [the (say) vertical
line, which is a closed loop thanks to the PBC]. (Right)
A problem instance and one of its gauge transforms. Both
instances lead to the same comb-gauge representation after
gauge-fixing.

{J ,J ′}. The J is random (with uniform distribution).
For half of the Ns pairs, J ′ = J . In the other half, J ′ is
obtained from J by some transformation (see below and
Appendices) that changes only a small fraction of the
couplings Jx,y. For all pairs, J ′ is gauge-transformed
(with random {εx}) before being fed to the DCNN.

In the so-called J ′ = Rq(J) transformation, a fraction
q of randomly-chosen Jxy is flipped.

In the (horizontal) line-transformation J ′ = L(J), J ′

is obtained from J by flipping the couplings joining x =
(0, y) and y = (1, y) for any y (vertical transformation:
x = (x, 0) and y = (x, 1), for all x). Every plaquette
in the lattice take the same value in J and J ′, but the
sign of all their horizontal (vertical) Polyakov loops is
opposite. These line transformations [33], are important
when assessing the computational hardness [23].

In our data set, we choose with 1/3 probability J ′ =
L(J) or, with probability 2/3, J ′ = Rq(J). Line trans-
formations are equally likely to be horizontal or verti-
cal. If the chosen transformation is Rq, in order to force
the scan of every plaquette, we pick q ∼ 1/L2 with
50% probability (we invert randomly 1− 5 couplings),
or q = qR where qR is an uniform random number with
1/(2L2) ≤ qR < 1/4.

Construction of the DCNN– We aim to build a

3

N
filters

Convolutional
layers

C
la

ss
if

ic
at

io
n

N
filters

Gauge - gauge

Fully
connected

Gauge - no gauge

Input Latent
representation

E
n
c
o
d
e
r

D
e
c
o
d
e
r Output

FIG. 2. (Top) The typical architecture used for detecting
the gauge symmetry between pairs of systems. It is impor-
tant to scan both square-like kernels for the plaquettes and
full-line kernels for the Polyakov loops. (Bottom) Schematic
representation of the autoencoder. The encoder is very sim-
ilar to the architecture above, the decoder is typically made
of upsampling layers (increasing the size of the input) and of
convolutional layers.

DCNN that inputs the chess-transformed (see Fig. 1–
left) images representing a pair of coupling matrices
{J ,J ′} and outputs the probability that the two in-
stances belong to the same gauge-orbit.

The Euclidean geometry of our problem suggests to use
convolutional neural networks (CNN) [34–36], which are
well adapted to translational symmetry. Specifically, we
combine in parallel three CNNs that scan simultaneously
the plaquettes, (square in Fig. 2–top), and the Polyakov
loops, scanned through horizontal and vertical 1×L slabs
(rectangles in Fig. 2–top). The first CNN allows us to
find quickly small defects in the gauge symmetry, while
the other two search for non-local defects. These three
CNNs serve as feature detectors before a fully-connected
layer that performs the classification. We illustrate on
Fig. 2–top the general architecture of our DCNN (the
number of layers and the size of the dense layer vary
with L). Additional details, as well as sample programs,
can be found in the Appendices.

Results for the classifying DCNN– For our data
set, we manage to obtain almost 100% of accuracy on
linear sizes of L = 5, 10. In other words, even for our
very exigent data set, the DCNN learns to tell whether
or not two problem instances really are the same problem
in disguise.

However, let Ns(p) be the size of the training set
needed to reach a target accuracy p. We see in Fig. 3

0.5

0.6

0.7

0.8

0.9

1

104 105

A
cc

Ns

L=5 training
L=5 test
L=10 training
L=10 test

FIG. 3. General accuracy of the classification task of the pairs
of samples in our dataset (both for the training and the test
set), as computed for lattices of sizes L = 5 and 10. Data
and errors are computed from averages over 5 independent
learning runs and datasets.

that Ns(p) is much smaller in the training set that in the
test set (problem instances in the test set are new to the
DCNN). Furthermore, Ns(p) grows significantly with L.

We have found that the difficulty of the problem
is largely caused by the Polyakov-loop flipping line-
transformations. More details on this analysis can be
found in the Appendices.

Learning to fix the gauge– Gauge-fixing may be
regarded as an algorithm to reduce the dimensionality of
the coupling matrix J with no information loss. Hence, it
is natural to ask ourselves if a particular type of DCNN,
an auto-encoder (AE) [37, 38], may learn to fix the gauge.
Indeed, an AE takes an input vector x and maps it to a
latent representation fE(x) (typically, fE(x) is of smaller
dimensionality than x). A decoder generates a recon-
structed vector from the latent representation afterwards,
x′ = fD(fE(x)). The weights of the encoder fE and the
decoder fD functions are chosen to minimize a loss func-
tion (e.g. the L2 distance between x and x′).

At variance with the traditional approach, we will not
ask our AE to reconstruct the input but to fix the gauge,
that is to reconstruct a unique Ĵ (the comb gauge de-
scribed above) for all the instances in a given gauge orbit.

Our encoder will essentially share the architecture of
our classifying DCNN (namely, the three CNNs of Fig. 2
without the classification layer). The decoder takes the
encoder’s output, and pipes it to an upsampling layer,
followed by our three feature detector CNNs and by a
last CNN from which we take the output (more details
can be found in the Appendices). The output from a
given coupling matrix J is an attempted reconstruction
of its comb-gauge representation (Fig. 1–right).

The AE can be used as a classifier simply by comparing
the “comb-gauge” obtained from two problem instances.
As shown in Table I, only pairs of instances from the same
orbit have a similar “comb-gauge” (the performance does
not deteriorate when the system size increases).

We can gain some understanding by visualizing the la-
tent representation, see Fig. 4. Indeed the AE’s latent
representation clusters problem instances belonging to
the same orbit. Furthermore, not only the representation

4

FIG. 4. Visualizing the 50-dimensional autoencoder’s latent
representation. (Left) scatter-plot comparison for pairs of
problem instances {J ,J ′}. We display 50 points for each pair

{J ,J ′}, namely (xJ
i , x

J′
i) where xJ

i and xJ′
i are the i-th co-

ordinates of both latent representations. We consider pairs
{J ,J ′}, J ′ is randomly gauge-transformed previously to the
AE analysis, with: J ′ = J (blue squares), J ′ = Rq=0.5(J)
(orange crosses), J ′ = Rq=0.1(J) (red circles) and J ′ = L(J)
(green triangles). The plot contains data from 50 pairs of
each type. (Right) two-dimensional t-sne representation [39]
of the latent representation as obtained for 20000 instances
randomly extracted from 200 (unrelated) gauge orbits. In-
stances from the same orbit are represented with the same
color (some orbits share color, due to our limited palette).
Instances from the same orbit cluster. The black points at
the center of each cluster are the t-sne coordinates for the
latent representation obtained for the gauge-comb represen-
tative of each of the 200 orbits.

for two problems from the same orbit is nearly identical:
changing a few links or performing a line transformation
results into a significantly different latent representation.

Conclusions– We have demonstrated a successful ma-
chine learning approach to detect whether or not two
spin-glass instances are mutually related by a gauge
transformation. This problem is particularly challeng-
ing for neural networks due to the absence of an order
parameter. In fact, we have checked the failure of the
standard DCNNs for image classification, such as pre-
trained DCNNs, no matter the size of the training set.
Our results underline the necessity of carefully choosing
the learning dataset, if we want the DCNN to learn the
full symmetry (which includes global Wilson loops). We

L Ns NO pJ,J pJ,J
′

pJ,Rq=0.1(J) pJ,L(J)

5 100k 1k ∼3% ∼52% ∼30% ∼21%

6 400k 1k ∼3.5% ∼54% ∼27% ∼17.5%

8 800k 4k ∼3.1% ∼52% ∼30% ∼10.5%

TABLE I. The autoencoder as a classifier. Fraction of
not-trivially-one couplings that are different in the “comb-
gauge” output of the AE as applied to two instances {J ,J ′}
from: J = J ′ [pJ,J)], J ′ = Rq=0.5(J ′) [pJ,J

′
], J ′ = Rq=0.1(J)

[pJ,Rq(J)] or J ′ = L(J) [pJ,L(J)]. J ′ is gauge-transformed
(with random ε) previously to the AE analysis. The AE was
trained with NS instances, randomly extracted from N0 or-
bits. The results were computed from 1000 pairs {J ,J ′}, with
J extracted from orbits not in the training set.

show that our DCNNs are able to learn the gauge sym-
metry and even to find a latent representation that can
be used to fix the gauge. This success comes at the cost
of very large training datasets, whose size need to grow
with the system size. Now that we have in our hands
DCNNs able to identify gauge symmetries, we will ap-
proach our original question, namely what makes certain
problem instances far more computationally costly than
others?

ACKNOWLEDGMENTS

We thank L. A. Fernández for encouraging discus-
sions and Marco Baity-Jesi for his careful reading of
the manuscript. This work was partially supported
by Ministerio de Economı́a, Industria y Competitivi-
dad (MINECO) (Spain) and by EU’s FEDER program
through Grant No. FIS2015-65078-C2 and by the LabEx
CALSIMLAB (public grant ANR-11-LABX-0037-01 con-
stituting a part of the “Investissements d’Avenir” pro-
gram - reference : ANR-11-IDEX-0004-02).

5

Appendix A: Sample generation and basic transformations

The first step to build our dataset is to create independent realizations of the disorder J (what we call sample).
The generation codes for all the functions mentioned below can be downloaded from file src/tools.py in Ref. [40].

• Generation of a random sample J : A random sample J is generated by assigning a random sign (±1) to
each of the 2LxLy couplings in the two dimensional lattice system. The code to create a sample can be found
in function createSample 2D.

In addition, we consider 4 possible transformations of these samples (all of them are illustrated in the first row of
Fig. 5):

• Gauge fixing G(J): we map our sample J to its comb-gauge representative. To do so, we use the gauge
transformation explained in Eq. (2) of the main-text. Specifically, we fix to one (black in our color code) all
the couplings in the horizontal direction, as well as the couplings in the first vertical column. However, the last
coupling along each direction cannot be fixed due to the boundary conditions. The code to fix the gauge can
be found in function gauge fixing Comb.

• Random orbit O(J): We use Eq. (2) of the main-text to generate a random representative of the gauge-orbit
to which J belongs. Specifically, we generate LxLy random signs εx and set J ′xy = Jxyεxεy. The code that
performs the random-orbit transformation can be found in function getOrbit 2D.

• Random flip-coupling - Rq(J): We invert the sign of a fraction q of the 2LxLy couplings in the system. The
corresponding code can be found in function getRandom 2D.

• Line transformation - L(J): We invert the sign of an horizontal or vertical line of non-connected couplings
(see Fig. 5). The code to generate this transformation is in function getLine 2D.

One can consider more general transformations, like flipping a random connected line (not necessary straight) or a
random loop of couplings in the system (codes can be found in getRandomLine and getLoop functions). All them
can be decomposed as a combination of the previous 4 transformations. We did not find any particular advantage to
include them in the dataset for the learning, but we checked that our trained machine classifies them correctly.

In order to distinguish between transformations that conserve the gauge orbit [here, G(J) and O(J)], from those
that modify the orbit [namely, Rq(J) and L(J)], one needs to compute the Wilson loops, as shown in Fig. 5). In
particular, we note that the L(J) transformation is particularly difficult to detect since this transformation conserves
all the plaquettes, and the broken loops can be only detected through the Polyakov loops.

Appendix B: Additional details on the classifier DCNN gauge/not gauge

The classifier aims to classify whether or not pairs of samples {J , J ′} belong to the same gauge orbit. We begin
with the construction of our dataset.

1. Dataset

We consider Ns = 2M pairs {J , J ′}. In all cases, the original sample {J} is chosen randomly (with uniform
probability). We refer to Section A for the definition of the transformations.

• Class 1: M pairs are taken from the same gauge orbit, J ′ = O(J).

• Class 2: M pairs of samples {J , J ′} belonging to two different gauge orbits. This dataset is constructed as
follows:

– Quite different orbits G1: M/3 pairs with J ′ = O (Rq(J))) with q ∈ [1/(2LxLy), 0.25]. This class
ranges covers from samples with just one link flipped, to samples J ′ where (almost) every plaquette has a
chance to flip (q = 0.25).

– Extremely similar orbits G2: M/3 pairs with J ′ = O (Rq(J))) and q ∈ [1/(2LxLy), 5/(2LxLy)], so
that only 1 to 5 links were inverted. Our motivation for introducing this group was forcing the machine to
check every plaquette in the system.

6

J O(J) R
q=0.05

(J) L(J)
T

ra
ns

fo
rm

at
io

ns
W

il
so

n
lo

op
s

G(J)

FIG. 5. Top row: a sample J and the possible transformations used to build our dataset. Second row: for each of the
samples depicted in the top-row, we show the sign of all the plaquettes (i.e. product of the Jx,y along the plaquette) in the
system and the sign of all the Polyakov loops (i.e. product of the Jx,y along the horizontal and vertical lines; Polyakov loops are
represented outside of the square). We highlight in red the couplings (top row) or the Wilson lops (bottom row) that change,
as compared with the leftmost image. For a given sample J , a random gauge-transform changes approximately 50% of the
couplings but no plaquette or Polyakov loop. On the other hand, changing just a few couplings (see Rq=0.05 where 5% of the
couplings were flipped), has strong effects both in the plaquettes and the Polyakov loops. The last column shows that, flipping
a full vertical line of couplings does not break any plaquette: this transformation can only be detected in the Polyakov loops.

LayerName Input LayerType Activation Nb of units Kernel

Simple DCNN

CSq1 J conv ReLu 64 3× 3

CLh J conv ReLu 64 Lx × 1

CLv J conv ReLu 64 1× Ly

Dense1 [CSq1,CL1,CC1] FF ReLu 64

Dense2 Dense1 FF sigmoid 1

TABLE II. Architecture used for the simple classifier for gauge-not gauge pairs; conv stands for convolutional and FF for
feed-forward.

– Broken lines G3: M/3 pairs with J ′ = O (L(J))). The line is horizontal or vertical with 50% of the
probability.

An example of the generation of this dataset can be found in the notebook DCNN simple.ipynb in Ref. [40].

2. Network

The structure of the neural network is illustrated in Fig. 2. We include the technical details of the network used
in Table II. We use the same architecture for all the L and Ns discussed in the main-text. We include an example of
the program used in DCNN simple.ipynb in Ref. [40].

In order to avoid overfitting, and also to avoid getting stuck in not optimal minima during the learning process, we
found useful to alternate between two optimizers, in particular, between stochastic gradient descent and Adam [41].
An example of the strategy followed can be found in Ref. [40].

7

3. Tests on the different groups of the dataset

Fig. 3 shows the overall accuracy of DCNN classifier, making no distiction about the G1, G2 and G3 groups
in Section B 1. We provide this information, as obtained from pairs of samples in the test dataset, in Fig. 6. In
particular, a comparison of Fig. 6–right (which corresponds to the line-transformed samples in group G3) with Fig.
3 in the main-text will convince the reader that the global accuracy of the machine is dominated by this group.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

100 101 102

0.4

0.5

0.6

0.7

0.8

0.9

1.0

104 105

A
cc
.(
te
st
)

nl

Ns=16000
32000
64000

128000
256000
512000

A
cc
.(
te
st
)

Ns

L=5
10

FIG. 6. Accuracy performance, as extracted from the test dataset. The accuracy measures the probability that the machine
correctly classifies as not from same-orbit a pair {J , J ′} with J ′ = O (Rq(J)) (left panel) or J ′ = O (L(J)) (right panel). (Left)
Accuracy of the classification for lattices L = 10 (hence containing 200 couplings) as a function of the number of couplings
nl inverted by the Rq transformation. Data joined with lines were obtained with machines trained with the same number of
pairs, Ns. We see that the size of the training set needed to reach any accuracy threshold (0.95, say) rises dramatically upon
decreasing nl. (Right) The figure shows the accuracy, as computed from pairs in the test dataset with J ′ = O (L(J)), versus
the size of the training set Ns. We show data for L = 5 and 10. Data and errors are computed from averages over 5 independent
learning runs and datasets.

Appendix C: Additional details on the autoencoder DCNN

The autoencoder aims to find a latent representation of the gauge-orbit by relating any sample to an unique
representative of its gauge-orbit (namely the comb-gauge representative). With this purpose in mind, we built our
dataset as explained in the next paragraph.

1. Dataset

We will consider separately Ng distinct gauge orbits, identified by one orbit representative. We construct the orbits
in the following way:

• Ng/2 are generated as random samples J (the probability that two random samples belong to the same orbit is
negligible). We call this set Rg.

• Ng/4 orbits were constructed by randomly selecting one J from set Rg, and then setting as orbit-representative
Rq(J), with q an uniform random number q ∈ [1/(2LxLy), 0.25].

• Ng/4 orbits were constructed by randomly selecting one J from set Rg, and then setting as orbit-representative
L(J).

We extract Ns distinct samples from each orbit by using the O transformation, recall Section A. An example of the
generation of this dataset can be found in the notebook AutoEncoder.ipynb in Ref. [40].

8

LayerName Input LayerType Activation Nb of units Kernel

AutoEncoder

CSq1 J conv ReLu 32 3× 3

CL1 J conv ReLu 16 Lx × 1

CC1 J conv ReLu 16 1× Ly

LatentRepr [CSq1,CL1,CC1] FF ReLu 50 (= 5.5.2)

ConvDec1 LatentRepr conv ReLu 64 3× 3

UpS ConvDec1 UpS 2× 2

CSq2 UpS conv ReLu 32 3× 3

CH2 UpS conv ReLu 32 Lx × 1

CV2 UpS conv ReLu 32 1× Ly

ConvDec [CSq2,CH2,CV2] conv Linear 1 5× 5

TABLE III. A typical architecture used for the autoencoder, FF stands for feed-forward and UpS for upsampling, conv for
convolutional, ReLu for Rectified Linear unit.

2. Network

The encoder is typically built upon the model from the main-text, see Fig. 2. The number of filters used for
the convolutional layers do not need to be very high. For instance, 16 filters are enough for a small lattice size (e.g.
L = 5). The results of the three parallel CNNs are concatenated and then connected to a dense network of size
L×L×Nlatent, where Nlatent is adjusted depending on the system size (we remind here that the input of the encoder
is of size 2L×2L because of the chess transformation). The decoder is then made of, first, a CNN and an upsampling
layer in order to go back to the correct lattice size. Then again, our three parallel CNNs are stacked (square, vertical
and horizontal kernel), taking as input the output of the upsampling layer. Their outputs are concatenated before a
last CNN with a larger kernel (typically half of the system size). All the parameters here can, of course, be adjusted
to obtain the best result possible for a given L. However, in front of the wide variety of possible working parameters,
we stuck to the above ones because changing parameters did not result into a great improvement. In table III we
show an example of the architecture used for the L = 5 case. An example of this neural network can be found in the
notebook AutoEncoder.ipynb in Ref. [40].

3. Learning

The learning procedure was performed by using a linear activation for the last layer, together with a Minimum
Square Error (MSE) loss function on all the nodes of the system. The MSE is computed between output of the
autoencoder for the input J , and its comb-gauge representative G(J). In principle, it would be possible to use as loss
function a binary cross entropy, together with a tanh for the activation function, taking advange of the binary nature
of the couplings. However, we did not find any improvement when using these parameters w.r.t. the others. We note
as well that, because we use the chess transformation, the loss is defined on all the pixels, including the dummy ones.
Neglecting dummy pixels, however, did not result in any improvement.

4. Tests

It is known that DNNs are prone to overfit the dataset. Hence, in order to be sure that the autoencoder did learn
a general property, we perform several checks on a test set (i.e. a set of orbits not used to train the network) on our
well trained machine. In general, we compare the output of the autoencoder (the reconstructed comb gauges) for two
distinct input samples {J ,J ′}. The comparison is done by counting the number of different couplings. We consider
four diverse situations:

1. The two samples are from the same gauge orbit, i.e. J ′ = O(J).

2. Two samples separated by a line and a gauge transformation, i.e. J ′ = O(L(J)).

9

3. Two samples separated by a random-link and a gauge transformation, i.e. J ′ = O(Rq(J)).

4. Two random samples.

We show in Table IV the results of these comparisons averaged over 1000 pairs of each situation. Outputs from
samples in the same orbit are essentially equal (only a ∼ 3% of the couplings are different). If the gauge-fixing were
perfect, they should be strictly equal. However, a much larger difference is observed in the outputs of the rest of the
cases. Notwithstanding, we would like to stress that we needed a large number of samples to be able to distinguish
case no.1 from no.2. With a fewer numbers, outputs of test no.2 were essentially equal.

Same Orbit Diff. Orbit (Line) Diff. Orbit (q = 0.1) Random

∼ 3 % ∼ 21% ∼ 30% ∼ 50%

TABLE IV. Results for the autoencoder for the size L = 5. We observe a clear gap when samples came from the same orbit
gauge with respect to even a small alteration (such as flipping a small fraction of coupling or a line).

We add an additional test on the trained the network. We want to understand if the network manages to learn
an (almost) unique representation for a given orbit. To do that, we use the t − sne representation to project in two
dimensions the high-dimensional latent space. If the network is able to cluster well the samples in distinct orbits (that
is, if the network learned the gauge symmetry), the t−sne transformation of different orbits should be well-separated.
On Fig. 7 we illustrate the clustering generated by our trained autoencoder (for L = 5) using as input the following
group of test sets of Ns = 200000 samples each:

1. We generate Ng = 200 random orbits J , and take 100 gauge transformations from each J ′ = O(J).

2. We generate Ng = 100 random orbits J , and another 100 orbits constructed applying the Rq=0.1(J) transfor-
mation to the 100 random ones. Again, we take 100 gauge transformations from each orbit.

3. We generate Ng = 100 random orbits J , and another 100 orbits constructed by applying the L(J) transformation
on the 100 random ones. Again, we take 100 gauge transformations from each orbit.

We show the result of the t − sne two-dimensional representations of these three groups on Fig. 7. We clearly see
very good clustering properties for all the groups, though the third case remains sometimes difficult.

5. Classifier based on the latent representations

Not very surprisingly, one can also train a neural-network to tell us whether two latent representations (generated
by our trained autoencoder using two different samples) belong to the same gauge orbit or not, thus doing the job
of our previous classifier (discussed in Section B). To do so, we concatenate the two latent representations and feed
them to various CNNs and a classification layer. Various architectures worked there, we put one as an example in
the notebook AutoEncoder.ipynb in Ref. [40], whose details are reproduced on Table V. When the autoencoder is
well-trained, the classifier quickly reaches an accuracy above 98%.

10

LayerName Input LayerType Activation Nb of units Kernel

Enc-Classif

Concat [LatentRepr(J1),LatentRepr(J2)]

Conv1 Concat conv ReLu 16 32

MaxP1 Conv1 pooling MaxPooling 2

Conv2 MaxP1 conv ReLu 32 16

MaxP1 Conv2 pooling MaxPooling 2

D1 MaxP1 FF ReLu 32

Out D1 FF Softmax 2

TABLE V. Architecture used for the classifier of latent representations (created by the autoencoder). FF stands for feed-forward
and UpS for upsampling.

FIG. 7. On the left, the t-sne representation for Ns = 20000, each one being a gauge transform from 200 randomly chosen orbits.
On the middle, 100 orbits are chosen randomly whereas 100 others orbits are constructed by operating a Rq transformation
(with q = 0.1) from the first hundred ones. On the right, the same but applying a line transformation L(J). The last two
cases are much more difficult. In the first case, the clusters are all well-separated, yet, in the last case, a very few mistakes still
occur.

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hass-
abis, Nature 524, 484 (2016).

[2] Y. LeCun, Y. Bengio, and G. Hinton, Nature 521, 436
(2015).

[3] J. Schmidhuber, Neural Networks 61, 85 (2015).
[4] G. Torlai and R. G. Melko, Phys. Rev. B 94, 165134

(2016).
[5] J. Carrasquilla and R. G. Melko, Nature Physics 13, 431

(2017).
[6] S. J. Wetzel and M. Scherzer, Physical Review B 96,

184410 (2017).
[7] E. van Nieuwenburg, Y.-H. Liu, and S. Huber, Nature

Physics 13, 435 (2017).
[8] L. Wang, Phys. Rev. B 94, 195105 (2016).
[9] T. Ohtsuki and T. Ohtsuki, Journal of the

Physical Society of Japan 86, 044708 (2017),
https://doi.org/10.7566/JPSJ.86.044708.

[10] M. J. S. Beach, A. Golubeva, and R. G. Melko, Phys.
Rev. B 97, 045207 (2018).

[11] S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, and
E. Kaxiras, Nature Physics 12, 469 (2016).

[12] S. S. Schoenholz, E. D. Cubuk, E. Kaxi-
ras, and A. J. Liu, Proceedings of the Na-
tional Academy of Sciences 114, 263 (2017),
https://www.pnas.org/content/114/2/263.full.pdf.

[13] E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, B. D. Mal-
one, J. Rottler, D. J. Durian, E. Kaxiras, and A. J. Liu,
Phys. Rev. Lett. 114, 108001 (2015).

[14] D.-L. Deng, X. Li, and S. Das Sarma, Phys. Rev. B 96,
195145 (2017).

[15] M. Koch-Janusz and Z. Ringel, Nature Physics 14, 578
(2018).

[16] S. Elitzur, Phys. Rev. D 12, 3978 (1975).
[17] F. Barahona, Journal of Physics A: Mathematical and

General 15, 3241 (1982).
[18] S. Istrail, in Proceedings of the thirty-second annual ACM

symposium on Theory of computing - STOC ’00 (ACM
Press, New York, New York, USA, 2003) pp. 87–96.

[19] R. Alvarez Baños, A. Cruz, L. A. Fernandez, J. M. Gil-
Narvion, A. Gordillo-Guerrero, M. Guidetti, A. Maio-
rano, F. Mantovani, E. Marinari, V. Mart́ın-Mayor,
J. Monforte-Garcia, A. Muñoz Sudupe, D. Navarro,
G. Parisi, S. Perez-Gaviro, J. J. Ruiz-Lorenzo, S. F. Schi-
fano, B. Seoane, A. Tarancon, R. Tripiccione, and D. Yl-
lanes (Janus Collaboration), J. Stat. Mech. 2010, P06026
(2010), arXiv:1003.2569.

http://dx.doi.org/ 10.1038/nature16961
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1103/PhysRevB.94.165134
http://dx.doi.org/10.1103/PhysRevB.94.165134
http://dx.doi.org/10.1038/nphys4037
http://dx.doi.org/10.1038/nphys4037
http://dx.doi.org/10.1103/PhysRevB.94.195105
http://dx.doi.org/10.7566/JPSJ.86.044708
http://dx.doi.org/10.7566/JPSJ.86.044708
http://arxiv.org/abs/https://doi.org/10.7566/JPSJ.86.044708
http://dx.doi.org/10.1103/PhysRevB.97.045207
http://dx.doi.org/10.1103/PhysRevB.97.045207
http://dx.doi.org/10.1038/nphys3644
http://dx.doi.org/10.1073/pnas.1610204114
http://dx.doi.org/10.1073/pnas.1610204114
http://arxiv.org/abs/https://www.pnas.org/content/114/2/263.full.pdf
http://dx.doi.org/ 10.1103/PhysRevLett.114.108001
http://dx.doi.org/10.1103/PhysRevB.96.195145
http://dx.doi.org/10.1103/PhysRevB.96.195145
http://dx.doi.org/10.1038/s41567-018-0081-4
http://dx.doi.org/10.1038/s41567-018-0081-4
http://dx.doi.org/10.1103/PhysRevD.12.3978
http://dx.doi.org/10.1088/0305-4470/15/10/028
http://dx.doi.org/10.1088/0305-4470/15/10/028
http://dx.doi.org/10.1145/335305.335316
http://dx.doi.org/10.1145/335305.335316
http://dx.doi.org/ 10.1088/1742-5468/2010/06/P06026
http://dx.doi.org/ 10.1088/1742-5468/2010/06/P06026
http://arxiv.org/abs/arXiv:1003.2569

11

[20] L. A. Fernández, V. Mart́ın-Mayor, G. Parisi, and
B. Seoane, EPL (Europhysics Letters) 103, 67003 (2013).

[21] A. Billoire, J. Stat. Mech. 2014, P04016 (2014),
arXiv:1401.4341.

[22] V. Mart́ın-Mayor and I. Hen, Scientific Reports 5, 15324
(2015), arXiv:1502.02494.

[23] L. Fernandez, E. Marinari, V. Martin-Mayor, G. Parisi,
and D. Yllanes, Journal of Statistical Mechanics: Theory
and Experiment 2016, 123301 (2016).

[24] A. Billoire, L. A. Fernandez, A. Maiorano, E. Marinari,
V. Martin-Mayor, J. Moreno-Gordo, G. Parisi, F. Ricci-
Tersenghi, and J. J. Ruiz-Lorenzo, Journal of Statis-
tical Mechanics: Theory and Experiment 2018, 033302
(2018).

[25] Actually, Refs. [19–21, 23, 24] attempted to find equi-
librium configurations using a Parallel Tempering algo-
rithm down to some minimal temperature Tmin. In order
to compute the Ground State, one needs to push Tmin to
zero, as done for instance in Ref. [22]. Unfortunately, the
lower Tmin the larger the spread over the samples of the
computational hardness, see e.g. Refs. [19, 23, 24].

[26] G. Toulouse, Communications on Physics 2, 115 (1977).
[27] K. He, X. Zhang, S. Ren, and J. Sun, in Proceedings

of the IEEE conference on computer vision and pattern
recognition (2016) pp. 770–778.

[28] I. Montvay and G. Münster, Quantum Fields on a Lattice
(Cambridge University Press, Cambridge, 1997).

[29] F. Chollet et al., “Keras,” https://keras.io (2015).
[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay, Jour-
nal of Machine Learning Research 12, 2825 (2011).

[31] In this work we deal with an Abelian gauge group which
makes fixing the gauge simple (difficulties arise for non-
Abelian gauge groups, see e.g. Ref. [42]).

[32] For two randomly-chosen Js, the probability of coinci-
dence in k fixed, non-overlapping plaquettes falls as 1/2k.

[33] Any other transformation can be expressed as a combi-
nation of broken plaquette(s) and/or line(s).

[34] K. Fukushima, Biological cybernetics 36, 193 (1980).
[35] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel, Neural compu-
tation 1, 541 (1989).

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, in Ad-
vances in neural information processing systems (2012)
pp. 1097–1105.

[37] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
Learning internal representations by error propagation,
Tech. Rep. (California Univ San Diego La Jolla Inst for
Cognitive Science, 1985).

[38] D. H. Ballard, in AAAI (1987) pp. 279–284.
[39] L. v. d. Maaten and G. Hinton, Journal of machine learn-

ing research 9, 2579 (2008).
[40] A. Decelle and B. Seoane,

https://github.com/AurelienDecelle/SpinLearning.
(2019).

[41] D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980
(2014).

[42] E. Marinari, C. Parrinello, and R. Ricci, Nuclear Physics
B 362, 487 (1991).

http://stacks.iop.org/0295-5075/103/i=6/a=67003
http://dx.doi.org/10.1088/1742-5468/2014/04/P04016
http://arxiv.org/abs/arXiv:1401.4341
http://dx.doi.org/10.1038/srep15324
http://dx.doi.org/10.1038/srep15324
http://arxiv.org/abs/arXiv:1502.02494
http://dx.doi.org/ 10.1088/1742-5468/aaa387
http://dx.doi.org/ 10.1088/1742-5468/aaa387
http://dx.doi.org/ 10.1088/1742-5468/aaa387
https://keras.io
http://dx.doi.org/https://doi.org/10.1016/0550-3213(91)90570-N
http://dx.doi.org/https://doi.org/10.1016/0550-3213(91)90570-N

	Learning a Local Symmetry with Neural-Networks
	Abstract
	 Acknowledgments
	A Sample generation and basic transformations
	B Additional details on the classifier DCNN gauge/not gauge
	1 Dataset
	2 Network
	3 Tests on the different groups of the dataset

	C Additional details on the autoencoder DCNN
	1 Dataset
	2 Network
	3 Learning
	4 Tests
	5 Classifier based on the latent representations

	 References

