Orientations and bijections for toroidal maps with prescribed face-degrees and essential girth - Archive ouverte HAL
Article Dans Une Revue Journal of Combinatorial Theory, Series A Année : 2020

Orientations and bijections for toroidal maps with prescribed face-degrees and essential girth

Résumé

We present unified bijections for maps on the torus with control on the face-degrees and essential girth (girth of the periodic planar representation). A first step is to show that for d ≥ 3 every toroidal d-angulation of essential girth d can be endowed with a certain 'canonical' orientation (formulated as a weight-assignment on the half-edges). Using an adaptation of a construction by Bernardi and Chapuy, we can then derive a bijection between face-rooted toroidal d-angulations of essential girth d (with the condition that, apart from the root-face contour, no other closed walk of length d encloses the root-face) and a family of decorated unicellular maps. The orientations and bijections can then be generalized, for any d ≥ 1, to toroidal face-rooted maps of essential girth d with a root-face of degree d (and with the same root-face contour condition as for d-angulations), and they take a simpler form in the bipartite case, as a parity specialization. On the enumerative side we obtain explicit algebraic expressions for the generating functions of rooted essentially simple trian-gulations and bipartite quadrangulations on the torus. Our bijective constructions can be considered as toroidal counterparts of those obtained by Bernardi and the first author in the planar case, and they also build on ideas introduced by Despré, Gonçalves and the second author for essentially simple triangulations, of imposing a balancedness condition on the orientations in genus 1.
Fichier principal
Vignette du fichier
MapsTorusGirth.pdf (1.39 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02403126 , version 1 (10-12-2019)

Identifiants

Citer

Eric Fusy, Benjamin Lévêque. Orientations and bijections for toroidal maps with prescribed face-degrees and essential girth. Journal of Combinatorial Theory, Series A, 2020, 175, pp.105270. ⟨10.1016/j.jcta.2020.105270⟩. ⟨hal-02403126⟩
64 Consultations
67 Téléchargements

Altmetric

Partager

More