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Orientations and bijections for toroidal maps with

prescribed face-degrees and essential girth∗

Éric Fusy†, Benjamin Lévêque‡

Abstract

We present unified bijections for maps on the torus with control on the face-
degrees and essential girth (girth of the periodic planar representation). A first step
is to show that for d ≥ 3 every toroidal d-angulation of essential girth d can be en-
dowed with a certain ‘canonical’ orientation (formulated as a weight-assignment on
the half-edges). Using an adaptation of a construction by Bernardi and Chapuy, we
can then derive a bijection between face-rooted toroidal d-angulations of essential
girth d (with the condition that, apart from the root-face contour, no other closed
walk of length d encloses the root-face) and a family of decorated unicellular maps.
The orientations and bijections can then be generalized, for any d ≥ 1, to toroidal
face-rooted maps of essential girth d with a root-face of degree d (and with the same
root-face contour condition as for d-angulations), and they take a simpler form in the
bipartite case, as a parity specialization. On the enumerative side we obtain explicit
algebraic expressions for the generating functions of rooted essentially simple trian-
gulations and bipartite quadrangulations on the torus. Our bijective constructions
can be considered as toroidal counterparts of those obtained by Bernardi and the
first author in the planar case, and they also build on ideas introduced by Despré,
Gonçalves and the second author for essentially simple triangulations, of imposing
a balancedness condition on the orientations in genus 1.

1 Introduction

The enumerative study of (rooted) maps has been a very active research topic since
Tutte’s seminal results on the enumeration of planar maps [37, 38], later extended to
higher genus by Bender and Canfield [4]. Tutte’s approach is based on so-called loop-
equations for the associated generating functions with a catalytic variable for the root-
face degree. Powerful methods have been developed to compute the solution of such
equations (originally solved by guessing/checking), both in the planar case [28, 13] and
in higher genus [22].
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The striking simplicity of counting formulas discovered by Tutte (e.g., the number of
rooted planar simple triangulations with n + 3 vertices is equal to 2

n(n+1)

(
4n+1
n−1

)
) asked

for bijective explanations. The first such constructions, bijections from maps to certain
decorated trees, were introduced by Cori and Vauquelin [20] and Arquès [3] and later
further developed by Schaeffer [35], who also introduced with Marcus the first bijection
(for bipartite quadrangulations) that extends to higher genus [35, Chap.6]. The bijection
has been adapted in [19] to a form better suited for computing the generating functions,
and has been recently extended to non-orientable surfaces [17, 11].

In the planar case many natural families of maps considered in the literature are
given by restrictions on the face-degrees and on the girth (length of a shortest cycle).
For instance loopless triangulations are (planar) maps with all face-degrees equal to 3 and
girth at least 2. The bijections developed over the years for such families (in particular,
simple quadrangulations [35, Sect.2.3.3], loopless triangulations [35, Sect.2.3.4], simple
triangulations [32], irreducible quadrangulations [25] and triangulations [24]) shared the
feature that each map of the considered family can be endowed with a ‘canonical’ orien-
tation that is usually specified by outdegree prescriptions (so-called α-orientations [23]),
which is then exploited to associate to the map a decorated tree structure. For instance
simple triangulations with a distinguished outer face can be endowed with an orientation
where all outer vertices have outdegree 1 and all inner vertices have outdegree 3, such
orientations being closely related to Schnyder woods [36]. In recent works [7, 2] the
methodology has been given a unified formalism, where each such bijective construction
can be obtained as a specialization of a ‘meta’-bijection between certain oriented maps
and certain decorated trees, which itself is an adaptation of a bijection developed in [5]
(and extended in [6] to higher genus) to count tree-rooted planar maps. A success of
this strategy has been to solve for the first time [8] the problem of counting planar maps
with control on the face-degrees and on the girth (this has been subsequently recovered
in [15] and extended to the so-called irreducible setting), and to adapt the bijections to
hypermaps [9] and maps with boundaries [10].

Up to now this general strategy based on canonical orientations has been mostly
applied in the planar case, while the only bijections known to extend to any genus g ≥ 0
deal with maps (or bipartite maps) with control on the face-degrees but not on the
girth: bijections to labeled mobiles [14, 19, 16] or to blossoming trees and unicellular
maps [34, 29]. It has however recently appeared [21] that in the case of genus 1, a bijection
based on canonical orientations can be designed for essentially simple triangulations1.
The canonical orientations used in this construction are 3-orientations (all vertices have
outdegree 3) with an additional ‘balancedness’ property (every non-contractible cycle has
the same number of outgoing edges to the left side as to the right side), see Figure 1(a)
for examples. The existence of such orientations builds on an earlier work on toroidal
Schnyder woods [27] (see also [30]), and the bijection thus obtained can be considered as
a toroidal counterpart of the one in [32]. This strategy has also been recently applied to

1A map M on the torus is said to have ‘essentially’ property P if the periodic planar representation
M∞ of M has property P ; thus M is essentially simple means that M∞ is simple. Similarly the essential
girth of M is defined as the girth of M∞.
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Figure 1: (a) Examples of 3-orientations for a toroidal essentially simple triangulation
(the first example is not balanced as the bold cycle has outdegree 3 on the upper side
and outdegree 1 on the lower side, the second example is balanced). (b) Examples of
5
3 -orientations for a toroidal pentagulation of essential girth 5 (the first example is not
balanced as the bold cycle has total weight 4 on the upper side and total weight 2 on
the lower side, the second example is balanced)

essentially 4-connected triangulations [12], where the obtained bijection (based on certain
‘balanced’ transversal structures) is now a toroidal counterpart of the one in [24].

Main results and outline of the article.

In this article, we extend the strategy of [21] to toroidal maps of prescribed essential
girth and face-degrees, thereby obtaining bijections with certain decorated unicellular
maps. Our bijections can be seen as toroidal counterparts of those given in [7] for planar
toroidal d-angulations of essential girth d ≥ 3, and in [8] for planar maps with prescribed
girth and face-degrees.

Our first results deal with toroidal d-angulations of essential girth d, for d ≥ 3. In the
planar case it is known [7] that d-angulations of girth d, with a marked face considered as
the outer face, can be endowed with certain ‘weighted biorientations’ (given by assigning
a weight in N to every half-edge) called d

d−2 -orientations, such that for every inner edge
(resp. inner vertex) the sum of the weights of the incident half-edges is d − 2 (resp.
d). Moreover, each d-angulation of girth d admits a ‘canonical’ such orientation, called
the minimal one. The meta-bijection given in [7] can then be applied to the minimal
d
d−2 -orientations, giving a correspondence with well-characterized decorated trees.

We will prove that a parallel strategy can be applied in genus 1. Precisely, we show
in Section 3 that every toroidal d-angulation of essential girth d ≥ 3 admits a so-called
balanced d

d−2 -orientation, where again every half-edge is assigned a weight-value in N
such that the total weight of each edge (resp. vertex) is d − 2 (resp. d) and ‘balanced’
means that for every non-contractible cycle C, the total weight of half-edges incident to
each side of C is the same, see Figure 1 for examples (d = 3 on the left side, d = 5 on the
right side). Similarly as in the planar case, when the d-angulation has a distinguished
face, the map admits a ‘canonical’ such orientation, called the minimal one. An extension
of the ‘meta-bijection’ to higher genus (described in Section 4.2 and obtained by adapting
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the construction of [6]) can then be applied to these orientations, yielding a bijection,
stated in Section 4.5, between face-rooted toroidal d-angulations of essential girth d
(with the extra condition that apart from the root-face contour, there is no other closed
walk of length d that encloses the root-face) and a family of well-characterized decorated
unicellular maps of genus 1.

Similarly as in the planar case [8], the strategy can then be extended to face-rooted
toroidal maps of essential girth d ≥ 1, with root-face degree d (with the same root-
face contour conditions as for d-angulations). The canonical orientations in that case
have similar weight conditions, now allowing for half-edges of negative weights, and the
obtained bijections, stated in Section 4.6, keep track of the distribution of the face-
degrees, and have a simpler form in the bipartite case (which can be seen as a parity
specialization of the general bijection, as in the planar case [7, 8]).

Regarding counting results, we show in Section 5 that in certain cases (essentially
simple triangulations and essentially simple bipartite quadrangulations), the generating
function of the corresponding mobiles can be computed by a similar approach as in [19],
and the expressions simplify nicely. Unfortunately, for general d, even if the correspond-
ing unicellular decorated trees are well-characterized, we have not succeeded in deriving
an explicit simple expression of the generating function of rooted toroidal d-angulations
of essential girth d, as was done in the planar case [7, 8, 15].

Higher genus extensions?

It is unclear to us if our results could be extended to higher genus. The nice property of
the torus is that the Euler characteristic is zero, which is compatible with orientations
having homogeneous outdegrees (e.g. for triangulations on the torus there are exactly 3
times more edges than vertices, and the orientations exploited to derive a bijection are
those with outdegree 3 at each vertex).

In higher genus it has been shown in [1] that every simple triangulation has an
orientation where every vertex-outdegree is a nonzero multiple of 3, hence all vertices
have outdegree 3 except for O(g) special vertices whose outdegree is a multiple of 3
larger than 3 (e.g. in genus 2 all vertices have outdegree 3 except for either two vertices
of outdegree 6 or one vertex of outdegree 9), and the presence of these special vertices
makes it more difficult to come up with a natural canonical orientation amenable to a
bijection.

2 Preliminaries

2.1 Maps and essential girth for toroidal maps

A map M of genus g is an embedding of a connected graph (possibly with loops and
multiple edges) on the orientable surface Σ of genus g, such that all components of Σ\M
are homeomorphic to open disks; we will mostly consider maps of genus 1, which we call
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toroidal maps. A map is called rooted if it has a marked corner, and is called face-rooted
if it has a marked face. The dual M∗ of M is the map obtained by inserting a vertex
in each face of M , every edge e ∈ M yielding a dual edge e∗ in M∗ that connects the
vertices dual to the faces on each side of e. A walk in M is a (possibly infinite) sequence
of edges traversed in a given direction, such that the head of an edge in the sequence
coincides with the tail of the next edge in the sequence (possibly two successive edges in
the sequence are the same edge traversed in opposite directions). A path in M is a walk
with no repeated vertices. A closed walk in M is a finite walk such that the head of the
first edge in the sequence coincides with the tail of the last edge. We identify two closed
walks if they differ by a cyclic shift of the sequence of edges. Hence a closed walk can
be seen as a cyclic sequence of edges such that the head of each edge coincides with the
tail of the next edge in the sequence. A closed walk is called non-repetitive if it does not
pass twice by a same edge taken in the same direction. A cycle is a closed walk with no
repeated vertices.

The girth of a map M is the length of a shortest cycle in M . The essential girth of a
toroidal map M is the girth of the universal cover M∞ (periodic planar representation).
As we will see, the essential girth is at least the girth. A contractible closed walk of M
(resp. of M∞) is defined as a non-repetitive closed walk W having a contractible region
on its right, which is called the interior of W .

Lemma 1 Let M be a toroidal map. Then the essential girth of M coincides with the
length of a shortest contractible closed walk in M .

Proof. Let d be the essential girth of M and let d′ be the length of a shortest contractible
closed walk in M . We first make a few observations. Any contractible closed walk W
of M∞ yields a contractible closed walk w in M , called the projection of W . Any
contractible closed walk of M∞ that projects to w is called a replication of W (in the
periodic planar representation, a replication of W is a translate of W by an integer linear
combination of two vectors spanning an elementary cell). A closed walk of M∞ is called
admissible if its interior does not overlap with the interior of any of its other replications.
Clearly, for W a contractible closed walk of M∞, the projection of W is a contractible
closed walk of M iff W is admissible. This ensures that there is a contractible closed
walk of length d′ in M∞, from which a cycle can be extracted. Hence d′ ≥ d. It remains
to show that d ≥ d′. For this, we just have to find an admissible cycle of length d in
M∞. Let C be a cycle of length d in M∞, with the property that the interior of C does
not contain the interior of another cycle of length d. We are going to show that C is
admissible. Let C ′ 6= C be a replication of C, and let R,R′ be the respective interiors
of C and C ′. Assume by contradiction that R ∩R′ 6= ∅. Note that we have

|∂R|+ |∂R′| ≥ |∂(R ∩R′)|+ |∂(R ∪R′)|,

(indeed we have ∂(R∪R′) ⊆ ∂R∪∂R′, ∂(R∩R′) ⊆ ∂R∪∂R′, and ∂(R∪R′)∩∂(R∩R′) ⊆
∂R∩ ∂R′, so that for every edge e of M , the contribution of e to |∂R|+ |∂R′| is at least
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its contribution to |∂(R ∩R′)|+ |∂(R ∪R′)|). Hence

2d ≥ |∂(R ∩R′)|+ |∂(R ∪R′)|.

Since d is the minimal cycle-length in M∞ we must have |∂(R ∩R′)| = |∂(R ∪R′)| = d.
Hence the contour of R ∩ R′ is a cycle of length d, contradicting the initial hypothesis
on C. 2

The characterization given in Lemma 1 easily ensures that the girth of M is at most
its essential girth (indeed, a cycle can be extracted from a shortest contractible closed
walk). If M has essential girth d, a d-angle of M is a contractible closed walk of length
d. It is called maximal if its interior is not contained in the interior of another d-angle.
A toroidal map M is called essentially simple if it has essential girth at least 3 (it means
that M∞ is simple, i.e., has no loop nor multiple edges).

For d ≥ 3, a map is called a d-angulation if all its faces have degree d. For d = 3, 4, 5,
such maps are respectively called triangulations, quadrangulations, pentagulations. Note
that a toroidal d-angulation has essential girth less than or equal to d (and it can be
strictly less), since every face-contour is a d-angle. A toroidal d-angulation of essential
girth d is called a d-toroidal map2. Note that 3-toroidal maps are exactly essentially
simple toroidal triangulations. By Euler’s formula, one can check that, in a toroidal
map with all face-degrees even, a contractible closed walk must have even length. In
particular, 4-toroidal maps are the same as essentially simple quadrangulations.

2.2 Constrained orientations and weighted biorientations of maps

For M a map with vertex-set V and edge-set E, and α : V → N, an α-orientation [23] of
M is an orientation of M such that every vertex has outdegree α(v). A biorientation of
M is the assignment of a direction to every half-edge (half-edges can be either outgoing
or ingoing at their incident vertex). The outdegree of a vertex v is the total number
of outgoing half-edges incident to v. An N-biorientation of M is a biorientation of M
where every half-edge is given a value in N, which is in Z>0 if the half-edge is outgoing
and equal to zero if the half-edge is ingoing. The weight of a vertex is the total weight
of its incident half-edges. The weight of an edge is the total weight of its two half-edges.
Note that an orientation can be identified with an N-biorientation where every edge has
weight 1. For α : V → N and β : E → N, an α

β -orientation of M is an N-biorientation
of M such that every vertex v has weight α(v) and every edge e has weight β(e). In
all this paper, we assume that β takes only strictly positive values. By doing so we can
define the β-expansion of M as the map H obtained from M after replacing every edge
e = {u, v} of M by a group of β(e) parallel edges connecting u and v. Note that every
α-orientation of H yields an α

β -orientation of M , see Figure 2.(a). Conversely every
α
β -orientation X of M yields an α-orientation of H, called the β-expansion of X, with

2The extra condition on the root-face contour mentioned in the abstract and introduction amounts
to considering d-toroidal maps where the root-face contour is a maximal d-angle.
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the convention that the edge-directions in the group of parallel edges are chosen in the
unique way consistent with the weights and such that there is no clockwise cycle within
the group, as shown in Figure 2(b).

3 1
⇒

(a) (b)

2 3
⇒

Figure 2: (a) Rule to obtain an α
β -orientation of M from an α-orientation of H (with H

the β-expansion of M). (b) Rule to obtain an α-orientation of H from an α
β -orientation

of M .

Assume M is a face-rooted map, with f its marked face. An orientation of M is
called non-minimal if there exists a non-empty set S of faces such that f /∈ S and every
edge on the boundary of S has a face in S on its right (and a face not in S on its left). It
is called minimal otherwise. An α

β -orientation of M is called minimal if its β-expansion
H is minimal (where the root-face of H is the one corresponding to f). Equivalently, an
α
β -orientation of M is non-minimal if there exists a non-empty set S of faces such that
f /∈ S and every edge on the boundary of S either is simply directed with a face in S on
its right or is bidirected.

Consider an orientation of M and a non-contractible cycle C∗ of M∗ given with a
traversal direction (i.e., a cyclic ordering (h0, . . . , h2k−1) of the half-edges on the cycle
such that any two successive half-edges h2i, h2i+1 are opposite on the same edge, and
any two successive half-edges h2i+1, h(2i+2) mod 2k are at the same vertex). Let δR(C∗)
(resp. δL(C∗)) be the number of edges of M crossing C∗ from left to right (resp. from
right to left). Then the δ-score of C∗ is defined as δ(C∗) = δR(C∗) − δL(C∗). Two α-
orientations X,X ′ are called δ-equivalent if every non-contractible cycle of M∗ has the
same δ-score in X and in X ′. The following statement is easily deduced from the results
and observations in [33] (in particular the fact that the set of contours of non-root faces
plus two non-homotopic non-contractible cycles form a basis of the cycle-space):

Theorem 2 ([33]) Let M be a face-rooted map on the orientable surface of genus g
endowed with an α-orientation X. Then M has a unique α-orientation X0 that is
minimal3 and δ-equivalent to X.

Moreover, suppose that M is a toroidal map and X,X ′ are two α-orientations of
M . If there exist two non-contractible non-homotopic4 cycles of M that have the same
δ-score in X and in X ′, then X,X ′ are δ-equivalent.

3It is actually proved in [33] that the set of α-orientations that are δ-equivalent to X is a distributive
lattice, of which X0 is the minimum element.

4Two closed curves on a surface are called homotopic if one can be continuously deformed into the
other.
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We now define the analogue of the function γ introduced in [21, 26] for Schnyder
woods (see also [30] for a detailed presentation).

If M is endowed with an orientation, and C is a non-contractible cycle of M given
with a traversal direction, we denote by γR(C) (resp. γL(C)) the total number of edges
going out of a vertex on C on the right (resp. left) side of C, and define the γ-score of
C as γ(C) = γR(C)− γL(C). Two α-orientations X,X ′ of M are called γ-equivalent if
every non-contractible cycle of M has the same γ-score in X as in X ′. The following
theorem is an analog (and a consequence) of Theorem 2; we only state it in genus 1, to
keep the proof simpler and as it is the focus of the article.

Corollary 3 Let M be a face-rooted toroidal map endowed with an α-orientation X.
Then M has a unique α-orientation X0 that is minimal and γ-equivalent to X.

Moreover, for two α-orientations X,X ′ of M to be γ-equivalent, it is enough that
two non-contractible non-homotopic cycles of M have the same γ-score in X and in X ′.

Proof. The completion-map of M is the map M̂ obtained by superimposing M and M∗.
The vertices of M̂ are of 3 types: primal vertices (those of M), dual vertices (those of
M∗) and edge-vertices (those, of degree 4, at the intersection of an edge e ∈M with its
dual edge e∗ ∈M∗). Let α̂ be the function from the vertex-set of M̂ to N such that, if v
is a primal vertex of M̂ then α̂(v) = α(v), if v is a dual vertex of M̂ then α̂(v) = deg(v),
and if v is an edge-vertex of M̂ then α̂(v) = 1. Note that any α-orientation Z of M yields
an α̂-orientation Ẑ of M̂ : each edge of M̂ corresponding to a half-edge of an edge e ∈M
is assigned the direction of e in Z, and each edge of M̂ corresponding to a half-edge of an
edge e∗ ∈M∗ is directed toward the incident edge-vertex. Clearly the mapping sending
Z to Ẑ is a bijection from the α-orientations of M to the α̂-orientations of M̂ , with the
property that Z is minimal if and only if Ẑ is minimal.

Let C be a non-contractible cycle ofM given with a traversal direction. Let (c1, . . . , ck)
be the cyclic sequence of corners of M that are encountered when walking “just to the
right” of C. Since every corner of M corresponds to a face of M̂∗, the cyclic sequence
(c1, . . . , ck) identifies to a non-contractible cycle of M̂∗, which we denote by C∗, see
Figure 3 (note that C∗ is clearly homotopic to C). It is then easy to see that for every
α-orientation Z of M , we have

γZR(C) = δẐR(C∗).

Hence, for two α-orientations X,X ′ of M , and for C a non-contractible cycle of M
given with a traversal direction, we have γX(C) = γX

′
(C) iff γXR (C) = γX

′
R (C) iff

δX̂R (C∗) = δX̂
′

R (C∗) iff δX̂(C∗) = δX̂
′
(C∗). Hence X,X ′ are γ-equivalent if and only if

X̂, X̂ ′ are δ-equivalent, where we use the second statement in Theorem 2 to have the
‘only if’ direction5.

5While we do not need it here, we also mention that it is easy to prove by similar arguments that
X̂, X̂ ′ are δ-equivalent iff X,X ′ are δ-equivalent. Hence the γ-equivalence classes on α-orientations are
the same as the δ-equivalence classes on α-orientations (which are distributive lattices).
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C C∗

Figure 3: Left: a non-contractible cycle C of M . Middle: the situation in M̂ in the right
neighborhood of C. Right: the corresponding non-contractible cycle C∗ of M̂∗ (which
passes by vertices, represented as triangles, that are in the faces corresponding to the
corners incident to C on its right side).

It is then easy to prove the theorem. For X an α-orientation of M , Theorem 2
ensures that there exists an α̂-orientation X̂0 of M̂ that is minimal and δ-equivalent
to X̂. By what precedes, X0 is γ-equivalent to X (and is minimal), hence we have
the existence part. Moreover, if there was another α-orientation X1 minimal and γ-
equivalent to X, then X̂1 would be minimal, δ-equivalent to X̂, and different from X̂0,
yielding a contradiction. This gives the uniqueness part.

We now prove the second statement of the theorem. Let X,X ′ be two α-orientations
of M that have the same γ-score for two non-contractible non-homotopic cycles C1, C2.
By what precedes, C∗1 and C∗2 have the same δ-score in X̂ and in X̂ ′. Hence, by Theo-
rem 2, X̂ and X̂ ′ are δ-equivalent, so that X and X ′ are γ-equivalent. 2

More generally if M is endowed with an N-biorientation and C is a non-contractible
cycle of M given with a traversal direction, we denote by γR(C) (resp. γL(C)) the total
weight of half-edges incident to a vertex on C on the right (resp. left) side of C, and
define the γ-score of C as γ(C) = γR(C)− γL(C).

Two α
β -orientations, X,X ′ are called γ-equivalent if every non-contractible cycle of

M has the same γ-score in X and in X ′. The following theorem is a generalization (and
a consequence) of Corollary 3 that will be useful for our purpose.

Corollary 4 Let M be a face-rooted toroidal map endowed with an α
β -orientation X.

Then M has a unique α
β -orientation X0 that is minimal and γ-equivalent to X.

Moreover, for two α
β -orientations X,X ′ of M to be γ-equivalent, it is enough that

two non-contractible non-homotopic cycles of M have the same γ-score in X and in X ′.

Proof. Let H be the β-expansion of M . For Z an α
β -orientation of M , let Z̄ be the

β-expansion of Z, i.e., the α-orientation of H obtained from Z by applying the rule of
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Figure 2(b). For C a non-contractible cycle of M given with a traversal direction, let
C̄ be the non-contractible cycle of H that goes along C in the “rightmost” way, i.e. for
each edge e of C, the cycle C̄ passes by the rightmost edge in the group of β(e) edges
arising from e. Clearly

γZR(C) = γZ̄R(C̄).

Hence, for two α
β -orientations X,X ′ of M and for C a non-contractible cycle of M

given with a traversal direction, we have γX(C) = γX
′
(C) iff γXR (C) = γX

′
R (C) iff

γX̄R (C̄) = γX̄
′

R (C̄) iff γX̄(C̄) = γX̄
′
(C̄). Hence X,X ′ are γ-equivalent if and only if

X̄, X̄ ′ are γ-equivalent (we use the second statement in Corollary 3 to have the ‘only if’
direction).

For X an α
β -orientation of M , Corollary 3 ensures that H has an α-orientation X̄0

that is minimal and γ-equivalent to X̄. Let X0 be the α
β -orientation obtained from X̄0 by

applying the rule of Figure 2(a). Since X̄0 is minimal, there is no clockwise cycle inside
any group of β(e) edges associated to an edge e ∈M . Hence X̄0 is the β-expansion of X0,
so that (by definition) X0 is minimal, and moreover it is γ-equivalent to X. This proves
the existence part. If there was another α

β -orientation X1 minimal and γ-equivalent to

X, then X̄1 would be minimal, γ-equivalent to X̄, and different from X̄0, contradicting
Corollary 3. This proves the uniqueness part.

Let us now prove the second statement of the theorem. Let X,X ′ be two α-
orientations of M that have the same γ-score for two non-contractible non-homotopic
cycles C1, C2. By what precedes, C̄1 and C̄2 have the same γ-score in X̄ and in X̄ ′.
Hence, by Corollary 3, X̄ and X̄ ′ are γ-equivalent, so that X and X ′ are γ-equivalent.
2

3 Balanced d
d−2-orientations on the torus

Let M be a toroidal map. We say that an N-biorientation of M is balanced if the γ-score
of any non-contractible cycle of M is 0. Note that Corollary 4 implies that if M is
face-rooted and admits a balanced α

β -orientation, then M admits a unique balanced α
β -

orientation that is minimal. For a toroidal d-angulation M , we define a d
d−2 -orientation

of M as an N-biorientation of M such that every vertex has weight d and every edge has
weight d − 2 (our bijections for toroidal d-angulations of essential girth d will crucially
rely on minimal balanced d

d−2 -orientation). The purpose of this section is to show that

a toroidal d-angulation admits a d
d−2 -orientation iff it has essential girth d, and that in

that case it admits a balanced d
d−2 -orientation.

3.1 Necessary condition on the essential girth

The following lemma gives a necessary condition for a toroidal d-angulation to admit a
d
d−2 -orientation.

10



Lemma 5 If a toroidal d-angulation admits a d
d−2 -orientation then it has essential

girth d (i.e. it is a d-toroidal map).

To prove it, note that the essential girth is clearly at most d since faces have degree d.
The fact that the essential girth is at least d is actually a direct consequence of the
following statement (which will also be useful in proofs later):

Claim 1 Let M be a toroidal d-angulation endowed with a d
d−2 -orientation, and let W

be a contractible closed walk of length k, with R the (contractible) enclosed region. Let
ε be the sum of the weights of half-edges in R that are incident to a vertex on W . Then
ε = k − d.

Proof. Let n′,m′, f ′ be respectively the numbers of vertices, edges and faces of M that
are (strictly) inside R. Since all faces of M have degree d we have (i) df ′ = 2m′+k. Since
the weight of every vertex (resp. edge) is d (resp. d−2), we have (ii) dn′+ε = (d−2)m′.
Finally, since R is contractible, the Euler relation ensures that (iii) n′ − m′ + f ′ = 1.
Taking (i)+(ii) gives d(n′−m′+ f ′) = k− ε, which together with (iii) gives d = k− ε. 2

We will see in the Section 3.3 that, conversely, any d-toroidal map admits a d
d−2 -

orientation, and even more, it admits a balanced one.

3.2 Sufficient condition for balancedness

The next lemma shows that γ behaves well with respect to homotopy in d
d−2 -orientations:

Lemma 6 Let M be a d-toroidal map endowed with a d
d−2 -orientation, let C be a non-

contractible cycle of M given with a traversal direction, and let {B1, B2} be a basis
for the homotopy of M , such that B1, B2 are non-contractible cycles whose intersection
is a single vertex or a common path. Let k1, k2 ∈ Z2, such that C is homotopic to
k1B1 + k2B2. Then γ(C) = k1 γ(B1) + k2 γ(B2).

Proof. Let v and u be the two extremities of the path B1∩B2 (possibly v = u, if B1∩B2

is reduced to a single vertex). Consider a drawing of M∞ obtained by replicating a flat
representation of M to tile the plane. Let v0 be a copy of v in M∞. Consider the walk
W starting from v0 and following k1 times the edges corresponding to B1 and then k2

times the edges corresponding to B2 (we are going backward if ki is negative). This
walk ends at a copy v1 of v. Since C is non-contractible we have k1 or k2 not equal to 0
and thus v1 is distinct from v0. Let W∞ be the infinite walk obtained by replicating W
(forward and backward) from v0. Note that their might be some repetition of vertices in
W∞ if the intersection of B1, B2 is a path. But in that case, by the choice of B1, B2, the
walk W∞ is almost a path, except maybe at all the transitions from “k1B1” to “k2B2”,
or (exclusive or) at all the transitions from “k2B2” to “k1B1”, where it can go back
and forth a path corresponding to the intersection of B1 and B2. The existence or not
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of such “back and forth” parts depends on the signs of k1, k2 and the way B1, B2 are
going through their common path. Figure 5 gives an example of this construction with
(k1, k2) = (1, 1) and (k1, k2) = (1,−1) when B1, B2 intersect on a path and are oriented
the same way along this path as in Figure 4.

v

B2

u
B1

Figure 4: Intersection of the basis.

v0

v1 v1

v0

(k1, k2) = (1, 1) (k1, k2) = (1,−1)

Figure 5: Replicating “k1B1” and “k2B2” in the universal cover.

We “simplify” W∞ by removing all the parts that consist of going back and forth
along a path (if any) and call B∞ the obtained walk that is now without repetition of
vertices. By the choice of v, the walk B∞ goes through copies of v. If v0, v1 are no more
a vertex along B∞, because of a simplification at the transition from “k2B2” to “k1B1”,
then we replace v0 and v1 by the next copies of v along W∞, i.e., at the transition from
“k1B1” to “k2B2”.

Since C is homotopic to k1B1 + k2B2, we can find an infinite path C∞, that corre-
sponds to copies of C replicated, that does not intersect B∞ and situated on the right
side of B∞. Now we can find a copy B′∞ of B∞, such that C∞ lies between B∞ and
B′∞ without intersecting them. We choose two copies v′0, v

′
1 of v0, v1 on B′∞ such that

the vectors v0v1 and v′0v
′
1 are equal.

Let R0 be the region bounded by B∞ and B′∞. Let R1 (resp. R2) be the subregion
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of R0 delimited by B∞ and C∞ (resp. by C∞ and B′∞). We consider R0, R1, R2 as
cylinders, where the lines (v0, v

′
0), (v1, v

′
1) (or part of them) are identified. Let B,B′, C ′

be the cycles of R0 corresponding to B∞, B′∞, C∞ respectively.

Let x be the sum of the weights of the half-edges of M incident to B and in the strict
interior of R1. Let y be the sum of the weights of the half-edges of M incident to B′ and
in the strict interior of R2. Let x′ (resp. y′) be the sum of the weights of the half-edges
of M incident to C ′ and in the strict interior of R2 (resp. R1). Note that C ′ corresponds
to exactly one copy of C, so γ(C) = x′ − y′. Similarly, B (and B′ as well) “almost”
corresponds to k1 copies of B1 followed by k2 copies of B2, except for the fact that we
may have removed a back and forth part (if any). In any case we have the following:

Claim. k1 γ(B1) + k2 γ(B2) = x− y
Proof of the claim. We prove the case where the common intersection of B1, B2 is a
path (if the intersection is a single vertex, the proof is very similar and even simpler).
We assume, by possibly reversing one of B1 or B2, that B1, B2 are oriented the same
way along their intersection, so we are in the situation of Figure 4.

Figure 6 shows how to compute k1 γ(B1) + k2 γ(B2) + y − x when (k1, k2) = (1, 1).
Then, one can check that the weight of each half-edge of M is counted exactly the same
number of times positively and negatively. So everything compensates and we obtain
k1 γ(B1) + k2 γ(B2) + y − x = 0.

+

v

u

−

B1

+
v

u

−

B2 B’

+
u

v

u

v

v

u

v

u

B
−

γ(B1) + γ(B2) + (y − x)

Figure 6: Case (k1, k2) = (1, 1).

Figure 7 shows how to compute k1 γ(B1)+k2 γ(B2)+y−x when (k1, k2) = (1,−1). As
above, most of the things compensate but, in the end, we obtain k1 γ(B1)+k2 γ(B2)+y−x
equals the sum of the weights of the half-edges incident to u minus the sum of the weights
of the half-edges incident to v. Since the sum of the weights of the half-edges at each
vertex is equal to d, we again conclude that k1 γ(B1) + k2 γ(B2) + y − x = 0.

+

v

u

−

B1

−B2

v

u

+

−

B’
u

v

v

− +

B

u

γ(B1) + (−γ(B2)) + (y − x)

Figure 7: Case (k1, k2) = (1,−1).
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One can easily be convinced that when |k1| ≥ 1 and |k2| ≥ 1 then the same arguments
apply. The only difference is that the red or green part of the figures in the universal
cover would be longer (with repetitions of B1 and B2). These parts being “smooth”,
they do not affect the way we compute the equality. Finally, if one of k1 or k2 is equal
to zero, the analysis is much simpler and the conclusion holds. 3

For i ∈ {0, 1, 2}, let Gi be the cylinder map made of all the vertices and edges of
M∞ that are in the cylinder region Ri. Let k (resp. k′) be the length of B (resp.
C ′). Let n1,m1, f1 be respectively the number of vertices, edges and faces of G1. Since
G1 is a d-angulation we have 2m1 = df1 + (k + k′). The total weight of the edges of
G1 is (d − 2)m1 = dn1 − (x′ + y). Combining these equalities with Euler’s formula
n1−m1 + f1 = 0, one obtains k+ k′ = x′+ y. Similarly, by considering G2, one obtains
k+ k′ = x+ y′. Thus x′ + y = x+ y′, which gives γ(C) = k1 γ(B1) + k2 γ(B2) using the
claim. 2

Lemma 6 implies the following:

Lemma 7 Let M be a d-toroidal map endowed with a d
d−2 -orientation. If the γ-score of

two non-contractible non-homotopic cycles of M is 0, then the orientation is balanced.

Proof. Consider two non-contractible non-homotopic cycles C,C ′ of M , each with a
chosen traversal direction, such that γ(C) = γ(C ′) = 0. Consider a homotopy basis
{B1, B2} of M , such that B1, B2 are non-contractible cycles whose intersection is a
single vertex or a path. Note that one can easily obtain such a basis by considering a
spanning tree T of M , and a spanning tree T ∗ of M∗ that contains no edges dual to T .
By Euler’s formula, there are exactly 2 edges in M that are not in T nor dual to edges
of T ∗. Each of these edges forms a unique cycle with T . These two cycles, given with
any traversal direction, form the wanted basis.

Let k1, k2, k
′
1, k
′
2 ∈ Z4, such that C (resp. C ′) is homotopic to k1B1 + k2B2 (resp.

k′1B1 + k′2B2). Since C is non-contractible we have (k1, k2) 6= (0, 0). By possibly ex-
changing B1, B2, we can assume, without loss of generality that k1 6= 0. By Lemma 6,
we have k1γ(B1) + k2γ(B2) = γ(C) = 0 = γ(C ′) = k′1γ(B1) + k′2γ(B2). So γ(B1) =
(−k2/k1)γ(B2) and thus (−k2k

′
1/k1 + k′2)γ(B2) = 0. So k′2 = k2k

′
1/k1 or γ(B2) = 0.

Suppose by contradiction, that γ(B2) 6= 0. Then (k′1, k
′
2) =

k′1
k1

(k1, k2), and C ′ is homo-

topic to
k′1
k1
C. Since C and C ′ are both non-contractible cycles, it is not possible that one

is homotopic to a multiple of the other, with a multiple different from −1, 1. So C,C ′

are homotopic, a contradiction. So γ(B2) = 0 and thus γ(B1) = 0. Then by Lemma 6
we have γ(C) = 0 for any non-contractible cycle C of M , and thus the orientation is
balanced. 2

14



3.3 Existence of balanced toroidal d
d−2

-orientations

The main goal of this section is to prove the following existence result:

Proposition 8 Any toroidal d-angulation with essential girth d admits a balanced d
d−2 -

orientation.

In the case of toroidal triangulations, essentially toroidal 3-connected maps, or essen-
tially 4-connected toroidal triangulations, the proof of existence of analogous “balanced
orientations” can be done by doing edge-contractions until reaching a map with few ver-
tices (see [30, 12]). We do not know if such a strategy could be applied for d ≥ 5 (indeed
the contraction of an edge in a d-toroidal map results in some faces of size strictly less
than d). So we use a different technique in the current paper.

The method consists in defining orientations that are “totally unbalanced” —which
we call biased orientations— then taking a linear combinations of these biased orien-
tations to obtain a balanced orientation but with rational weights, and finally proving
that the orientation that is minimal and γ-equivalent to it is a balanced orientation with
integer weights.

3.3.1 Biased orientations

Consider a d-toroidal map M , and let C be a non-contractible cycle of M of length k
given with a traversal direction. A biased orientation w.r.t. C is a d

d−2 -orientation of M

such that γ(C) = 2k. Note that in a d
d−2 -orientation of M , the sum of the weights of

the half-edges incident to vertices of C is dk and the sum of the half-edges that are on
C is (d− 2)k. So we have γL(C) + γR(C) = dk− (d− 2)k = 2k. Thus a d

d−2 -orientation
of M is a biased orientation w.r.t. C if and only if all the half-edges incident to the left
side of C have weight 0.

The goal of this section is to prove the following lemma:

Lemma 9 Let M be a d-toroidal map and C a non-contractible cycle of M that is
shortest in its homotopy class and is given with a traversal direction. Then M admits a
biased orientation w.r.t. C.

To prove Lemma 9 we need to introduce some more general terminology concerning
α-orientations.

If S is a subset of vertices of a graph M , then E[S] denotes the set of edges of M
with both ends in S. We need the following lemma6 from [7]:

Lemma 10 ([7]) A graph G admits an α
β -orientation if and only if

∑
e∈E(G) β(e) =∑

v∈V (G) α(v), and, for every subset of vertices S of G, we have
∑

e∈E[S] β(e) ≤
∑

v∈S α(v).

6This lemma can be seen as an application of Hall’s theorem regarding the existence of a perfect
matching in the bipartite graph obtain from G by copying β(e) times each edge e, then subdividing once
each edge of the resulting graph, and finally copying α(v) times each initial vertex of G.
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Consider a non-contractible cycle C of M that is a shortest cycle in its class of
homotopy and given with a traversal direction. Consider the annular map A obtained
from M by cutting M along C and open it as a planar map where vertices of C are
duplicated to form the outer face and a special inner face of A. Without loss of generality,
we assume that A is represented such that the special inner face is on the left side of
C. Let α : V (A) → N be such that α(v) = 0 if v is an outer-vertex of A and α(v) = d
otherwise. Let β : E(A) → N be such that β(e) = 0 if e is an outer-edge of A and
β(e) = (d − 2) otherwise. Then one can transform any α

β -orientation of A to a biased
orientation of M by gluing back the two copies of C and giving to the half-edges of C
the weight they have on the special face of A. Indeed, it is clear by the definition of
A and the choice of α, β, that in the obtained d

d−2 -orientation of M all the weights on
half-edges incident to the left side of C are equal to 0, and thus the orientation is biased
w.r.t. C by the above discussion. So the existence of a biased orientation (Lemma 9),
is reduced to the existence of an α

β -orientation of A. It is proved in Theorem 24 of [8]
that A admits an α

β -orientation, where the proof is done first in the bipartite case (case
of even d) using Lemma 10, and then the general case is derived from the bipartite case
using a subdivision argument. We reproduce here in the general case the arguments
given in [8] for the bipartite case, for the sake of completeness and since this is one of
the key ingredients to obtain a balanced orientation of M .

Lemma 11 (Theorem 24 in [8]) The annular map A admits an α
β -orientation.

Proof. It is not difficult to check that by Euler formula that the first condition of
Lemma 10 is satisfied. Let us now prove that the second condition of the lemma is also
satisfied.

Let S be any subset of vertices of A. Suppose first that A[S], the subgraph of A
induced by S, is connected. We consider two cases whether S contains some outer
vertices of A or not.

• S contains at least one outer vertex of A:

Let S′ be the set of vertices obtained by adding to S all the outer vertices of A.
Since α equals to 0 for outer vertices, we have

∑
v∈S α(v) =

∑
v∈S′ α(v). Moreover,

E[S] is a subset of E[S′], so
∑

e∈E[S] β(e) ≤
∑

e∈E[S′] β(e).

Let n′,m′, f ′ be the number of vertices, edges and faces of A′ = A[S′]. Euler’s
formula says that n′ −m′ + f ′ = 2. The outer face of A′ has size k. Since C is a
shortest cycle in its class of homotopy, the inner face of A′ containing the special
face of A has size at least k. Moreover M is a d-angulation, so all the other inner
faces of A have size at least d. So finally 2m′ ≥ d (f ′−2)+2k. By combining the two
(in)equalities, we obtain dn′− (d−2)m′−2k ≥ 0. So

∑
v∈S α(v)−

∑
e∈E[S] β(e) ≥∑

v∈S′ α(v)−
∑

e∈E[S′] β(e) = d(n′ − k)− (d− 2)(m′ − k) ≥ 0.

• S does not contain any outer vertices of A:
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Let n′,m′, f ′ be the number of vertices, edges and faces of A′ = A[S]. Then Euler’s
formula says that n′−m′+ f ′ = 2. The planar map A′ has at most two faces that
can be of size strictly less than d: its outer face, and the face of A′ containing the
special face of A. Note that these two faces are not necessarily distinct and can
also be of size more than d. In any case we have 2m′ > d (f ′−2). By combining the
two (in)equalities, we obtain dn′− (d− 2)m′ > 0. So

∑
v∈S α(v)−

∑
e∈E[S] β(e) =

dn′ − (d− 2)m′ > 0.

In both cases, the second condition of Lemma 10 is satisfied when A[S] is connected.
If A[S] is not connected, then we can sum over the different connected components to
obtain the result. 2

By the above remarks, Lemma 11 implies Lemma 9.

3.3.2 Linear combinations of biased orientations

Consider a d-toroidal map M and B1, B2 two non-contractible non-homotopic cycles of
M that are both shortest cycles in their respective class of homotopy. Suppose that
B1, B2 are given with a traversal direction. Let k1 (resp. k2) be the length of B1 (resp.
B2).

Consider D1, D2, D3, D4 the four d
d−2 -orientations of M that are biased with re-

spect to B1,−B1, B2,−B2 respectively. The γ-score of B1, B2 in these four orientations
are given in Table 1 where a, b are integers in {−2k2, . . . , 2k2} and c, d are integers in
{−2k1, . . . , 2k1}.

D1 D2 D3 D4

γ(B1) 2k1 −2k1 c d

γ(B2) a b 2k2 −2k2

Table 1: γ-score of the orientations D1, D2, D3, D4.

For 1 ≤ i ≤ 4, let wi be the weight function of Di. i.e., the function defined on the
half-edges of M such that the weight of a half-edge h is wi(h) in the d

d−2 -orientation Di.
Let k = 2k1k2. Let w be the weight function defined on the set of half-edges of M by
the following:

w =


(2k + bc)k2 × w1 + (2k − ac)k2 × w2 − (a+ b)k × w3 if a+ b < 0
w1 + w2 if a+ b = 0
(2k − bd)k2 × w1 + (2k + ad)k2 × w2 + (a+ b)k × w4 if a+ b > 0

Note that in all cases, with weight function w, the γ-score of both B1, B2 is zero.

17



Indeed, we have:

(2k + bc)k2 (2k − ac)k2 −(a+ b)k 0
1 1 0 0

(2k − bd)k2 (2k + ad)k2 0 (a+ b)k

×


2k1 a
−2k1 b
c 2k2

d −2k2

 =

0 0
0 a+ b
0 0

 .
Note also that in all cases, for 1 ≤ i ≤ 4 the coefficient of wi is in N, hence w(h) ∈ N

for every half-edge h of M . We denote by σ the sum of the coefficients, i.e.,

σ =


(2k + bc)k2 + (2k − ac)k2 − (a+ b)k if a+ b < 0,
2 if a+ b = 0,
(2k − bd)k2 + (2k + ad)k2 + (a+ b)k if a+ b > 0.

Note that σ ≥ 1 in all cases.

Then the total w-weight at any vertex (resp. edge) of M equals σd (resp. σ(d− 2)).
Hence w is the weight function of a σd

σ(d−2) -orientation Dσ of M . In a sense Dσ/σ,

obtained from Dσ by dividing all the weights by σ, is a d
d−2 -orientation of M but with

rational weights instead of integers. Note that the proof of Lemma 7 is not using the
fact that the weights are integers thus the conclusion holds with rational weights as well.

We have defined the linear combination of biased orientations in such a way that
we precisely have γ(B1) = γ(B2) = 0 for the orientation Dσ. A variant of Lemma 7
with rational weights implies that Dσ is a balanced σd

σ(d−2) -orientations and Dσ/σ can

be viewed as a balanced d
d−2 -orientation of M but with rational weights. So we almost

have what we are looking for, except for the rational weights that we would like to be
integers.

3.3.3 Integrality by minimality

We use the same terminology as in the previous subsection.

Let M be a d-toroidal map, with a distinguished face f0. By Corollary 4, the map
M has a unique minimal σd

σ(d−2) -orientation Dσ
min that is γ-equivalent to Dσ, i.e. that

is balanced. In the next lemma, we now prove that the weights of Dσ
min are multiple

of σ. So Dσ
min/σ, obtained from Dσ

min by dividing all the weights by σ, is a balanced
d
d−2 -orientation of M with integer weights and thus this proves Proposition 8.

Lemma 12 All the weights of Dσ
min are multiples of σ.

Proof. Since the total weight of an edge is a multiple of σ, for each edge e ∈ M either
its two half-edges are not multiple of σ or they are both multiple of σ. We denote by
Q the set of edges with weights (on both half-edges) not multiple of σ, and let MQ be
the embedded graph induced by edges in Q and their incident vertices. Note that MQ

is embedded on the torus but is not necessarily a map as some of its faces may not be
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Figure 8: The three possible cases for MQ.

homeomorphic to an open disk. Since the total weight at any vertex is a multiple of σ,
a vertex of M can not be incident to a single edge in Q, hence all the vertices of MQ

have degree at least 2.

Suppose by contradiction, that MQ has at least two faces (the embedded subgraph
MQ is not necessarily a map, a ‘face’ refers here to a connected component of the torus
cut by MQ). Let f be a face of MQ not containing f0. Let F be the set of edges on
the border of f . The weights of the half-edges of F are not multiple of σ. So none of
their weights is equal to 0. So in the underlying biorientation of M , all edges of F are
bioriented. Thus, in the σ(d − 2)-expansion H of M , the set S of faces of H within f
is such that every edge on the boundary of S has a face in S on its right, contradicting
the minimality of Dσ

min. So MQ has a unique face.

Since the vertices of MQ have degree at least 2 and MQ has a unique face, the
embedded toroidal graph MQ has to be one of the graphs depicted in Figure 8, i.e. it
is either a non-contractible cycle, or the union of two non-contractible cycles that are
edge-disjoint and intersect at a unique vertex, or it is the union of three edge-disjoint
paths such that the union of any two of these paths forms a non-contractible cycle.

In any case, there exists a non-contractible cycle C of M such that on each side of
C there is a single incident half-edge in Q. This implies that the sum of the weights of
incident half-edges on the left (resp. right) side of C is not a multiple of σ.

On the other hand, since Dσ
min is balanced we have γ(C) = 0. Let ` be the length of

C, so that the sum of the weights of the half-edges of M incident to each side of C is
equal to 1

2(σd`− σ(d− 2)`) = σ`. This is a multiple of σ, giving a contradiction. 2

3.4 Bipartite case

For the particular case where d is even and the map is bipartite, we can prove the
existence of balanced orientations with even weights, as discussed below.

Consider a d-toroidal map M where d is even, i.e. d = 2b with b ≥ 2. Note that
d/2 = b and (d − 2)/2 = b − 1. So if the weights of a d

d−2 -orientation of M are even,

they can be divided by two to obtain a b
b−1 -orientation of M , i.e., an N-biorientation

where every vertex has weight b and every edge has weight b − 1. Then one can ask
the question of existence of balanced b

b−1 -orientations in that case. The answer to this
question is given as follows.
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Proposition 13 When d = 2b with b ≥ 2, a toroidal d-angulation M with essential
girth d admits a balanced b

b−1 -orientation if and only if M is bipartite. In this case,

for any choice of a distinguished face f0 of M , the unique balanced d
d−2 -orientation that

is minimal has all its weights that are even (hence is a balanced b
b−1 -orientation upon

dividing the weights by 2).

Proof. If M admits a balanced b
b−1 -orientation we want to show that M is bipartite.

Since the face-degrees of M are even it is enough to check that every non-contractible
cycle C of M has even length. Recall that γR(C) (resp. γL(C)) is the sum of the weights
of the half-edges incident to the right (resp. left) side of C. Since the orientation is
balanced, we have γR(C) = γL(C). Denoting by k the length of C, the sum of the weights
of all the half-edges of C is equal to (b−1)k. The sum of the weights of all the half-edges
incident to vertices of C is bk. Hence bk = (b−1)k+γR(C)+γL(C) = (b−1)k+2γR(C).
So k = 2γR(C) and thus k is even.

Now suppose that M is bipartite, and consider an arbitrary face f0 of M . By
Proposition 8, M admits a balanced d

d−2 -orientation. By Corollary 4 we can consider

the unique minimal d
d−2 -orientations D that is balanced. We have the following:

Claim. The weights of D are even.

Proof of the claim. The proof follows the same arguments as the proof of Lemma 12.
Since each edge has even total weight, either its two half-edges have both even weights,
or they have both odd weights. We let Q be the set of edges with odd weights, and
assume for contradiction that Q is not empty. Let MQ be the embedded graph induced
by the edges in Q and their incident vertices. Since every vertex has even total weight,
it can not be incident to a single edge in Q, hence all vertices of MQ have degree at
least 2.

Suppose by contradiction that MQ has at least two faces. Let f be a face of MQ

not containing f0. Let F be the set of edges on the border of f . The weights of the
half-edges of F are odd, hence non-zero. Hence, in the underlying biorientation of M ,
all edges of F are bioriented. Thus, in the (d− 2)-expansion H of M , the set of faces S
of H corresponding to f is such that every edge on the boundary of S has a face in S
on its right, contradicting the minimality of D. So MQ has a unique face.

Since the vertices of MQ have degree at least 2 and MQ has a unique face, we again
have the property that MQ is in one of the configurations shown in Figure 8. In any
case, there exists a non-contractible cycle C of M that has a single edge in Q on each
side. Hence γL(C) is odd. On the other hand, since each edge has weight d − 2 and
each vertex has weight d, we have γL(C) + γR(C) = 2`, with ` the length of C. Since
the orientation is balanced, we have γL(C) = `; and since the map is bipartite ` is even,
contradicting the fact that γL(C) is odd. 3

The claim ensures that all the weights of D are even. Thus, dividing all the weights
of D by 2, one obtains a balanced b

(b−1) -orientation of M . 2
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4 Bijective results

In this section we state our main bijective results. Similarly as in the planar case [7, 8],
our starting point is a ‘meta-bijection’ Φ+ in any genus g between a family of oriented
maps and a family of decorated unicellular maps. The families are defined in Section 4.1
and Φ+ is presented in Section 4.2 in the oriented setting, and then extended in Sec-
tion 4.3 to the weighted bioriented setting. In Section 4.5 we then specialize Φ+ to
the balanced d

d−2 -orientations studied in Section 3, and obtain a bijection for toroidal
d-angulations of essential girth d (Theorem 19) which admits a parity specialization in
the bipartite case (Corollary 20). Each of these two bijections can be further extended
to a bijection for toroidal maps of fixed essential girth with a certain root-face condition
(Theorem 21, and Theorem 22 in the bipartite case, both stated in Section 4.6 without
proofs, which are delayed to Section 6.3).

4.1 Terminology for oriented maps and mobiles

Consider a face-rooted map M of genus g ≥ 0. Suppose that M is given with an
orientation of its edges such that every vertex has at least one outgoing edge. For an
edge e ∈M , the rightmost walk starting from e, is the (necessarily unique and eventually
looping) walk starting from e by following the orientation of e, then taking at each step
the rightmost outgoing edge, i.e., for any pair e′, e′′ of consecutive edges along the walk,
all edges between e′ and e′′ in counterclockwise order around their common vertex are
ingoing.

An orientation of M is called a right orientation if the following conditions are
satisfied:

• every vertex has at least one outgoing edge,

• for every edge e of M , the rightmost walk starting from e eventually loops on the
contour of the root-face f0 with f0 on its right side.

For d ≥ 1 and g ≥ 0, we denote by Ogd the family of right orientations of face-rooted
maps of genus g whose root-face has degree d.

Let us now define the unicellular maps to be set in bijective correspondence with
Ogd. A mobile of genus g is defined as a unicellular map of genus g that is bipartite (it
has black vertices and white vertices and every edge connects a black vertex to a white
vertex) such that each corner at a black vertex is allowed to carry additional dangling
half-edges called buds, represented as outgoing arrows. The excess of a mobile T is the
number of edges minus the number of buds in T , and the family of mobiles of genus g
and excess d is denoted by T gd .
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4.2 Bijection Φ+ between Ogd and T gd .

Let d ≥ 1. Similarly as in the planar case developed in [7] we adapt the bijection from [6]
into a bijection7 between Ogd and T gd (see Section 6.1 for proof details). For O ∈ Ogd we
denote by Φ+(O) the embedded graph obtained by inserting a black vertex in each face
of O, then applying the local rule of Figure 9 to every edge of O (thereby creating an
edge and a bud), and finally erasing the isolated black vertex in the root-face of O (since
the root-face contour is directed clockwise, this black vertex is incident to d buds and
no edge). See Figure 10 for an example.

Figure 9: The local rule applied by the bijection Φ+ to each edge.

Figure 10: The bijection Φ+ from a toroidal orientation in O1
4 to a toroidal mobile of

excess 4 (the root-face is indicated by the small clockwise circular arrow).

Theorem 14 (Oriented case) For d ≥ 1 and g ≥ 0, the mapping Φ+, with the local
rule of Figure 9, is a bijection between the family Ogd of oriented maps and the family
T gd of mobiles.

The proof of Theorem 14 is delayed to Section 6.1.

The inverse mapping Ψ+ is done as follows. Starting from a mobile T ∈ T gd , we
insert an ingoing bud in every corner of a black vertex u that is just after an edge (not a
bud) in counterclockwise order around u. Since T has excess d, there are d more ingoing
buds than outgoing buds. We then match the outgoing and ingoing buds according to a
walk (with the face on our right) around the unique face of T , considering outgoing buds
as opening parentheses and ingoing buds as closing parentheses. Every matched pair
yields a directed edge, and we are left with d unmatched ingoing buds (all in the same
face of the obtained figure), which we call the exposed buds of T . For each such bud,

7It should also be possible, for any d ≤ 0, to adapt the bijection from [6] into a bijection between the
family of genus g mobiles of excess d and a well-characterized family of genus g oriented map, but we
will not need it here to get our bijections for toroidal maps with prescribed essential girth.
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the consecutive half-edge in clockwise order around the incident black vertex is called
an exposed half-edge of T .

We then join the exposed buds to a newly created vertex v∞, see Figure 11 for an
example. Let X be the oriented map obtained after erasing the edges of T and the white
vertices; and let O be the dual map endowed with the face-rooted dual orientation (that
is, for every edge e ∈ O, with e∗ ∈ X the dual edge, we orient e from the left side of e∗

to the right side of e∗), where the root-face is taken to be the face dual to v∞. Then Ψ+

is the mapping that maps T to O (it is quite easy to check that Φ+(Ψ+(T )) = T when
superimposing O, X and T ).

v∞ v∞

Figure 11: The inverse mapping Ψ+: from a mobile in T 1
4 to an orientation in O1

4.

4.3 Extension of Φ+ to the weighted bioriented setting

Similarly as in [7] we may now extend this bijection to the context of biorientations,
and then to weighted biorientations. Recall from Section 2, that in a bioriented map
M , every half-edge receives a direction (ingoing or outgoing). For i ∈ {0, 1, 2} an edge
is said to be i-way if it has i outgoing half-edges among its two incident half-edges. For
O a bioriented map, the induced oriented map O′ = µ(O) is obtained by replacing each
2-way edge by a double edge (enclosing a face of degree 2) directed counterclockwise, and
inserting a vertex of (out)degree 2 in the middle of each 0-way edge, see the left column
of Figure 12 for an example. For d ≥ 1 and g ≥ 0 we can now extend the definition of
the families Ogd to the bioriented setting: a face-rooted bioriented map is said to belong
to Ogd if the induced oriented face-rooted map is in Ogd.

Let us now formulate rightmost walks directly on the biorientation to be a bit more
explicit on the properties that a biorientation needs to satisfy to be in Ogd. Consider a
face-rooted map M of genus g ≥ 0. Suppose that M is given with a biorientation such
that every vertex has at least one outgoing half-edge. For an outgoing half-edge h of M ,
we define the rightmost walk from h as the (necessarily unique and eventually looping)
sequence of half-edges starting from h, and at each step taking the opposite half-edge
and then the rightmost outgoing half-edge at the current vertex.

A biorientation of M is called a right biorientation if the following conditions are
satisfied:
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µ λ−1

Figure 12: Top-row: the bijection Φ+ from a biorientation in O1
3 to a bimobile in T 1

3 ,
applying the local rules of Figure 14. The bottom-row shows that the construction
amounts to applying the bijection Φ+ in the oriented setting, upon blowing each 2-way
edge into a counterclockwise 2-cycle and inserting a sink of degree 2 in the middle of
every 0-way edge.

• every vertex has at least one outgoing half-edge,

• for every outgoing half-edge h, the rightmost walk starting from h loops on the
contour of the root-face f0 with f0 on its right side.

Thus with this definition, a face-rooted bioriented map belongs to Ogd if and only if
it is a right biorientation, it has genus g and the degree of the root-face is d.

As illustrated in Figure 12 (forgetting for now the second and third drawing of the
top-row), Φ+ ◦ µ induces a bijection between bioriented maps in Ogd and mobiles in T gd
where some vertices of degree 2 are marked as square vertices (square black vertices
correspond to the 2-way edges, square white vertices correspond to the 0-way edges).

We call bimobile of genus g a unicellular map of genus g with two kinds of vertices,
white or black (this time, black-black edges and white-white edges are allowed), and such
that each corner at a black vertex might carry additional dangling half-edges called buds.
(Note that a mobile is a special case of bimobile, where all the edges are black-white.)
The excess of a bimobile is the number of black-white edges plus twice the number of
white-white edges, minus the number of buds. We now extend the definition of the family
T gd to bimobiles: a bimobile of genus g is said to belong to T gd if its excess is d. For T
a bimobile, the induced mobile λ(T ) is obtained by inserting in each white-white edge a
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square black vertex of degree 2, and inserting in each black-black edge a square white
vertex of degree 2 together with two buds at the incident edges, as shown in Figure 13.
Clearly λ(T ) has the same excess as T . As shown in Figure 12 the mapping λ−1 ◦Φ+ ◦µ
thus yields a bijection from bioriented maps in Ogd to bimobiles in T gd (it just amounts
to marking some counterclockwise faces of degree 2 and some sinks of degree 2 in the
bijection of Theorem 14). By a slight abuse of notation we refer to λ−1 ◦ Φ+ ◦ µ as Φ+

(adapted to the bioriented setting). It is easy to see that the effect of λ−1, of µ, and of
the local rules of Figure 9 can be shortcut as the local rules shown in Figure 14 applied
to the three types of edges (0-way, 1-way, or 2-way), so that, given a biorientation O in
Ogd, Φ+(O) is obtained after applying these rules to every edge of O, and then deleting
the isolated black vertex in the root-face.

Figure 13: The rules to obtain a mobile λ(T ) ∈ T gd (where the new added vertices, of
degree 2, are distinguished as square) from a bimobile T ∈ T gd .

Figure 14: The local rules applied to each edge by the bijection Φ+ in the bioriented
setting.

We obtain:

Corollary 15 (Extension to the bioriented setting) For d ≥ 1 and g ≥ 0, the
mapping Φ+, with the local rules of Figure 14, is a bijection between the family Ogd of
bioriented maps and the family T gd of bimobiles.

Finally, similarly as in the planar case [7], the bijection is directly extended to the
weighted setting. A Z-biorientation of a map is a biorientation where every half-edge is
given a value in Z, which is in Z>0 (strictly positive) if the half-edge is outgoing and
in Z≤0 (negative or zero) if the half-edge is ingoing. A Z-bimobile is a bimobile where
every non-bud half-edge is given a value in Z, which is in Z>0 if the half-edge is incident
to a white vertex and in Z≤0 if the (non-bud) half-edge is incident to a black vertex.

A Z-bioriented face-rooted map is said to belong to Ogd if the underlying unweighted
face-rooted bioriented map belongs to Ogd; and a Z-bimobile T is said to belong to T gd if
the underlying unweighted bimobile is in T gd .

For a Z-bioriented map, the weight of a vertex v is the sum of the weights of the
outgoing half-edges at v, and the weight of a face f is the sum of the weights of the
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ingoing half-edges that have f on their left (traversing the half-edge toward its incident
vertex); and the weight of an edge e is the sum of the weights of its two half-edges. For a
Z-bimobile, the weight of a vertex v is the sum of the weights of the incident half-edges,
and the weight of an edge e is the sum of the weights of its two half-edges. We extend
the bijection Φ+ to the weighted bioriented setting by the rules of Figure 15.

w
w′

w
w′

w
w′

w′
w w

w′

w

w′

Figure 15: The local rules applied to each edge by the bijection Φ+ in the weighted
bioriented setting.

Then we obtain the following:

Corollary 16 (Extension to the weighted bioriented setting) For d ≥ 1 and g ≥
0, the mapping Φ+, with the local rules shown in Figure 15, is a bijection between the
family Ogd of Z-bioriented maps and the family T gd of Z-bimobiles.

An example is given in Figure 16 (the weights are omitted in the middle drawing).
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Figure 16: Example of the bijection Φ+ from a Z-biorientation in O1
3 to a Z-bimobile in

T 1
3 .

As in the planar case [7], for O a Z-bioriented map in Ogd and T = Φ+(O) the
corresponding Z-bimobile, several parameters can be traced:

• each vertex v of O corresponds to a white vertex w of T : the outdegree of v
corresponds to the degree of w and the weight of v is the same as the weight of w,

• each non-root face f of O corresponds to a black vertex b of T of the same degree
and same weight,

• each edge e of O corresponds to an edge of T of the same weight.
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When all the weights of a Z-biorientation are in Z≥0 then we have an N-biorientation,
as defined in Section 2. Note that an N-biorientation is a Z-biorientation where all the
ingoing half-edges have weight 0. The corresponding Z-bimobiles are called N-bimobiles
(these are the Z-bimobiles where the half-edges at black vertices have weight 0).

We will use specializations of the weighted formulation of Φ+ (Corollary 16) in order
to obtain bijections for d-toroidal maps (relying on d

d−2 -orientations, so we are in the
N-bioriented setting), and more generally for toroidal maps of essential girth d with a
root-face of degree d (relying on a generalization of d

d−2 -orientations in the Z-bioriented
setting).

4.4 Necessary condition for α
β
-orientations to be right biorientations

We prove here that minimality is a necessary condition for an α
β -orientation to be a right

biorientation:

Lemma 17 If a face-rooted α
β -oriented map belongs to Ogd, then it is minimal.

Proof. Suppose by contradiction that a face-rooted map M has an α
β -orientation X in

Ogd that is non-minimal. Let f0 be the root face of M . By definition of non-minimality,
there exists a non-empty set S of faces of M , not containing f0, such that every edge on
the boundary of S is either simply directed with a face in S on its right or is bidirected.
Hence, while walking clockwise on the contour of S, each half-edge that is encountered
just after a vertex is outgoing. Consider such a half-edge h and let W be the rightmost
walk starting from h. Then W necessarily stays in S union its contour (it can not
escape), and moreover if it loops on the contour of S, then it does so with S on its right
side. Since S does not contain f0, W can not eventually loop on the contour of f0 with
f0 on the right side, a contradiction. 2

4.5 Bijection for toroidal d-angulations of essential girth d

Let d ≥ 3. We define a toroidal d
d−2 -mobile as an N-bimobile of genus 1, where every

white vertex has weight d, every edge has weight d − 2 and every black vertex has
degree d. We denote by Ud the family of these N-bimobiles. (Note that there is no
black-black edges in an element of Ud.) A simple counting argument gives:

Lemma 18 Every N-bimobile in Ud has excess d.

Proof. For T ∈ Ud, let n•◦ be the number of black-white edges, n◦◦ the number of
white-white edges, e = n•◦ + n◦◦ the total number of edges, n• the number of black
vertices, n◦ the number of white vertices, and k the number of buds. By definition the
excess of T is n•◦+ 2n◦◦− k, so we want to prove that this quantity equals d. Since T is
unicellular, Euler’s formula gives e = n•+n◦+ 1. Since every white vertex has weight d,
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Figure 17: Left: a toroidal d-angulation in Fd endowed with its unique balanced d
d−2 -

orientation in O1
d (d = 3 for the top example, d = 5 for the bottom example). Right:

the associated N-bimobile.

every black vertex has weight 0, and every edge has weight d−2 we have dn◦ = (d−2)e.
Since every black vertex has degree d we have dn• = n•◦+k. Hence we have at the same
time d(n◦ + n•) = (d− 2)e+ n•◦ + k and d(n◦ + n•) = de− d, so that 2e = k + n•◦ + d,
and thus n•◦ + 2n◦◦ − k = d. 2

Clearly the bijection Φ+ specializes as a bijection between face-rooted toroidal d-
angulations endowed with a d

d−2 -orientation in O1
d, and the family Ud.

Consider a toroidal d
d−2 -mobile T and a cycle C of T with a traversal direction. Let

wL(C) (resp. wR(C)) be the total weight of half-edges incident to a white vertex of C on
the left (resp. right) side of C; and let sL(C) (resp. sR(C)) be the number of half-edges,
including buds, incident to a black vertex of C on the left (resp. right) side of C. We
define γL(C) = wL(C) + sL(C), γR(C) = wR(C) + sR(C), and define the γ-score of C as
γ(C) = γR(C)− γL(C). Then T is called balanced if the γ-score of any non-contractible
cycle of T is 0. We denote by UBald the subset of elements of Ud that are balanced. We
will show (Lemma 29 in Section 6.2.1) that Φ+ specializes into a “balanced version” of
the bijection, i.e., a bijection between face-rooted toroidal d-angulations endowed with
a balanced d

d−2 -orientation in O1
d, and the family UBald .

We denote by Fd the family of face-rooted d-toroidal maps such that the only d-angle
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Figure 18: Left: a bipartite toroidal face-rooted 2b-angulation in F̂2b (b = 3 in the ex-
ample), endowed with its unique balanced b

b−1 -orientation in O1
2b. Right: the associated

N-bimobile.

enclosing the root-face is its contour. We will show (Lemma 31 in Section 6.2.1) that a
face-rooted toroidal d-angulation M has a balanced d

d−2 -orientation in O1
d if and only if

M ∈ Fd, and in that case M has a unique balanced d
d−2 -orientation in O1

d, which is the
minimal one (by Lemma 17). Thus we obtain the following bijection:

Theorem 19 (Toroidal d-angulations of essential girth d) For d ≥ 3, there is a
bijection between the map family Fd and the N-bimobile family UBald . Every non-root
face of the map corresponds to a black vertex in the associated N-bimobile.

Two examples are given in Figure 17 for d = 3 and d = 5.

We now give the statement for bipartite maps. Let b ≥ 2, and d = 2b. We denote
by F̂2b the subfamily of maps in F2b that are bipartite. Proposition 13 ensures that a
face-rooted d-toroidal map M is bipartite if and only if all the weights of the unique
minimal balanced d

d−2 -orientation of M are even. Hence, in the bijection of Theorem 19,
M ∈ F2b is bipartite if and only if all half-edge weights in the associated N-bimobile are
even. We formalize this simplification as follows.

We define a b
b−1 -mobile as an N-bimobile of genus 1, where every white vertex has

weight b, every edge has weight b− 1 and every black vertex has degree 2b. The family
of b

b−1 -mobiles is denoted by Ûb. Note that for T ∈ Ûb, the N-bimobile T ′ obtained from
T by doubling every half-edge weight is an element of U2b (in particular, T must have
excess 2b). We say that T is balanced if T ′ is balanced and we denote by ÛBalb the subset

of elements of Ûb that are balanced. Thus we obtain the following bijection:

Corollary 20 (Bipartite toroidal 2b-angulations of essential girth 2b) For b ≥
2, there is a bijection between the map family F̂2b and the N-bimobile family ÛBalb . Every
non-root face of the map corresponds to a black vertex in the associated N-bimobile.

An example is shown in Figure 18 for b = 3.
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4.6 Extension to toroidal maps of essential girth d with a root-face of
degree d

We state here a generalization of Theorem 19 (resp. Corollary 20) to toroidal face-rooted
maps of girth d (resp. bipartite maps of girth 2b) with root-face degree d (resp. 2b).
Note that we allow here all faces, except the root face, to have degree larger than d.
These results can be seen as toroidal counterparts of the bijections obtained in [8] for
planar maps of girth d with a root-face of degree d.

Let d ≥ 1. We denote by Ld the family of face-rooted toroidal maps of essential
girth d, such that the root-face contour is a maximal d-angle.

We now define the mobiles that will be set in bijection with maps in Ld. Recall that
a Z-bimobile is a bimobile with integer weights at the non-bud half-edges, which are in
Z>0 (resp. in Z≤0) when the incident vertex is white (resp. black). We define a toroidal
d
d−2 -Z-mobile as a Z-bimobile of genus 1 with weights in {−2, . . . , d} such that every
white vertex has weight d, every edge has weight d− 2 and every black vertex of degree
i has weight −i + d (hence i ≥ d). We denote by Vd the family of these Z-bimobiles.
(Note that for d ≤ 3, an element of Vd has no white-white edge, while for d ≥ 3, it has no
black-black edge.) A counting argument similar to the one for proving Lemma 18 ensures
that every T ∈ Vd has excess d. Consider T in Vd and a cycle C of T with a traversal
direction. Let wL(C) (resp. wR(C)) be the total weight of half-edges incident to vertices
(black or white) of C on the left (resp. right) side of C. Let sL(C) (resp. sR(C)) be the
total number of half-edges, including buds, incident to black vertices of C on the left
(resp. right) side of C. We define γL(C) = wL(C) + sL(C), γR(C) = wR(C) + sR(C),
and the γ-score of C by γ(C) = γR(C)− γL(C). Then T is called balanced if the γ-score
of any non-contractible cycle of T is 0. We denote by VBald the subset of elements of Vd
that are balanced (see the left-part of Figure 19 for an example).
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Figure 19: Left: a Z-bimobile in VBal3 ; apart from the root-face (which has degree 3),
the corresponding toroidal map has 4 faces of degree 3, 2 faces of degree 4 and one face
of degree 5. Right: a Z-bimobile in V̂Bal3 ; apart from the root-face (which has degree 6),
the corresponding toroidal bipartite map has 4 faces of degree 6 and 2 faces of degree 8.

30



Theorem 21 (toroidal maps) For d ≥ 1, there is a bijection between the map family
Ld and the Z-bimobile family VBald . Every non-root face in the map corresponds to a
black vertex of the same degree in the associated Z-bimobile.

The proof of Theorem 21 is delayed to Section 6.3.

We now give the statement for bipartite maps. Let b ≥ 1. We denote by L̂2b the
subfamily of maps in L2b that are bipartite. We define a toroidal b

b−1 -Z-mobile as a
Z-bimobile of genus 1 with weights in {−1, . . . , b}, all black vertices of even degree, such
that every white vertex has weight b, every edge has weight b− 1 and every black vertex
of degree 2i has weight −i+ b (hence i ≥ b). The family of these Z-bimobiles is denoted
by V̂b. (Note that for b ≤ 2, an element of V̂b has no white-white edge, while for b ≥ 2, it
has no black-black edge.) Note also that the Z-bimobile T ′ obtained from an element T
in V̂b by doubling every half-edge weights is an element of V2b (in particular, T must have
excess 2b). We say that T is balanced if T ′ is balanced and denote by V̂Balb the subset of

elements of V̂b that are balanced (see the right-part of Figure 19 for an example).

Theorem 22 (bipartite toroidal maps) For b ≥ 1, there is a bijection between the
map family L̂2b and the Z-bimobile family V̂Balb . Every non-root face in the map corre-
sponds to a black vertex of the same degree in the associated Z-bimobile. The proof is
again delayed to Section 6.3.

Similarly as for d-angulations, in the bijection of Theorem 21 the map M is bipartite
if and only if the half-edge weights in the corresponding Z-bimobile T are even, and
upon dividing the weights by 2 the Z-bimobile one obtains is the one associated to M
by the bijection of Theorem 22 (which can thus be seen as a parity specialization of the
bijection of Theorem 21).

5 Counting results

For d ≥ 1, let M′d (resp. Md) be the family of rooted (resp. face-rooted) toroidal maps
of essential girth d with a root-face of degree d. In Section 5.1 we express the generating
function of M′d (with control on the face-degrees) in terms of generating functions of
balanced toroidal d

d−2 -Z mobiles. To do this, we rely on the bijections obtained so far
(Theorems 21 and 22) and on a decomposition of maps in M′d into a toroidal part
and a planar part by cutting along a certain d-angle (the ‘maximal’ one) enclosing the
root-face. Then, in Sections 5.2 and 5.3 we show that the generating function of d

d−2 -Z
mobiles can be expressed in certain specific cases (we show the approach on essentially
simple triangulations and bipartite quadrangulations).

5.1 A general expression in terms of balanced mobiles

For M ∈ Md, recall that a d-angle of M is a contractible closed walk of length d, and
it is called maximal if its enclosed area is not contained in the enclosed area of another
d-angle.
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Lemma 23 Two distinct maximal d-angles of a map M ∈ Md always have disjoint
interiors.

Proof. Let us first reformulate the definition of a d-angle. We define a region of M
as given by R = V ′ ∪ E′ ∪ F ′ where V ′, E′, F ′ are subsets of the vertex-set, edge-set
and face-set of M , such that if v ∈ V ′ then the edges incident to v are in E′, and if
e ∈ E′ then the faces incident to e are in F ′. Note that the union (resp. intersection)
of two regions is also a region. A boundary-edge-side of R is an incidence face/edge of
M such that the face is in F ′ and the edge is not in E′. The boundary-length of R,
denoted by `(R), is the number of boundary-edge-sides of R. A disk-region is a region R
homeomorphic to an open disk. A d-angle thus corresponds to the (cyclic sequence of)
boundary-edge-sides of a disk-region R such that `(R) = d; and it is maximal if there is
no other disk-region R̄ of boundary-length d such that R ⊂ R̄.

We thus have to show that for two distinct disk-regions R1, R2 both enclosed by
maximal d-angles, we have R1 ∩R2 = ∅. It is easy to see that for any two regions S1, S2

we have `(S1) + `(S2) = `(S1 ∪ S2) + `(S1 ∩ S2) (any incidence face/edge of M has the
same contribution to `(S1) + `(S2) as to `(S1 ∪ S2) + `(S1 ∩ S2)). Assume R1 ∩R2 6= ∅.
Since R1 and R2 are disk-regions, R1 ∩R2 is a disjoint union of disk-regions D1, . . . , Dk,
and we have

2d = `(R1) + `(R2) = `(R1 ∪R2) +

k∑
i=1

`(Di).

Since M has essential girth d, we have `(Di) ≥ d for each 1 ≤ i ≤ k. Hence we must
have k = 1 (we use `(R1 ∪ R2) ≥ 1 to exclude the case k = 2). Since R1 ∩ R2 is a
disk-region, the union R1 ∪ R2 must also be a disk-region, hence `(R1 ∪ R2) ≥ d. But
`(R1 ∪ R2) = 2d − `(D1) ≤ d, hence `(R1 ∪ R2) = d. Thus R1 ∪ R2 is enclosed by a
d-angle, contradicting the fact that R1 and R2 are enclosed by maximal d-angles. 2

Every M ∈ Md is rooted in a face f0 of degree d, so f0 is included in a maximal
d-angle, and Lemma 23 ensures that M has a unique maximal d-angle enclosing the
root-face. This d-angle is called the root-d-angle. Consider the operation of cutting
along the root-d-angle C of M . This operation yields two maps (one on each side of C):
a toroidal map L with a marked face of degree d and a planar map A with two marked
faces f0, f1 each of degree d.

Recall that Ld is the subfamily of Md where the root-face contour is a maximal
d-angle; we denote by L′d the family of rooted toroidal maps such that the underlying
face-rooted map is in Ld. Moreover we let A′d be the family of planar maps of girth d
with two marked faces f0, f1 of degree d, and a marked corner in f0 (we consider f1 as the
outer face). Then the previous decomposition at the root-d-angle yields (see Figure 20)

M′d ' L′d ×A′d. (1)

Let Md ≡ Md(z;xd, xd+1, . . .) (resp. Ld ≡ Ld(z;xd, xd+1, . . .)) be the generating
function of maps inM′d (resp. in L′d), with z dual to the number of vertices and xi dual
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Figure 20: Left: a map M ∈ M′3. Cutting along the root-3-angle of M , one obtains
a map L ∈ L′3 and a map A ∈ A′3. One of the 3 vertices on the root-3-angle can be
canonically chosen (i.e., the first of the 3 vertices that is reached in a left-to-right depth-
first-search starting from the root-corner), and this vertex is taken as the one incident
to the root-corner of L. The correspondence thus obtained is bijective.

to the number of non-root faces of degree i. And let Ad ≡ Ad(z;xd, xd+1, . . .) be the
generating function of maps in A′d, with z dual to the number of vertices not incident
to f1, and xi dual to the number of non-marked faces of degree i. Then by (1) we have

Md = Ld ·Ad. (2)

The generating function Ad has already been computed bijectively in [8], it reads:

Ad = (1 +W0)d,

whereW0 is part of a finite setW−1,W0, . . . ,Wd−1 of series (in the variables z, xd, xd+1, . . .)
that are specified by the system8:


Wj = z hj+2(W1, . . . ,Wd−1) for all j in [−1 .. d− 3],

Wj = [uj+2]
∑
i≥d

xiu
i(1 +W0 + u−1W−1 + u−2)i−1 for all j in {d− 2, d− 1}, (3)

where hj denotes the multivariate polynomial in the variables w1, w2, . . . defined by:

hj(w1, w2, . . .) = [tj ]
1

1−
∑

i>0 t
iwi

=
∑
r≥0

∑
i1,...,ir>0
i1+···+ir=j

wi1 · · ·wir . (4)

8We use the usual bracket notation: if P =
∑

k aku
k, then [uk]P = ak.
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Regarding Ld, let Td ≡ VBald be the family of balanced toroidal d
d−2 -Z-mobiles and

let T ′d be the family of objects in Td where one of the d exposed half-edges is marked (see
Section 4.2 for the definition of exposed half-edges). Then the bijection of Theorem 21
directly yields a bijection between L′d and T ′d (indeed the bijection of Theorem 21 relies
on the general bijection given in Corollary 16, for which there is a natural 1-to-1 corre-
spondence between the d corners in the root-face and the d exposed half-edges). Hence
Ld is also the generating function of balanced toroidal d

d−2 -Z-mobiles with a marked ex-
posed half-edge, with z dual to the number of white vertices and xi dual to the number
of black vertices of degree i.

For a unicellular map M of positive genus, the core C of M is obtained from M by
successively deleting leaves, until there is no leaf (so C has all its vertices of degree at
least 2; the deleted edges form trees attached at vertices of C). In C we call maximal
chain a path P whose extremities have degree larger than 2 and all non-extremal vertices
of P have degree 2. Then the kernel K of M is obtained from C by replacing every
maximal chain by an edge. In genus 1 it is known that the kernel of a unicellular map
is either made of one vertex with two loops (double loop) or is made of 2 vertices and 3
edges joining them (triple edge).

Hence there are two types of toroidal mobiles, those where the associated kernel is
the triple edge, called of type I, and those where the associated kernel is the double loop,
called of type II. LetGd ≡ Gd(z;xd, xd+1, . . .) (resp. Hd ≡ Hd(z;xd, xd+1, . . .) be the gen-
erating function of elements of type I (resp. type II) in Td and with a marked half-edge in
the associated kernel. And let G̃d ≡ G̃d(z;xd, xd+1, . . .) (resp. H̃d ≡ H̃d(z;xd, xd+1, . . .)
be the generating function of elements of type I (resp. type II) in Td and with a marked
exposed half-edge. In all these generating functions, z is dual to the number of white ver-
tices and xi is dual to the number of black vertices of degree i. We have Ld = (G̃d+H̃d),
so by what precedes Md = Ad · (G̃d + H̃d); and by a classical double-counting argument
we have G̃d = d

6Gd and H̃d = d
4Hd. Hence we obtain the following expression of Md in

terms of generating functions of balanced toroidal d
d−2 -Z-mobiles:

Proposition 24 For d ≥ 1, the generating function Md is given by

Md = d ·Ad · (1
6Gd + 1

4Hd).

Very similarly we can obtain a general expression in the bipartite case. For b ≥ 1,
let M̂2b, L̂2b and Â2b be the generating functions gathering (respectively) the terms of
M2b, L2b and A2b given by bipartite maps.

Then, specializing (1) to bipartite maps yields

M̂2b = L̂2b · Â2b.

In addition the generating function Â2b has been given an explicit expression in [8], it
reads:

Â2b = (1 + V0)2b
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where V0 is part of a finite set {V0, . . . , Vb−1} of generating functions specified by the
system: 

Vj = z hj+1(V1, . . . , Vb−1) for all j in [0 .. b− 2],

Vb−1 =
∑
i≥b

x2i

(
2i− 1

i− b

)
(1 + V0)b+i−1 (5)

Let Ĝ2b ≡ Ĝ2b(z;x2, x4, . . .) (resp. Ĥ2b ≡ Ĥ2b(z;x2, x4, . . .)) be the generating func-
tion of balanced toroidal b

b−1 -Z-mobiles of type I (resp. type II) with a marked half-edge
in the associated kernel, with z dual to the number of white vertices and x2i dual to
the number of black vertices of degree 2i. By the very same arguments as to prove
Proposition 24, we can express M̂2b in terms of generating functions of balanced toroidal
b
b−1 -Z-mobiles:

Proposition 25 For b ≥ 1, the generating function M̂2b is given by

M̂2b = 2b · Â2b · (1
6Ĝ2b + 1

4Ĥ2b).

Propositions 24 and 25 ensure that the enumeration of rooted toroidal maps (resp.
bipartite toroidal maps) of essential girth d (resp. 2b) and root-face degree d (resp. 2b),
with control on the face-degrees, amounts to counting balanced toroidal d

d−2 -Z-mobiles

(resp. b
b−1 -Z-mobiles) with control on the degrees of the black vertices. We show in

the next two sections that this can be carried out for essentially simple triangulations
and for essentially simple bipartite quadrangulations, yielding the two simple generating
function expressions stated next:

Proposition 26 (essentially simple triangulations) Let tn be the number of essen-
tially simple rooted toroidal triangulations with n vertices. Then∑

n≥1

tnz
n =

r

(1− 3r)2
,

where r ≡ r(z) is given by r = z(1 + r)4.

Proposition 27 (essentially simple quadrangulations) Let qn be the number of rooted
toroidal quadrangulations with n vertices (and also n faces) that are essentially simple
and bipartite. Then ∑

n≥1

qnz
n =

r2

(1 + 2r)(1− 2r)2
,

where r ≡ r(z) is given by r = z(1 + r)3.

Similar calculations could be carried out for bipartite quadrangulations and for es-
sentially loopless triangulations. The expression for the series of rooted toroidal bipartite
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quadrangulations (counted by vertices) is F (z) = r2(1+3r)
(1+r)(1−3r)2

where r ≡ r(z) is given

by r = z(1 + 3r)2. Bijective derivations of this formula have been given in [19, 29].
And the expression for the series of rooted toroidal essentially loopless triangulations
(counted by vertices) is G(z) = r(1+2r)

(1−4r)2
where r ≡ r(z) is given by r = z(1 + 2r)3.

By a classical substitution approach [28, Sec.2.9] the series F (z) can be related to the
series of Proposition 27 (and similarly the series G(z) can be related to the series of
Proposition 26), so that one expression can be deduced from the other one (however via
some algebraic manipulations, so a bijective derivation of one expression does not yield
a bijective derivation of the other expression via this approach).

Calculations for toroidal d-angulations of essential girth d ≥ 5 seem much more tech-
nical. In principle the line of approach we follow in the next two subsections is doable
(see [16] where it is carried out for constellations and hypermaps of arbitrarily large
face-degrees) and should at least yield an algebraic expression, but likely a complicated
one, whereas it is to be expected that the final expression should be simple9. In this per-
spective it would be helpful to have a better combinatorial explanation of the simplicity
of the generating function expressions obtained in Propositions 26 and 27.

5.2 Bijective derivation of Proposition 26

In this section we compute the generating function T (z) of rooted toroidal triangulations
that have essential girth 3 (or equivalently, that are essentially simple), with z dual to
the number of vertices. Note that, for d = 3, a toroidal d

d−2 -mobile T has all its edges
of weight 1, hence all edges are black-white with weight 1 on the half-edge incident to
the white extremity. Since white vertices have weight 3, they have degree 3. Hence, for
d = 3 the toroidal d

d−2 -mobiles identify to toroidal mobiles (edges are black-white, buds
are at black vertices only) where every vertex (white or black) has degree 3, which we
call 3-regular toroidal mobiles, see Figure 21 (1st drawing) for an example. Note that
such mobiles must be of type I, since in type II the unique vertex in the kernel must
have degree at least 4. A 3-regular toroidal mobile T is called balanced if every cycle of
T has the same number of incident half-edges on the left side as on the right side. Let
N(z) be the generating function of balanced 3-regular toroidal mobiles with a marked
half-edge in the associated kernel.

When setting xi = δi=3 in system (3), one obtains W0 = zW 2
1 and W1 = (1 +W0)2.

Let R ≡ R(z) and S ≡ S(z) be given by R = 1 + W0 and S = W1. So R,S satisfy the
system {R = 1 + zS2, S = R2}. Then by Proposition 24, we have:

T (z) =
1

2
R(z)3N(z),

9Indeed, combining the substitution approach in [15] to deal with girth constraints, together with
the expressions obtained from the topological recursion approach for toroidal maps with no girth con-
straint [22, 18], it should be possible to show that when the face-degrees are bounded (i.e., for some fixed
N , the face-degree variables x2i are taken to be 0 for i > N), the generating function M̂2b has a ratio-
nal expression in terms of the series V0, . . . , Vb and the variables x2b, . . . , x2N , and a similar rationality
property should hold for Md.
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v1 v2

v1

v2

Figure 21: From left to right: a toroidal 3-regular mobile T counted by N••(z) (where
the marked half-edge of the kernel is indicated); a rooted R-mobile; a rooted S-mobile;
and a bi-rooted 3-regular mobile (the second branch of T , both roots are black).

Note that the generating function N(z) splits as

N(z) = N••(z) +N◦•(z) +N•◦(z) +N◦◦(z) = N••(z) + 2N•◦(z) +N◦◦(z),

depending on the colors of the two vertices v1, v2 of the kernel (with v1 the one incident
to the marked half-edge), where the second equality follows from N•◦(z) = N◦•(z), since
v1 and v2 play symmetric roles.

We now define a rooted mobile as a planar mobile with a marked vertex that is a
leaf, called the root (it is allowed for a rooted mobile to be just made of a black vertex
with a single incident bud). And we define a bi-rooted mobile as a mobile with two
marked vertices v1, v2 that are leaves, called primary root and secondary root. A rooted
or bi-rooted mobile is called 3-regular if all its non-root vertices have degree 3.

An R-mobile (resp. S-mobile) is defined as a rooted 3-regular mobile where the root
is black (resp. white), see 2nd and 3rd drawing in Figure 21. By a decomposition at the
root, one checks that R is the generating function of R-mobiles and S is the generating
function of S-mobiles, with z dual to the number of non-root white vertices.

For a bi-rooted mobile, the path connecting the two roots is called the spine, the
traversal direction being from the primary to the secondary root (see the fourth drawing
of Figure 21). For each non-extremal vertex v of the spine, the balance at v is defined
as the number of half-edges (including buds) incident to v on the left side of the spine,
minus the number of half-edges (including buds) incident to v on the right side of the
spine. And the balance of the bi-rooted mobile is defined as the total balance over all
non-extremal vertices of its spine. For a bi-rooted 3-regular mobile, the balance at each
vertex of the spine is either +1 or −1, so that the sequence of balances along the spine
is naturally encoded by a directed path with steps in {−1,+1}, and the final height of
the path is the balance of the rooted bimobile, see Figure 22.

Clearly a 3-regular toroidal mobile T (with a marked half-edge in the kernel) de-
composes into an ordered triple of bi-rooted 3-regular mobiles (one for each edge of the
kernel), and T is balanced if and only if the 3 bi-rooted mobiles have the same balance.
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Figure 22: Left: a bi-rooted mobile of balance 1 (generic notation for mobiles hanging
from the spine). Right: the associated path with steps +1 or −1 (up or down), ending
at height 1.

Hence, if for i ∈ Z we let K
(i)
•• (z), K

(i)
•◦ (z), K

(i)
◦◦ (z) be the generating functions of bi-

rooted 3-regular mobiles of balance i where v1, v2 are black/black (resp. black/white,
white/white), and with z dual to the number of non-root white vertices, then we find

N••(z) =
∑
i∈Z

K
(i)
•• (z)3, N•◦(z) = z

∑
i∈Z

K
(i)
•◦ (z)3, N◦◦(z) = z2

∑
i∈Z

K
(i)
◦◦ (z)3.

For i ∈ Z, let pn,i be the number of walks of length n with steps in {−1, 1}, starting
at 0 and ending at i (note that pn,i = 0 if i 6= n mod 2). We also define the generating
function of walks ending at i as

P (i)(t) =
∑
n≥0

pn,it
bn/2c.

We clearly have for i ∈ Z,

K
(i)
◦◦ (z) = 0 for i even, K

(i)
◦◦ (z) = R · P (i)(t)

∣∣∣
t=zRS

for i odd.

K
(i)
•• (z) = 0 for i even, K

(i)
•• (z) = zS · P (i)(t)

∣∣∣
t=zRS

for i odd.

K
(i)
•◦ (z) = 0 for i odd, K

(i)
•◦ (z) = P (i)(t)

∣∣∣
t=zRS

for i even.

Let B(t) = P (0)(t) be the generating function of bridges (walks ending at 0), and let
U(t) be the generating function of non-empty Dyck walks (i.e., bridges of positive length
never visiting negative values). Then U ≡ U(t) is classically given by

U = t · (1 + U)2,

and then (looking at the first return to 0 for non-empty bridges), B ≡ B(t) satisfies the
equation B = 1 + 2t(1 + U)B, so that

B =
1

1− 2t · (1 + U)
.
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Then we have P (i)(t) = P (−i)(t) for i < 0, and for i > 0 we have (by a classical
decomposition at the last visits to 0, 1, . . . , i− 1, see [31])

P (i)(t) = B · (1 + U)i · tbi/2c.

Hence we have

N◦◦(z) = z2R3
∑
i∈Z
i odd

P (i)(t)3
∣∣∣
t=zRS

= 2z2R3 B
3 · (1 + U)3

1− t3(1 + U)6

∣∣∣
t=zRS

= 2z2R3B
3 · (1 + U)3

1− U3

∣∣∣
t=zRS

The last expression can be written in terms of U uniquely. Indeed, all involved quantities
can be expressed in terms of U : we have

t =
U

(1 + U)2
=

1

U + 2 + U−1
, B =

1

1− 2t(1 + U)
=

1 + U

1− U
,

and t = zRS = zR3 = (R− 1)/R = 1− 1/R, so that

R =
1

1− t
=

(1 + U)2

(U2 + U + 1)
, z =

R− 1

R4
=

(U2 + U + 1)3U

(U + 1)8
.

Overall we find

N◦◦(z) =
2U2(U2 + U + 1)2

(U − 1)4(1 + U)4
=

2(U + 1 + U−1)2

(U − 2 + U−1)2(U + 2 + U−1)2
.

Similarly as in [19], we obtain an expression that is rational in U +U−1 and so it is also
rational in t since U +U−1 = 1/t− 2, and then rational in R since t = 1− 1/R. Finally,
we obtain

N◦◦(z) =
2(R− 1)2

(3R− 4)2R2
.

Similarly we find

N••(z) = 2z3S3 B
3 · (1 + U)3

1− t3(1 + U)6

∣∣∣
t=zRS

= 2z3S3B
3 · (1 + U)3

1− U3

∣∣∣
t=zRS

=
2(U + 1 + U−1)2

(U − 2 + U−1)2(U + 2 + U−1)3
=

2(R− 1)3

(3R− 4)2R3

and

N•◦(z) = zB3
( 2

1− U3
− 1
)∣∣∣
t=zRS

=
(U + 1 + U−1)2(U − 1 + U−1)

(U − 2 + U−1)2(U + 2 + U−1)2
=

(1−R)(2R− 3)

(3R− 4)2R2
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We can now conclude the proof of Proposition 26. The sum of the 3 contributions
above (with the 3rd contribution multiplied by 2) gives N(z) = 2(R−1)

(4−3R)2R3 , so that we

obtain

T (z) =
1

2
N(z)R3 =

(R− 1)

(4− 3R)2
,

which gives the stated expression upon writing r for R − 1 (so that r is given by r =
z(1 + r)4).

5.3 Bijective derivation of Proposition 27

We now compute the generating function Q(z) (with z dual to the number of vertices)
of rooted toroidal quadrangulations that are bipartite and essentially simple (we will
overrule here some notation from the previous section). For b = 2, a toroidal b

b−1 -
mobile T has all its edges of weight 1, hence all edges are black-white with weight 1 on
the half-edge incident to the white extremity. Since white vertices have weight 4, they
have degree 4. Hence, for b = 2 the toroidal b

b−1 -mobiles identify to toroidal mobiles
where black vertices have degree 4 and white vertices have degree 2, which we call (4, 2)-
regular toroidal mobiles. Such a mobile is called balanced if, for every cycle, it has the
same number of incident half-edges (including buds) on the left side as on the right side.
Let NI(z) (resp. NII(z)) be the generating function of toroidal balanced (4, 2)-regular
mobiles of type I (resp. type II), with z dual to the number of white vertices.

When setting xi = δi=4 in system (5), one obtains V0 = zV1 and V1 = (1 + V0)3. Let
R ≡ R(z) be given by R = 1 + V0, so R satisfies R = 1 + zR3. Then by Proposition 25,
we have:

Q(z) = R(z)4 ·
(2

3
NI(z) +NII(z)

)
.

A rooted or bi-rooted (planar) mobile is called (4, 2)-regular if the root-vertex is
black and all the non-root vertices have degree 4 if black and degree 2 if white. Rooted
(4, 2)-regular mobile are shortly called R-mobiles; again it is easy to check that R(z)
is the generating function of R-mobiles, with z dual to the number of white vertices.
For a bi-rooted (4, 2)-regular mobile the balance at each black vertex of the spine is
in {−2, 0,+2}, so that the sequence of balances along the spine is now encoded by a
path with increments in {−1, 0,+1}, the final value of the path giving half of the total
balance (see Figure 23). Let pn,i be the number of such paths of length n ending at i,
and let P (i)(t) =

∑
n≥0 pn,it

n be the generating function for walks ending at i, and let

B ≡ B(t) = P (0)(t) be the generating function of those ending at 0, called bridges.

A mobile counted by NII(z) (see Figure 24 for an example) clearly decomposes into a
pair of bi-rooted (4, 2)-regular mobiles both of balance 0 (one bi-rooted mobile for each
of the two edges of the kernel), which gives

NII(z) = z2B2
∣∣∣
t=zR2

.
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Figure 23: Left: a bi-rooted (4, 2)-regular mobile of balance −1 (generic notation for the
mobiles hanging from the spine). Right: the associated path with steps in {−1, 0, 1},
ending at height −1.

v1

v2root

Figure 24: From left to right: a toroidal (4, 2)-regular mobile M counted by NII(z); an
R-mobile; and a bi-rooted (4, 2)-regular mobile (the second branch of M).

Let C ≡ C(t) be the generating function of walks counted by B(t) that never visit
values in Z<0 (called Motzkin excursions), and let U(t) := tC(t). Note that U ≡ U(t) is
given by the equation

U = t · (1 + U + U2).

Again our aim will be to express all generating functions rationally in terms of U . We
have

t =
1

U + 1 + U−1
,

and moreover we have t = zR2 = (R− 1)/R = 1− 1/R, which gives

R =
1

1− t
=
U2 + U + 1

U2 + 1
, z =

R− 1

R3
=

(U2 + 1)2U

(U2 + U + 1)3
.

Note that B satisfies the equation B = 1 + (t+ 2tU)B (obtained by looking at the first
return to 0), which gives

B =
1

1− t− 2tU
=

U2 + U + 1

(1− U)(1 + U)
.

We thus obtain the following expression for NII(z) in terms of U :

NII(z) =
(U2 + 1)4U2

(U2 + U + 1)4(U − 1)2(U + 1)2
=

(U + U−1)4

(U + 1 + U−1)4(U − 2 + U−1)(U + 2 + U−1)
.
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We obtain an expression that is rational in U + U−1 and so it is also rational in t since
U + U−1 = 1/t− 1, and then rational in R since t = 1− 1/R. Finally, we obtain

NII(z) =
(R− 1)2

(2R− 1)(3− 2R)R4
.

Regarding mobiles counted by NI(z), note that the two vertices v1, v2 of the kernel
κ have to be black (since white vertices have degree 2), and moreover, for i ∈ {1, 2},
vi has exactly one corner (denoted νi) that carries an attached R-mobile. Note that 3
situations can arise in a counterclockwise walk (of length 6 since κ has 3 edges) around
the unique face of κ: ν2 is either (a) just after ν1, (b) or 3 steps after ν1, (c) or just

before ν1. Let N
(a)
I (z), N

(b)
I (z), N

(c)
I (z) be the respective contributions to NI(z). The

first and last situations are clearly symmetric (up to exchanging the roles of v1 and v2),

hence N
(a)
I (z) = N

(c)
I (z).

In case (b), the mobile is made of 3 bi-rooted mobiles (one for each branch connecting
v1 to v2) of the same excess i ∈ Z, plus two attached R-mobiles (those at {ν1, ν2}). Hence

N
(b)
I (z) = 3R(z)2

∑
i∈Z

z3P (i)(t)3
∣∣∣
t=zR2

where the factor 3 accounts for the choice of the marked half-edge of κ, the factor R(z)2

accounts for the attached R-mobiles at v1 and v2, and each of the 3 factors zP (i)(t)
∣∣
t=zR2

accounts for each of the 3 branches connecting v1 to v2.

Note that P (i)(t) = P−i(t) for i < 0, and for i > 0 a decomposition at the last visits
to 0, to 1, . . . , i− 1, ensures that

P (i)(t) = B(t) · U(t)i.

Hence we have

N
(b)
I (z) = 3z3R(z)2B(t)3

∑
i∈Z

U(t)3|i|
∣∣∣
t=zR2

= 3z3R(z)2B(t)3
(

1 +
2U(t)3

1− U(t)3

)∣∣∣
t=zR2

.

Again we can express everything rationally in terms of U , and find

N
(b)
I (z) =

3(U + U−1)4(U − 1 + U−1)

(U − 2 + U−1)2(U + 1 + U−1)5(U + 2 + U−1)
=

3(R− 1)3(2−R)

(2R− 1)R5(3− 2R)2
.

Finally, in case (a), it is easy to see that two of the bi-rooted mobiles from v1 to v2 have
same balance i ∈ Z, while the bi-rooted mobile for the remaining branch has balance
i− 1 (see 1st drawing of Figure 25 for an example).

Hence

N
(a)
I (z) = 3R(z)2

∑
i∈Z

z3P (i)(t)2P (i−1)(t)
∣∣∣
t=zR2

= 3R(z)2
∑
i∈Z

z3B(t)3U2|i|+|i−1|(t)
∣∣∣
t=zR2

= 3R(z)2z3B(t)3U(t) + U(t)2

1− U(t)3

∣∣∣
t=zR2
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v1 v2 v1
v2

Figure 25: Left: a toroidal (4, 2)-regular mobile counted by N
(a)
I (z); Right: a toroidal

(4, 2)-regular mobile counted by N
(b)
I (z).

Again we rewrite the expression in terms of U and then R, finding

N
(a)
I (z) =

3(U + U−1)4

(U − 2 + U−1)2(U + 1 + U−1)5(U + 2 + U−1)
=

3(R− 1)4

(2R− 1)R5(3− 2R)2
.

We thus get

NI(z) = 2N
(a)
I (z) +N

(b)
I (z) =

3(R− 1)3

R4(2R− 1)(3− 2R)2
.

We thus obtain

Q(z) = R(z)4 ·
(2

3
NI(z) +NII(z)

)
=

(R− 1)2

(2R− 1)(3− 2R)2
,

which concludes the proof of Proposition 27, upon writing r = R− 1 (so that r is given
by r = z(1 + r)3).

6 Proofs of the bijections

6.1 Proof of Theorem 14

6.1.1 The Bernardi-Chapuy bijection

Similarly as in the planar case [7], the proof of Theorem 14 is by a reduction (in the
dual setting) to the bijection of Bernardi and Chapuy [6]. In a rooted map (of genus
g ≥ 0), the convention adopted here is to indicate the root-corner by an artificial ingoing
half-edge ĥ, see the top-left drawing in Figure 26. For M a rooted map, an orientation
of M is called a co-left orientation if for any edge e of M there is a (necessarily unique)
sequence of half-edges h1, h

′
1, . . . , hk such that

• h1 is the ingoing part of e, and hk = ĥ,
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Figure 26: The Bernardi-Chapuy bijection between T g1 and Rg (g = 1 in the example).
The top-row shows the mapping Ψ from T g1 to Rg. The bottom-row shows the mapping
Φ from Rg to T g1 .

• for every i ∈ [1..k−1], hi and h′i are opposite on the same edge, with hi the ingoing
part and h′i the outgoing part; in addition all the half-edges between h′i and hi+1

(excluded) in clockwise order around their common incident vertex are outgoing.

For g ≥ 0, let Rg be the family of co-left orientations of rooted maps of genus g.
Bernardi and Chapuy give in [6, Section 7] a bijection between T g1 (mobiles of genus g
and excess 1) and Rg.

We first describe the mapping Ψ from T g1 to Rg. For T ∈ T g1 , the partial closure of
T is the figure obtained as follows (see the middle drawing in the top-row of Figure 26):

• for each edge e = (u, v) ∈ T , with u the black extremity and v the white extremity,
insert an ingoing bud in the corner just after e in counterclockwise order around
u (since T has excess 1, there are one more ingoing buds than outgoing buds);

• match the outgoing and ingoing buds according to a walk (with the face on our
right) around the unique face in T , considering outgoing buds as opening paren-
theses and ingoing buds as closing parentheses; each matched pair yields a new
directed edge, and the unique unmatched ingoing bud is called exposed (in [6, Sec-
tion 7] they call balanced blossoming mobile the mobile T plus the unique exposed
ingoing bud).

Then, M := Ψ(T ) is obtained from the partial closure of T by erasing all the white
vertices of T , all the edges of T , and declaring the single exposed ingoing bud as the
root of the obtained oriented map M , see the top-row of Figure 26.
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f0

Figure 27: The partial closure of a mobile of excess 4.

Conversely, for M an oriented map in Rg (whose vertices are considered as black),
T = Φ(M) is obtained as follows (see the bottom-row of Figure 26):

• Insert a white vertex in each face of M ,

• For each ingoing half-edge h of M (including the root half-edge), create a new edge
connecting the vertex incident to h to the white vertex in the face on the left of h
(looking from h toward the vertex incident to h),

• Delete all the ingoing half-edges, and declare the outgoing half-edges as buds.

6.1.2 Deducing the bijectivity of Φ+

We now explain how the bijectivity of Φ+ in Theorem 14 can be deduced from properties
of the bijections Ψ/Φ and properties of the relevant oriented maps. A first remark is
that, for d ≥ 1 and T ∈ T gd , the partial closure of T can be performed exactly in the
same way as for d = 1. One obtains a map (made of T , the new white vertices, and
the new edges created by matching outgoing buds with ingoing buds) with d unmatched
ingoing buds incident to a same face, see Figure 27 for an example.

For d ≥ 1, let Rgd be the subfamily of Rg where the root-vertex has d outgoing half-
edges and a single ingoing half-edge (the root). For M ∈ Rgd let ι(M) be the underlying
vertex-rooted oriented map (i.e., we delete the root ingoing half-edge but record that
the incident vertex is distinguished), and let Sgd be the family of vertex-rooted oriented
maps of genus g that is the image of Rgd by the mapping ι. For two oriented maps M,M ′

in Rgd we write M ∼ M ′ if ι(M) = ι(M ′), so that Sgd ≡ R
g
d/∼. Moreover let Ugd be the

subfamily of mobiles in T g1 that are associated to maps in Rgd. Let T ′ ∈ Ugd and let
M ′ = Ψ(T ′), with v the root-vertex of M ′. Since v has indegree 1 and outdegree d in
M ′, the vertex v is a leaf in T ′ —it is incident to a single edge e— with d attached buds.
If we delete v together with the attached edge and buds we clearly obtain a mobile in
T gd ; we denote by ι(T ′) this mobile.

For two mobiles T ′, U ′ in Ugd we write T ′ ∼ U ′ if ι(T ′) = ι(U ′). Conversely, for
T ∈ T gd , let G be the partial closure of T ; and let f0 be the face of G containing the
d unmatched ingoing buds. It is easy to see that f0 has exactly d corner that are at a
white vertex; indeed there is one such corner before each unmatched ingoing bud in a
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clockwise walk around f0 (i.e., walking with the interior of f0 on the right). Then we
obtain all the mobiles T ′ such that ι(T ′) = T as follows (see Figure 28): choose a white
corner c in f0, and then attach an edge at c (inside f0) connected to a new black vertex
v, and attach d buds at v.

f0 ⇒ v

Figure 28: Lifting a mobile in T gd to a mobile in Ugd .

From the preceding discussion, it is clear that the bijection Ψ/Φ between Ugd and
Rgd respects the equivalence relations ∼, i.e. Φ(M ′) ∼ Φ(N ′) for M ′ ∼ N ′ and Ψ(T ′) ∼
Ψ(U ′) for T ′ ∼ U ′. Since Sgd ≡ R

g
d/∼ and T gd ≡ U

g
d/∼, we conclude that Ψ/Φ induces

a bijection between T gd and Sgd .

Moreover the duality property of Rg (see [6, Lemma 8.1]) implies that Ogd is the
image of Sgd by duality (for M ∈ Sgd and M∗ the dual face-rooted map, every edge
e∗ ∈ M∗ is directed from the left-side to the right-side of the dual edge e ∈ M). Hence
Φ induces a bijection between Ogd and T gd for every d ≥ 1, which one can check to be
precisely the bijection Φ+ described in Section 4.2.

6.2 Proof of Theorem 19

In this section we prove Theorem 19, which will follow from two lemmas: the first one
(Lemma 29) ensuring that the bijection Φ+ preserves the balancedness property, and
the second one (Lemma 31) ensuring that the maps in Fd identify to the face-rooted
toroidal maps endowed with a balanced d

d−2 -orientation in O1
d.

6.2.1 Balanced specialization of Φ+

For M a face-rooted map of genus g (whose vertices are considered as white), we define
the star-completion of M as the map M? obtained from M by adding a black vertex
vf inside each non-root face f , and connecting vf to every vertex around f (via every
corner around f), so that vf has degree deg(f) in M?. The edges of M? belonging to
M are called M -edges and the edges incident to black vertices are called star-edges.

Let d ≥ 3. Let M be a face-rooted toroidal d-angulation endowed with a d
d−2 -

orientation X. We extend X to an N-biorientation X? of M? as follows : for each
half-edge h of M?, if h is part of a M -edge, then it has the same weight (thus the same
orientation) as in X, if h is part of a star-edge, then it has weight 0 if it is incident to
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a white vertex, and weight 1 if it is incident to a black vertex (thus star-edges are fully
oriented from the black vertex toward the white vertex).

Lemma 28 Let M be a d-toroidal map endowed with a d
d−2 -orientation X. Then X is

balanced if and only if X? is balanced. Moreover, if the γ-score of two non-contractible
non-homotopic cycles of M? is 0, then X? is balanced.

Proof. We start with the case of d odd, which is a bit easier. Let M ′ be the d-angulation
obtained fromM where in each face f ofM we insert a new vertex vf , called a star-vertex,
connected to every corner around f via a path of length d−1

2 , called a connection-path,

see Figure 29(a). Any d
d−2 -orientation X of M can be extended to a d

d−2 -orientation X ′

of M ′: for each connection-path e1, . . . , e(d−1)/(2) (which is traversed starting from the
star-vertex extremity), we give weight 2i− 1 (resp. d− 2i− 1) to the first (resp. second)
traversed half-edge of ei.

(a) (b)

Figure 29: Operations within each face for the mapping from M to M ′ used in the proof
of Lemma 28. (a) shows the case of odd d; (b) shows the case of even d.

Note that the connection-paths have weight 0 at the incident vertex of M , hence
for any non-contractible cycle C of M , the γ-score of C is the same for X as for X ′.
Hence, if X ′ is balanced, then so is X and the converse also holds by Lemma 7. Note
also that any star-edge e of M? corresponds to a connection-path of M ′. Accordingly
any non-contractible cycle C of M? naturally induces a non-contractible cycle C ′ in M ′.
In addition, since the half-edges at the star-vertex extremity in connection-paths have
weight 1, for any non-contractible cycle C of M?, we have γX

?
(C) = γX

′
(C ′). So again if

X ′ is balanced, then so is X? and the converse also holds by Lemma 7. So X is balanced
if and only if X? is balanced.

Moreover, if the γ-score of two non-contractible non-homotopic cycles C1, C2 of M?

is 0, then the γ-score of the two corresponding cycles in X ′ is 0, so by Lemma 7, X ′ is
balanced and so is X?.

For d even, the augmentation from M to M ′ is done differently; we insert a d-gon Df

inside every face f , we set a one-to-one correspondence between the corners in clockwise
order around f and the vertices in clockwise order around Df , and we connect any
matched pair by a path of length d/2 − 1, called a connection path, see Figure 29(b).
Similarly as before, every d

d−2 -orientation X of M induces a d
d−2 -orientation X ′ of M ′: we
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C

. . .
d-2

0 . . .

b

h

Figure 30: Each black vertex b on C corresponds (1-to-1) to a C-adjacent half-edge h in
H◦L(C) (of weight d− 2).

give weight d/2−1 to every half-edge of Df , and for each connection-path e1, . . . , ed/2−1

(which is traversed starting from the star-vertex extremity), we give weight 2i (resp.
d− 2i− 2) to the first (resp. second) traversed half-edge of ei.

Similarly as in the odd case, the half-edges of connection-paths incident to vertices
of M have weight 0, hence for any non-contractible cycle C of M , the γ-score of C is
the same for X as for X ′. Hence X is balanced if and only if X ′ is balanced. For C a
non-contractible cycle of M? together with a traversal direction, let C ′ be the induced
cycle of M ′, with the convention that when C passes by a star-vertex vf , then C ′ takes
the left side of the corresponding d-gon. Let f be a face of M such that C passes by
the corresponding star-vertex vf , and let nL(f) (resp. nR(f)) be the number of star-
edges on the left (resp. right) of C at vf . Then the contribution to γX

′
L (C ′) within f is

2nL(f), while the contribution to γX
′

R (C ′) within f is d − 2 (due to the two half-edges
of Df incident to C ′ on its right side). Hence the contribution to γX

′
(C ′) within f is

d− 2− 2nL(f) = nR(f)−nL(f). Since γX
?
(C) and γX

′
(C ′) have the same contribution

within f , we conclude that γX
?
(C) = γX

′
(C ′). From here, the lemma is proved in the

same way as in the odd case. 2

Lemma 29 The mapping Φ+ specializes into a bijection between face-rooted toroidal
d-angulations endowed with a balanced d

d−2 -orientation in O1
d, and the family UBald of

N-bimobiles.

Proof. As already mentioned, the bijection Φ+ specializes into a bijection between face-
rooted toroidal d-angulations endowed with a d

d−2 -orientation in O1
d, and the N-bimobile

family Ud. We show here the “balanced version” of this bijection.

Let M be a face-rooted toroidal d-angulation endowed with a d
d−2 -orientation X in

O1
d. Let T be the corresponding N-bimobile in Ud given by Φ+. Let C be a (non-

contractible) cycle of T together with a traversal direction. Note that C is also a non-
contractible cycle of M?. Consider the extension X? of X to M?. Clearly, for any
black vertex u on C, the contribution of u to the left (resp. right) γ-score of C is the
same in M? as in T . We let H◦L(C) be the sef of half-edges of M that are on the
left of C and incident to a white vertex on C. A half-edge h in H◦L(C), with v its
incident vertex, is called C-adjacent if the next half-edge in M? in ccw order around v
is on C; it is called C-internal otherwise. Then the local rules of Figure 15 ensure that
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γTL (C) gives the total contribution to γX
?

L (C) by C-internal half-edges in H◦L(C). We
let AL(C) be the total contribution to γX

?

L (C) by C-adjacent half-edges in H◦L(C). As
shown in Figure 30, each black vertex on C yields a contribution d− 2 to AL(C), hence
AL(C) = (d−2)n•(C). We conclude that γX

?

L (C) = γTL (C) + (d−2)n•(C). Similarly we
have γX

?

R (C) = γTR(C) + (d− 2)n•(C), so that γX
?
(C) = γT (C) for any non-contractible

cycle C of T . Hence, if X is balanced, then, by Lemma 28, so is X? and so is T .
Conversely, if T is balanced, then it has two non-contractible non-homotopic cycles with
γ-score equal to zero. Hence, by what precedes, X? has also γ-score equal to zero on
these two cycles. Then Lemma 28 ensures that X? is balanced, and so is X. 2

6.2.2 Properties of rightmost walks

Consider a face-rooted d-toroidal map M .

We have the following crucial lemma regarding rightmost walks in d
d−2 -orientations

of M :

Lemma 30 In a balanced d
d−2 -orientation of M , any rightmost walk of M eventually

loops on the contour of a d-angle W with the (contractible) interior of W on its right
side.

Proof. Let W be the looping part of a rightmost path. Note that W is a non-repetitive
closed walk, and it cannot cross itself, otherwise it is not a rightmost walk. However W
may have repeated vertices but in that case W intersects itself tangentially on the left
side.

Let (e1, . . . , ep) be the cyclic list of edges in W . Suppose by contradiction that there
is an oriented subwalk W ′ = ei, . . . , e(i+k′) mod p of W (possibly W ′ = W ) that forms
a closed walk (i.e., the head of the last edge is the same as the tail of the first edge of
W ′) enclosing on its left side a region R homeomorphic to an open disk. Let v be the
starting and ending vertex of W ′. Let H be the planar map obtained from M by keeping
R∪W ′, where W ′ (which may visit vertices repeated times, but only ‘from the outside’)
is turned into a cycle of length k′, the outer cycle of H. Let n′,m′, f ′ be the numbers of
vertices, edges and faces of G. By Euler’s formula, n′−m′+f ′ = 2. All the inner faces of
H have degree d and the outer face has degree k′, so 2m′ = d(f ′− 1) + k′. Since W ′ is a
subwalk of a rightmost walk, all the half-edges that are not in H and incident to a vertex
v′ 6= v on W ′ have weight zero. The first half-edge of W ′ has non-zero weight. Thus,
as we are considering a d

d−2 -orientation, we have (d− 2)m′ ≥ d(n′ − 1) + 1. Combining
these three (in)equalities gives k′ ≤ −1, a contradiction.

We have the following crucial property:

Claim. The right side of W encloses a region homeomorphic to an open disk

Proof of the claim. We consider two cases depending on the fact that W is a cycle (i.e.,
with no repetition of vertices) or not.
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• W is a cycle

Suppose by contradiction that W is a non-contractible cycle C. Let k be its length.
Since W is a rightmost walk, all the half-edges incident to the right side of C have
weight 0. Since we are considering a d

d−2 -orientation of M , the sum of the weights
of all edges of W is (d − 2)k and the sum of the weights of all the half-edges
incident to vertices of W is dk. So finally the sum of the weights of all the half-
edges incident to the left side of C is 2k and we have γ(C) = −2k < 0. So the
orientation is not balanced, a contradiction.

Thus W is a contractible cycle. By previous arguments, the contractible cycle W
does not enclose a region homeomorphic to an open disk on its left side. So W
encloses a region homeomorphic to an open disk on its right side, as claimed.

• W is not a cycle

Since W cannot cross itself nor intersect itself tangentially on the right side, it has
to intersect tangentially on the left side. Such an intersection can be on a single
vertex or a path, as depicted on Figure 31(i). The edges of W incident to this
intersection are noted as on figure (i)–(iv), where W is going periodically through
a, b, c, d in this order. By previous arguments, the (green) subwalk of W from a
to b does not enclose regions homeomorphic to open disks on its left side. So we
are not in the case depicted on Figure 31(ii). Moreover if this (green) subwalk
encloses a region homeomorphic to an open disk on its right side, then this region
contains the (red) subwalk of W from c to d, see Figure 31(iii). Since W cannot
cross itself, this (red) subwalk necessarily encloses regions homeomorphic to open
disks on its left side, a contradiction. So the (green) subwalk of W starting from
a has to form a non-contractible curve before reaching b. Similarly for the (red)
subwalk starting from c and reaching d. Since W is a rightmost walk and cannot
cross itself, we are, without loss of generality, in the situation of Figure 31(iv) (with
possibly more tangent intersections on the left side). In any case, W encloses a
region homeomorphic to an open disk on its right side.

3

The claim ensures that W encloses a region R homeomorphic to an open disk on
its right side. Since W is a rightmost walk, there is no outgoing half-edge in R whose
incident vertex is on W . Hence, by Claim 1, we conclude that W has length d. 2

Recall that Fd is the family of face-rooted d-toroidal maps such that the root-face
contour is a maximal d-angle.

Lemma 31 A face-rooted toroidal d-angulation M has a balanced d
d−2 -orientation in

O1
d if and only if M ∈ Fd. In that case, M has a unique balanced d

d−2 -orientation in

O1
d, which is the minimal one.
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Figure 31: Case analysis for the proof of the claim in Lemma 30.

Proof. (=⇒) Suppose that M has a balanced d
d−2 -orientation O in O1

d. Then, by
Lemma 5, M has essential girth d.

Suppose by contradiction that the contour C0 of the root-face f0 is not a maximal
d-angle. Consider a maximal d-angle Cmax whose interior strictly contains the interior
of C0. Consider an outgoing half-edge h of Cmax and the rightmost walk W started from
h. By Claim 1, all the half-edges that are in the interior of Cmax and incident to it have
weight zero, i.e. they are ingoing at their incident vertex. So it is not possible that W
enters in the interior of Cmax. So W does not loop on C0, a contradiction. So M ∈ Fd.

(⇐=) Suppose thatM ∈ Fd. By Proposition 8, M admits a balanced d
d−2 -orientation.

Then by Corollary 4, M has a (unique) balanced d
d−2 -orientation Dmin that is minimal.

Let us prove that Dmin ∈ O1
d. Consider an outgoing half-edge h of Dmin and the

rightmost walk W starting from h. By Lemma 30, W ends on a d-angle W ′ with its
interior R on the right side. Consider the (d−2)-expansion M ′ of M and the orientation
D′min of M ′ corresponding to Dmin (see Section 2 for the definition of β-expansion). Let
S be the set of faces corresponding to the region R in M ′. The set S is such that every
edge on the boundary of S has a face in S on its right. Since D′min is minimal, S contains
the face of M ′ corresponding to the root face f0. Since M ∈ Fd, the contour of f0 is a
maximal d-angle. So W ′ is indeed the contour of f0 with f0 on its right. So Dmin ∈ O1

d.
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Moreover, suppose by contradiction, that M has a balanced d
d−2 -orientation D in O1

d

that is different from Dmin. By unicity of the balanced d
d−2 -orientation that is minimal

(Corollary 4), we have that D is non-minimal, a contradiction to Lemma 17. 2

6.3 Proof of Theorems 22 and 21

6.3.1 Proof of Theorem 22 for b ≥ 2

We start by giving some terminology and results for b ≥ 1, before continuing with b ≥ 2
in the rest of the section.

Let b ≥ 1. Let E2b be the family of face-rooted toroidal maps with root-face of degree
exactly 2b and with all face-degrees even and at least 2b.

Recall from Section 4.3, that a Z-biorientation has the weights at outgoing half-edges
that are in Z>0 while the weights at ingoing half-edges are in Z≤0. In an N-biorientation
all the ingoing half-edges have weight 0.

For M ∈ E2b, we define a b
b−1 -Z-orientation of M as a Z-biorientation of M with

weights in {−1, . . . , b}, such that each vertex has weight b, each edge has weight b − 1,
and each face f has weight −1

2deg(f) + b. Recall that the weight of a face f is the sum
of the weights of the ingoing half-edges that have f on their left (traversing the half-edge
toward its incident vertex).

The bijection Φ+ specializes into a bijection between maps in E2b endowed with
a b

b−1 -Z-orientation in O1
2b and the family V̂b of toroidal b

b−1 -Z-mobiles, as defined in
Section 4.5. Showing Theorem 22 for b ≥ 2 thus amounts to proving the following
statement:

Proposition 32 Let b ≥ 2 and M be a map in E2b. Then M admits a b
b−1 -Z-orientation

in O1
2b whose associated mobile by Φ+ is in V̂Balb if and only if M is in L̂2b.

In that case M admits a unique such orientation.

The rest of this section is devoted to proving Proposition 32. Similarly as in the
planar case [8] we work with closely related orientations called b-regular orientations.

Let b ≥ 2 and M ∈ E2b. Let M? be the star-completion of M , as defined in Sec-
tion 6.2.1. A b-regular orientation of M? is defined as an N-biorientation of M? such
that every M -edge has weight b − 1, every star-edge has weight 1 (hence is a simply
oriented edge), every M -vertex has weight b, and every star-vertex u has weight (i.e.,
outdegree) 1

2deg(u) + b (hence indegree 1
2deg(u)− b).

A b-regular orientation of M? is called transferable if for each star-edge e directed
out of its incident M -vertex v, the M -edge ε just after e in clockwise order around v is
of weight b− 1 at v (and thus weight 0 at the other half-edge).

For a transferable b-regular orientation X of M?, the induced b
b−1 -Z-orientation Y =

σ(X) ofM is obtained by applying the weight-transfer rules of Figure 32 to each star-edge
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going toward its black extremity, and then deleting the star-edges and black vertices.

⇔b-1
0

b
-1

Figure 32: The local rules of the 1-to-1 correspondence σ to turn a transferable b-regular
orientation of M? into a b

b−1 -Z-orientations of M (the half-edge directions on the M -
edges are not indicated, these are determined by the status of the weights, either in Z>0

or in Z≤0); after applying these rules the star-vertices and star-edges of M? are to be
deleted.

Lemma 33 The mapping σ is a bijection from the transferable b-regular orientations of
M? to the b

b−1 -Z-orientations of M . In addition a transferable b-regular orientation X

is in O1
2b if and only if σ(X) is in O1

2b.

Proof. The bijectivity of the mapping is straightforward. And the second statement
follows from the observation that if X is a transferable b-regular orientation, then the
rightmost walk Pe starting at any edge e ∈ X will only pass by M -edges after reaching
an M -vertex w for the first time (indeed, when entering an M -vertex v, the rightmost
outgoing edge to leave v can not be a star-edge since the orientation is transferable).
Once it has reached an M -edge e′, it will follow a rightmost walk Pe′ that consists only
of M -edges, the rightmost walk Pe′ being exactly the same in X as in σ(X), hence Pe′

eventually loops around the root-face contour in X if and only if the same holds in σ(X).
2

Let X be a b-regular orientation of M?. For C a non-contractible cycle of M?

traversed in a given direction, let wL(C) (resp. wR(C)) be the total weight of half-edges
incident to an M -vertex of C from the left side (resp. right side) of C, and let oL(C)
(resp. oR(C)) be the total number of outgoing star-edges incident to a star-vertex on C
on the left side (resp. right side) of C, and let ιL(C) (resp. ιR(C)) be the total number
of ingoing star-edges incident to a star-vertex on C on the left side (resp. right side) of
C. Let γ̂L(C) = 2wL(C) +oL(C)− ιL(C), γ̂R(C) = 2wR(C) +oR(C)− ιR(C). We define
the γ̂-score of C as γ̂(C) = γ̂R(C) − γ̂L(C). Then X is called γ̂-balanced if the γ̂-score
of any non-contractible cycle C of M? is 0.

Lemma 34 Consider two b-regular orientations X,X ′ of M? and C a non-contractible
cycle of M? traversed in a given direction. The cycle C has the same γ-score in X and
X ′ if and only if it has the same γ̂-score in X and X ′.
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Proof. Let sL(C) (resp. sR(C)) be the total number of star-edges incident to a star-
vertex of C on the left (resp. right) side of C. Note that we have

γ̂XL (C) = 2γXL (C)− sL(C), γ̂XR (C) = 2γXR (C)− sR(C).

Hence γ̂X(C) = 2γX(C) + (sL(C) − sR(C)), where we note that the quantity sL(C) −
sR(C) only depends on M? and C (not on the orientation X). 2

Let M̂2b be the subfamily of maps in E2b that are bipartite and of essential girth 2b.

Lemma 35 Let M be a map in E2b. If M? admits a b-regular orientation, then M has
essential girth 2b. Moreover M? admits a γ̂-balanced b-regular orientation if and only
if M ∈ M̂2b (i.e., is bipartite of essential girth 2b).

Proof. Assume M? is endowed with a b-regular orientation X, and let us show that
M has essential girth 2b. Since the root-face has degree 2b, the essential girth is at
most 2b, hence we just have to show that the essential girth is at least 2b. Consider a
contractible closed walk C in M . Let MC be the planar map obtained by keeping C and
its interior, where C is ‘unfolded’ into a simple cycle, taken as the outer face contour.
Since all inner face-degrees in MC are even, the outer face degree is also even, so that
the length of C is an even number, denoted 2k, and we have to prove that b ≤ k. Let
v, f, e be respectively the numbers of vertices, edges, and faces that are strictly inside
C. By Euler’s formula applied to MC we have v − e+ f = 1. Let 2S be the sum of the
degrees of the faces inside C. Note that 2S = 2e + 2k, i.e., S = e + k. Consider the
extension of the b-regular orientation X to the interior of C. The total weight over all
M -vertices strictly inside C is bv and the total weight (outdegree) over all star-vertices
strictly inside C is S + bf . On the other hand the total weight over all edges that are
strictly inside C is (b− 1)e+ 2S. Note also that the total weight over all edges strictly
inside C must be at least the total weight over all vertices strictly inside C. Hence we
must have bv + S + bf ≤ (b− 1)e+ 2S, so that b(v − e+ f) ≤ S − e. But we have seen
that v − e+ f = 1 and S = e+ k, hence we obtain b ≤ k.

Now we show that if M? can be endowed with a γ̂-balanced b-regular orientation X,
then M is bipartite. Let C be a non-contractible cycle of M , and let k be the length
of C. We also denote by C the corresponding cycle in M? (that is going through M -
vertices only). We have γ̂(C) = wR(C) − wL(C). Since the orientation is γ̂-balanced,
we have γ̂(C) = 0 and thus wR(C) = wL(C). Since every vertex on C has weight b and
every edge on C has weight b − 1 we have wL(C) + wR(C) + k (b − 1) = k b. So finally
k = 2wR(C) is even. Since all face-degrees of M are even and all non-contractible cycles
have even length, we conclude that M is bipartite. So M ∈ M̂2b.

It now remains to show that if M ∈ M̂2b then M? admits a γ̂-balanced b-regular
orientation. Our strategy is the toroidal counterpart of the one for planar maps given
in [8, Prop. 47]. We define the 2b-angular lift of M as the bipartite toroidal 2b-angulation
M ′ obtained by the following process. We first fix for each ` ≥ b an arbitrary planar map
M` of girth 2b, where the outer face has degree 2` and its contour is a cycle, and all inner
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f
Qf Qf

Figure 33: Insertion operations to obtain a 2b-angular lift (case b = 3 here): in each face
f of degree 2p (p = 5 here) a map Qf having outer degree 2p, inner face degrees 2b, and
girth 2b, is inserted inside f , and each outer vertex of Qf is connected to each corner
around f by a path of length b− 1 called a connection-path.

faces have degree 2b. Then in each non-root face f of M , with ` = deg(f)/2, we insert a
copy Qf of M` strictly inside f , we set a one-to-one correspondence between the corners
in clockwise order around f and the outer vertices of Qf in clockwise order around Qf ,
and we connect any matched pair by a path of length b − 1, called a connection path,
see Figure 33 for an example. Since M is bipartite and all the faces inserted inside each
face of M have even degree, then M ′ is bipartite as well. And similarly as in the planar
case [8] it is easy to check that M ′ has essential girth 2b. Hence, by Proposition 13, M ′

can be endowed with a balanced b
b−1 -orientation X ′. For P a connection-path within

a face f of M , let h the extremal half-edge of P touching a vertex of f and let h′ be
the extremal half-edge of P touching a vertex of Qf . Then it is easy to see that the
respective weights of {h, h′} are either {0, 1} or {1, 0}. The connection-path P is called
outgoing (resp. ingoing) in the first (resp. second) case. By a simple counting argument
using Euler’s formula, one can check that for each non-root face f of M of degree 2k,
the number of connection-paths inside f that are outgoing (resp. ingoing) is k+ b (resp.
k − b). Hence, if for each non-root face f of M we contract Qf into a black vertex uf
and turn every outgoing (resp. ingoing) connection-path within f into an edge of weight
1 directed out of uf (resp. toward uf ), we obtain a b-regular orientation X of M?. It
now remains to show that X is γ̂-balanced.

Let e1, e2 be a pair of star-edges incident to a same star-vertex u, and let f be the
face of M corresponding to u, and v1, v2 the respective white extremities of e1, e2. We
let P (e1, e2) denote an arbitrarily selected path of M ′, with v1, v2 as extremities and
staying strictly in (the area corresponding to) f in between. For each non-contractible
cycle C of M?, we call the canonical lift of C to M ′, the cycle C ′ of M ′ obtained as
follows: C ′ has the same M -edges as in C, and for each star-vertex u on C, with e1, e2

the edges before and after u along C, we replace the pair e1, e2 by the path P (e1, e2).
Since X ′ is balanced we have γX

′
(C ′) = 0. We want to deduce from it that γ̂X(C) = 0.

Let S be the set of star-vertices on C. For every u ∈ S, let f be the corresponding
face of M , let v1 (resp. e1) be the vertex (resp. edge) before u along C, and let v2 (resp.
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e2) be the vertex (resp. edge) after u along C. Let oL(u) (resp. ιL(u)) be the number
of outgoing (resp. ingoing) edges incident to u on the left side of C, and let oR(u) (resp.
ιR(u)) be the number of outgoing (resp. ingoing) edges incident to u on the right side
of C. And let wL(u) (resp. wR(u)) be the total weight in X ′ of half-edges incident to
vertices of the path P (e1, e2)\{v1, v2} on its left (resp. right) side. Note that we have:

γ̂XL (C)− 2γX
′

L (C ′) =
∑
u∈S

oL(u)− ιL(u)− 2wL(u)

γ̂XR (C)− 2γX
′

R (C ′) =
∑
u∈S

oR(u)− ιR(u)− 2wR(u).

For u ∈ S and f the corresponding face of M , the cycle C splits the contour of f
into a left portion denoted PL(u) and a right portion denoted PR(u). Let CL(u) (resp.
CR(u)) be the closed walk formed by the concatenation of PL(u) and P (e1, e2) (resp.
of PR(u) and P (e1, e2)). Let `L(u) be the length of PL(u), let `(u) be the length of
P (e1, e2), and let `R(u) be the length of PR(u); note that `L(u) = oL(u) + ιL(u) + 1 and
`R(u) = oR(u) + ιR(u) + 1. Note also that ιL(u) +wL(u) is the total weight of half-edges
inside CL(u) and incident to a vertex on CL(u). By a simple counting argument based
on the Euler relation, this number is equal to 1

2(`L(u)+`(u))−b. This gives the equation

oL(u)− ιL(u)− 2wL(u) = 2b− 1− `(u).

Similarly we obtain

oR(u)− ιR(u)− 2wR(u) = 2b− 1− `(u).

Summing over u ∈ S we find

γ̂XL (C)− 2γX
′

L (C ′) = γ̂XR (C)− 2γX
′

R (C ′),

hence γ̂X(C) = 2γX
′
(C ′) = 0. Hence X is γ̂-balanced. 2

Lemma 36 Consider M ∈ E2b such that M? admits a b-regular orientation X. If the
γ̂-score of two non-contractible non-homotopic cycles of M? is 0, then X is γ̂-balanced.

Proof. Let C1, C2 be two non-homotopic non-contractible cycles of M?, each given with
a traversal direction, such that γ̂(C1) = γ̂(C2) = 0.

By Lemma 35, M has essential girth 2b. We now show that M has to be bipartite.
For C ∈ {C1, C2}, let n◦◦(C) be the number of M -edges on C, and let V•(C) (resp.
V◦(C)) be the set of black (resp. white) vertices on C and n•(C) = |V•(C)|, n◦(C) =
|V◦(C)|. For each u ∈ V•(C), let cL(u) (resp. cR(u)) be the number of corners of
M? incident to u on the left (resp. right) of C, and let κL(C) =

∑
u∈V•(C) cL(u), and

κR(C) =
∑

u∈V•(C) cR(u), and κ(C) = κL(C)+κR(C); note that κ(C) is the total degree
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of faces corresponding to the black vertices on C, hence κ(C) is an even integer. The
left length of C is defined as

`L(C) = n◦◦(C) + κL(C).

It corresponds to the length of the closed walk of edges of M that coincides with C at
M -edges, and takes the left boundary of the corresponding face of M each time C passes
by a black vertex. Since all face-degrees of M are even and C1, C2 are non-contractible
non-homotopic cycles, it is enough to show that `L(C) is even for C ∈ {C1, C2} to prove
that M is bipartite. Recall that wL(C) (resp. wR(C)) denotes the total weight of half-
edges incident to white vertices of C on the left (resp. right) side of C, and ιL(C) (resp.
ιR(C)) denotes the total number of ingoing edges at black vertices on C on the left (resp.
right) side of C. It is easy to see that the property γ̂(C) = 0 rewrites as ηL(C) = ηR(T ),
where

ηL(C) = 2wL(C)− 2ιL(C) + κL(C), ηR(C) = 2wR(C)− 2ιR(C) + κR(C).

Let e(C) be the number of edges on C (which is also the length of C). Let Σ(C) be the
total weight of half-edges incident to vertices in V◦(C) minus the total ingoing degree of
vertices in V•(C). Then it is easy to see that

Σ(C) = wL(C)− ιL(C) + wR(C)− ιR(C) + (b− 1) · n◦◦(C).

Moreover, since X is b-regular we have

Σ(C) = b ·n◦(C) + b ·n•(C)− 1

2
κ(C) = b · e(C)− 1

2
κ(C) = b(n◦◦(C) + 2n•(C))− 1

2
κ(C).

The equality between the two expressions of Σ(C) yields ηL(C) + ηR(C) = 2n◦◦(C) +
4bn•(C), which gives ηL(C) = n◦◦(C) + 2bn•(C). Since ηL(C) = 2wL(C) − 2ιL(C) +
κL(C), we conclude that

`L(C) = n◦◦(C) + κL(C) = (ηL(C)− 2bn•(C)) + (ηL(C)− 2wL(C) + 2ιL(C)),

so that `L(C) is even. This concludes the proof that M is bipartite.

We now prove that X is γ̂-balanced. By Lemma 35, M? has a γ̂-balanced b-regular
orientation X ′. Then, C1 and C2 have the same γ̂-score (which is zero) in X as in X ′,
hence, by Lemma 34, they have the same γ-score in X as in X ′. By Corollary 4, X and
X ′ are γ-equivalent. Thus, again by Lemma 34, X is γ̂-balanced. 2

Lemma 37 Let M ∈ M̂2b. Then M? has a unique minimal γ̂-balanced b-regular orien-
tation. This orientation is transferable. Moreover, it is in O1

2b if and only if M ∈ L̂2b

(the root-face contour is a maximal 2b-angle).
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Proof. By Lemma 35, M? admits a γ̂-balanced b-regular orientation X. By Lemma 34,
a b-regular orientation is γ̂-balanced if and only if it is γ-equivalent to X. Hence, by
Corollary 4, M admits a unique b-regular orientation X0 that is minimal and γ̂-balanced.

The argument to ensure that X0 is transferable is the same as given in the planar
case [8, Lemma 50]. Suppose by contradiction that there is a star-edge ε = {b, w} going
toward its black extremity b, and such that the M -edge e = {w,w′} just after ε in
clockwise order around w has weight different from b − 1. Thus e has strictly positive
weight at w′. Then let ε′ be the star-edge just after ε in counterclockwise order around b.
Note that ε′ has to be directed toward b, otherwise (ε′, ε, e) would form a face S distinct
from the root-face, such that every edge on the boundary of S has a face in S on its
right, contradicting the minimality of X0. Let e′ = (w′, w′′) be the M-edge just after ε′

in clockwise order around w′. Since the edges e and ε′ contribute by at least 2 to the
weight of w′, the edge e′ can not have weight b − 1 at w′, hence it has positive weight
at w′′. Continuing iteratively in counterclockwise order around b we obtain that b has
only ingoing edges, a contradiction. So X0 is transferable.

Let us now characterize when X0 is in O1
2b.

Suppose that the root-face contour is not a maximal 2b-angle, let C be a maximal
2b-angle whose interior contains the root-face. By a counting argument similar to the
proof of Claim 1, all half-edges incident to a vertex on C and in the interior of C have
weight 0, hence a rightmost walk starting from an edge on C can never loop on the
root-face contour. Hence X0 is not in O1

2b.

Conversely assume that M is in L̂2b. Let e be an outgoing half-edge of X0 and let
Pe be the rightmost path starting at e. Since X0 is transferable, it is easy to see that
once Pe has reached an M -vertex (which occurs after traversing at most two edges), it
will only take M -edges. Hence the cycle C formed when Pe eventually loops is a right
cycle of M -edges. By the same line of arguments as in Section 6.2.2, this cycle has to
be of length 2b, with a contractible region on its right. This region has to contain the
root-face since X0 is minimal. Since the root-face contour is a maximal 2b-angle, we
conclude that C is actually the root-face contour. Hence X0 is in O1

2b. 2

Lemma 38 Let M be a map in E2b. Let Y be a b
b−1 -Z-orientation of M in O1

2b, let

X = σ−1(Y ) be the associated b-regular orientation of M?, and let T be the associated
mobile in V̂b. Then X is γ̂-balanced if and only if T is balanced.

Proof. Recall that the rules to obtain the mobile associated to Y are the ones of
Figure 15.

Let C be a non-contractible cycle of T given with a traversal direction; note that
C is also a non-contractible cycle of M? (it is convenient here to see T and M? as
superimposed). Let n•(C) be the number of black vertices on C, and let n•◦(C) (resp.
n◦•(C)) be the number of black-white edges e on C where the black extremity is traversed
before (resp. after) the white extremity when traversing e (along the traversal direction
of C). Note that all the black-white edges on C have weights (0, b − 1) (the weights
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can not be (−1, b) since the white extremity is a leaf in that case). Note also that
n•◦(C) = n•(C) = n◦•(C), since every black vertex is preceded and followed by white
vertices along C. Let wTL(C) (resp. wTR(C)) be the total weight of half-edges in T that
are incident to a vertex (white or black) of C on the left side (resp. right side) of C.
Let sL(C) (resp. sr(C)) be the total number of half-edges, including the buds, that
are incident to a black vertex of C on the left (resp. right) side of C (note that this
quantity is the same for T as for X). Let wXL (C) (resp. wXR (C)) be the total weight
in X of half-edges at M -vertices of C, on the left (resp. right) side of C. Let ιXL (C)
(resp. ιXR (C)) be the total number of ingoing edges at black vertices on the left (resp.
right) side of C. We have γTL (C) = 2wTL(C) + sL(C), γTR(C) = 2wTR(C) + sR(C), and
γT (C) = γTR(C) − γTL (C). Moreover, we have γ̂XL (C) = 2wXL (C) + sL(C) − 2ιXL (C),
γ̂XR (C) = 2wXR (C) + sR(C)− 2ιXR (C), and γ̂X(C) = γ̂XR (C)− γ̂XL (C).

The quantity wTL(C) decomposes as w◦,TL (C)+w•,TL (C), where the first (resp. second)
term gathers the contribution from the half-edges at white (resp. black) vertices. Clearly
w•,TL (C) = −ιXL (C). We let H◦L(C) be the sef of half-edges of M? that are on the left of C
and incident to a white vertex on C. A half-edge h in H◦L(C), with v its incident vertex,
is called C-adjacent if the next half-edge in M? in ccw order around v is on C; it is called
C-internal otherwise. Then the combined effect of the transfer rule of Figure 32 and of
the local rules of Figure 15 ensure that w◦,TL (C) gives the total contribution to wXL (C)
by C-internal half-edges in H◦L(C). Let AL(C) be the total contribution to wXL (C) by
C-adjacent half-edges in H◦L(C). Then, very similarly as in the proof of Lemma 29
(see Figure 30), each black vertex on C yields a contribution b − 1 to AL(C), so that
AL(C) = (b−1)n•(C). We conclude that wXL (C)−ιXL (C) = wTL(C)+(b−1)n•◦(C). Very
similarly we have wXR (C) = wTR(C) + ιR(C) + (b− 1)n◦•(C). Hence γT (C) = γ̂X(C).

This implies that if X is γ̂-balanced then T is balanced. Now, suppose that T is
balanced. Then γT (C) = 0 for any non-contractible cycle C of T . Let {C1, C2} be two
such distinct cycles. They are not homotopic since T is unicellular. By what precedes
we have γ̂X(C1) = 0 and γ̂X(C2) = 0. Hence X is γ̂-balanced by Lemma 36. 2

We are now able to prove Proposition 32.

Proof of Proposition 32. Suppose that M ∈ E2b admits a b
b−1 -Z-orientation Y ∈ O1

2b

whose associated mobile by Φ+ is in V̂Balb , and let X = σ−1(Y ). Then X is γ̂-balanced
(according to Lemma 38), is transferable and in O1

2b (according to Lemma 33), and is

minimal (according to Lemma 17). Lemma 35 implies that M ∈ M̂2b. Hence, according
to Lemma 37, M is in L̂2b and moreover Y is unique (it has to be the image by σ of the
unique minimal γ̂-balanced b-regular orientation of M?).

Conversely let us prove the existence part, for M ∈ L̂2b. By Lemma 37, let X be
the minimal γ̂-balanced b-regular orientation of M? that is moreover transferable and in
O1

2b. Let Y = σ(X) so that Y ∈ O1
2b by Lemma 33. And Lemma 38 ensures that the

mobile associated to Y by Φ+ is in V̂Balb . �
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6.3.2 Proof of Theorem 21 for d ≥ 2

We start by giving some terminology and results for d ≥ 1, before continuing with d ≥ 2
in the rest of the section.

Let d ≥ 1. Let Hd be the family of face-rooted toroidal maps with root-face degree
d and with all faces of degree at least d. For M ∈ Hd, we define a d

d−2 -Z-orientation of
M as a Z-biorientation with weights in {−2, . . . , d} such that all vertices have weight d,
all edges have weight d− 2, and every face f has weight −deg(f) + d.

The bijection Φ+ specializes into a bijection between maps inHd endowed with a d
d−2 -

Z-orientation in O1
d and the family Vd of toroidal d

d−2 -Z-mobiles. Showing Theorem 22
for d ≥ 2 thus amounts to proving the following statement:

Proposition 39 Let d ≥ 2 and let M be a map in Hd. Then M admits a d
d−2 -Z-

orientation in O1
d whose associated mobile by Φ+ is in VBald if and only if M is in Ld.

In that case M admits a unique such orientation.

Let d ≥ 1 and let M ∈ Hd. We denote by M2 the (bipartite) map obtained from
M by inserting a new vertex on each edge. Note that M ∈ Ld if and only if M2 ∈ L̂2d.
Applying (as done in the planar case in [8, Lem. 55]) the rules of Figure 34 to each edge
of a d

d−2 -Z-orientation Z of M , we obtain a d
d−1 -Z-orientation Y = ι(Z) of M2. The

mapping ι is clearly bijective. Moreover, Z is in O1
d if and only if ι(Z) is in O1

2d.

-1 d -1 d

-2 d

m

-1 d 0

-1

m

d-1

d-1

i j j′

m

i′

i i′

i, i′ ≥ 0

j=d−1−i, j′=d−1−i′

Figure 34: The local rule in the 1-to-1 correspondence ι between the d
d−2 -Z-orientations

of M and the d
d−1 -Z-orientation of M2 (the half-edge direction is not indicated, it is

determined by the status of the weight it carries, either in Z>0 or in Z≤0).

From now on we assume that d ≥ 2. We first prove the analogue of Lemma 38:

Lemma 40 Let d ≥ 2 and M be a map in Hd. Let Z be a d
d−2 -Z-orientation of M in

O1
d, let X = σ−1(ι(Z)) be the associated d-regular orientation of M?

2 , and let T be the
associated mobile (by Φ+) in Vd. Then X is γ̂-balanced if and only if T is balanced.

Proof. Let C be a non-contractible cycle of T . Let n•(C) be the number of black vertices
on C. Let n•◦(C) (resp. n◦•(C)) be the number of black-white edges e on C where the
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black extremity is traversed before (resp. after) the white extremity when traversing e
(along the traversal direction of C), and let n••(C) be the number of black-black edges
along C (note that n••(C) = 0 for d > 2). As in the last section it is easy to see that
n•◦(C) = n◦•(C). Note that black-white edges on C can have weights (0, d − 2) or
(−1, d− 1) (but not (−2, d) since the white extremity would be a leaf).

Let wTL(C) (resp. wTR(C)) be the total weight of half-edges in T incident to a vertex,
white or black, of C on the left side (resp. right side) of C. Let sTL(C) (resp. sTR(C)) be
the total number of half-edges, including the buds, that are incident to a black vertex
of C on the left (resp. right) side of C. Note that C identifies to a cycle of M?

2 , which
we also call C by a slight abuse of notation (the only difference to keep in mind is that,
for each black-black or white-white edge e on C seen as a cycle of T , in M?

2 there is a
white square vertex in the middle of e). Let wXL (C) (resp. wXR (C)) be the total weight
(in X) of half-edges at white vertices (round or square) of C on the left (resp. right)
side of C. Let ιXL (C) (resp. ιXR (C)) be the total number of ingoing edges (in X) at
black vertices on the left (resp. right) side of C. Let sXL (C) (resp. sXR (C)) be the total
number of edges incident to a black vertex on the left (resp. right) side of C. We have
γTL (C) = wTL(C) + sTL(C), γTR(C) = wTR(C) + sTR(C), and γT (C) = γTR(C)− γTL (C). And
we have γ̂XL (C) = 2wXL (C) + sXL (C)− 2ιXL (C), γ̂XR (C) = 2wXR (C) + sXR (C)− 2ιXR (C), and
γ̂X(C) = γ̂XR (C)− γ̂XL (C).

The quantity wTL(C) decomposes as w◦,TL (C)+w•,TL (C) where the first (resp. second)
term gathers the contributions from the white (resp. black) vertices. We let HL(C) be
the set of half-edges of M?

2 that are on the left of C and incident to a vertex on C
(including white square vertices on C, i.e., seeing C as a cycle in M?

2 ). The set HL(C)
partitions as HL(C) = H◦L(C) ∪ H�L(C) ∪ H•L(C) whether the incident vertex is white
round, white square, or black. A half-edge h of H◦L(C) (resp. H•L(C)) is called C-
adjacent if the next half-edge of M?

2 after h in ccw order (resp. cw order) around the
vertex incident to h is on C; it is called C-internal otherwise. By the combined effect of
the transfer rule of Figure 32, the rules of Figure 34, and the local rules in Figure 15, the
quantity w◦,TL (C) represents the total contribution to wXL (C) of the C-internal half-edges

in H◦L(C), while w•,TL (C) represents the total contribution to −ιXL (C) of the C-internal
half-edges in H•L(C).

We let AL(C) be the total contribution to wXL (C)− ιXL (C) of C-adjacent half-edges
from H◦(C) ∪ H•(C). An important observation (see Figure 35) is that an edge of T
counted by n•◦(C) always gives a contribution d − 2 to AL(C) (whether it has weights
(−1, d− 1) or (0, d− 2)), hence AL(C) = (d− 2)n•◦(C). Finally, the total contribution
to wXL (C)− ιXL (C) by half-edges in H�(C) is n••(C). Indeed the only contribution is a
contribution by one to wXL (C) for each black-black edge e on C (there is a white square
vertex in the middle of e, with an outgoing edge on each side, recalling that black-black
edges in T occur only for d = 2). We thus have

wXL (C)− ιXL (C) = wTL(C) + (d− 2)n•◦(C) + n••(C),
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Figure 35: The situation at an edge e counted by n•◦(C) (the weights and orientations
of the two C-adjacent edges, shown in gray, are determined by the combined effect of
the transfer rule of Figure 32, the rules of Figure 34, and the local rules in Figure 15).
If e has weights (−1, d − 1) it has contribution d − 1 to wXL (C) and contribution 1 to
ιXL (C). If e has weights (0, d − 2) it has contribution d − 2 to wXL (C) and contribution
0 to ιXL (C). Hence it always has a contribution d− 2 to wXL (C)− ιL(X).

and similarly we have

wXR (C)− ιXR (C) = wTR(C) + (d− 2)n◦•(C) + n••(C).

Moreover we have

sXL (C) = 2sTL(C) + n•(C)− 2n••(C), sXR (C) = 2sTR(C) + n•(C)− 2n••(C).

With these equalities, and using the fact that n•◦(C) = n◦•(C), we easily deduce
2γT (C) = γ̂X(C), and in particular γT (C) = 0 if and only if γ̂X(C) = 0.

From there, very similarly as in the end of the proof of Lemma 38, we conclude that
X is balanced if and only if T is balanced, which concludes the proof. 2

We are now able to prove Proposition 39:

Proof of Proposition 39. Suppose that M ∈ Hd admits a d
d−2 -Z-orientation Z ∈ O1

2b

whose associated mobile by Φ+ is in VBald , and let X = σ−1(ι(Z)). Then X is γ̂-balanced
(according to Lemma 40), is transferable and in O1

2d (by Lemma 33 and since ι preserve
the property of being in O1

2d), and minimal (according to Lemma 17). Lemma 35 implies

that M2 ∈ M̂2d. Hence, according to Lemma 37, M2 is in L̂2d, so that M is in Ld, and
moreover Z is unique (it has to be the image by ι−1◦σ of the unique minimal γ̂-balanced
d-regular orientation of M?

2 ).

Conversely let us prove the existence part, for M ∈ Ld. By Lemma 37, let X be
the minimal γ̂-balanced d-regular orientation of M?

2 , that is moreover transferable and
in O1

2d. Let Z = ι−1(σ(X)) so that Z ∈ O1
2d by Lemma 33 and since ι preserve the

property of being in O1
2d. And Lemma 40 ensures that the mobile associated to Z by

Φ+ is in VBald . �

6.3.3 Proof of Theorem 22 for b = 1

Before proving Theorem 22 for b = 1 let us make a simple observation. We have proved
Theorem 22 for b ≥ 2 and Theorem 21 for d ≥ 2. For b ≥ 1 a Z-bimobile in VBal2b is
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called even if all its half-edge weights are even. The mapping consisting in doubling the
half-edge weights gives a bijection between V̂Balb and even Z-bimobiles in VBal2b . Moreover

the toroidal map (obtained by performing Ψ+) associated to a bimobile in V̂Balb is the
same as the toroidal map associated to the weight-doubled bimobile. Hence, if we call
φd, for d ≥ 2, the bijection in Theorem 21 and φ̂b, for b ≥ 2, the bijection in Theorem 22
then we have already obtained:

‘For b ≥ 2 and M ∈ L2b, we have that φ2b(M) is even if and only if M is
bipartite, and in that case φ2b(M) is equal to φ̂b(M) upon doubling the half-
edge weights’.

Note that if we can establish (as stated next) the similar bipartiteness condition
for b = 1 then we will have Theorem 22 for b = 1 (as the bipartite specialization of
Theorem 21 for d = 2).

Lemma 41 Let M ∈ L2 and let T = φ2(M). Then T is even if and only if M is
bipartite.

Proof. Assume T is even, and let T ′ be obtained from T after dividing by 2 the half-
edge weights. Note that T ′ ∈ V̂Bal1 and in particular the degrees of all black vertices
of T ′ are even, so that all face-degrees of M are even. Since the weight of a white
vertex of T ′ is 1, in T ′ all white vertices are leaves. Consider two distinct cycles C1, C2

of T ′ and C ∈ {C1, C2}. Since white vertices are leaves, the cycle C is made only
of black vertices and black-black edges, with zero weights on both half-edges. Let k
be the length of C. Let wL(C) (resp. wR(C)) be the total weight of half-edges of T
incident to (black) vertices of C on the left (resp. right) side of C. Let sL(C) (resp.
sR(C)) be the total number of half-edges (including buds) incident to black vertices of
C on the left (resp. right) side of C. Since T ′ is balanced we have 2wL(C) + sL(C) =
2wR(C) + sR(C). Let κ(C) be the total degree of faces corresponding to vertices of C,
so κ(C) = sL(C) + sR(C) + 2k. Since all the half-edges on C have weight 0, the total
weight of vertices of C is wL(C) + wR(C) =

∑
u∈C(−1

2deg(u) + 1) = −1
2κ(C) + k. By

combining the three equalities, we obtain that sL(C) = −2wL(C). So sL(C) is even. So
sL(Ci) is even for i ∈ {1, 2}. For i ∈ {1, 2}, let Wi be the walk of M that is “just on
the left” of Ci (seeing M and T as superimposed), i.e. obtained by following the left
boundary of the corresponding face of M each time Ci passes by a black vertex. By the
local rules of Φ+ shown in Figure 15, the length of Wi is precisely equal to sL(Ci) and
thus is even. All the faces of M are even, and the two walks Wi are non-homotopic to
a contractible cycle and non-homotopic to each other. Thus M is bipartite.

Conversely, assume that M is bipartite. Note that there are 3 types of edges in
T ∈ VBal2 : those of weights (−2, 2) that connect a black vertex to a white leaf, those of
weights (−1, 1) that connect a black vertex to a white vertex of degree 2 (incident to two
such edges), and those of weights (0, 0) that connect two black vertices. We call odd the
edges of weights (−1, 1). To prove that T is even we thus have to show that T has no
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odd edges. Let Γ be the subgraph of T induced by the odd edges. Since M is bipartite,
all its faces have even degree and thus all black vertices of T have even weight (since for
d = 2 the weight of a black vertex of T is 2 minus the degree of the associated face).
Moreover every white vertex is incident to either no odd edge or to two odd edges. Hence
Γ is an Eulerian subgraph of T . There are two types of toroidal unicellular maps since
two cycles of a toroidal unicellular map may intersect either on a single vertex (square
case) or on a path (hexagonal case), as depicted on Figure 36. If T is hexagonal, then Γ
is exactly one of the cycles of T . If T is square, then Γ can be either one of the cycles of
T or the union of the two cycles of T . One easily checks that in all cases, there exists a
cycle C of T that has exactly one incident edge in Γ on each side. We endow C with a
traversal direction.

Square Hexagon

Figure 36: The two types of toroidal unicellular maps.

Recall from Section 4.6, that γL(C) = wL(C) + sL(C), γR(C) = wR(C) + sR(C).
Moreover since T ∈ VBal2 , we have γL(C) = γR(C). Note that white vertices of C have all
their weight on C. Let n•(C) be the number of black vertices on C. Let κ(C) be the total
degree of faces corresponding to the black vertices on C. So black vertices of C have total
weight −κ(C) + 2n•(C). Let n•◦(C) (resp. n◦•(C)) be the number of black-white (resp.
white-black) edges on C while following the traversal direction of C. Clearly n•◦(C) =
n◦•(C). The total weight of half-edges on C incident to a black vertex is precisely
−n•◦(C) − n◦•(C) = −2n•◦(C). So wL(C) + wR(C) = −κ(C) + 2n•(C) + 2n•◦(C).
Note that we have κ(C) = sL(C) + sR(C) + 2n•(C). Combining the equalities gives
wL(C) = −sL(C) + n•◦(C).

Let W be the walk of M that is “just on the left” of C (seeing M and T as super-
imposed), i.e. obtained by following the left boundary of the corresponding face of M
each time C passes by a black vertex. Since M is bipartite, the length of W is even,
and according to the local rules of Φ+ shown in Figure 15, it is equal to sL(C) +n•◦(C).
So wL(C) = (sL(C) + n•◦(C))− 2sL(C) is even. So C is incident to an even number of
edges of Γ on its left side, a contradiction. 2
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6.3.4 Proof of Theorem 21 for d = 1

Recall from Section 6.3.2 that H1 denotes the family of face-rooted toroidal maps with
root-face degree 1 (i.e. a loop). Moreover, for M ∈ H1, a 1

−1 -Z-orientation of M is a
Z-biorientation with weights in {−2,−1, 0, 1} such that all vertices have weight 1, all
edges have weight −1, and every face f has weight −deg(f) + 1. Note that there are
just two types of edges in such an orientation, with weights (−1, 0) or (−2, 1) (see the
first row of Figure 37).

The bijection Φ+ specializes into a bijection between maps in H1 endowed with a
1
−1 -Z-orientation in O1

1 and the family V1 of toroidal 1
−1 -Z-mobiles. Showing Theorem 22

for d = 1 thus amounts to proving the following statement:

Proposition 42 Let M be a map in H1. Then M admits a 1
−1 -Z-orientation in O1

1

whose associated mobile by Φ+ is in VBal1 if and only if M is in L1. In that case M
admits a unique such orientation.

-1 0

0

-1

-1 01 0

-2 02 0

-1 -1 0 11 02 2

⇓

⇓

⇓

⇓

d = 1 M

b = 1 M2

d = 2 M2

b = 2 M4

b = 2 M ?
4

-2
1

-2

-1 1

-2 2

-1 -12 2

⇓

⇓

⇓

⇓

-1 1

-2 2

-1 -12 2

1

Figure 37: The mapping τ from 1
−1 -orientations in O1

1 to (certain) transferable 2-regular

orientations in O1
4. In the top row, we show the corresponding mobile-edge; in the

bottom-row we show (in bolder form) on which star-edges we lift the mobile-edge.

For a map M ∈ H1, let M2 (resp. M4) be the map obtained from M by subdividing
every edge into a path of length 2 (resp. 4). If M is endowed with a 1

−1 -Z-orientation
Z let τ(Z) be the (transferable) 2-regular orientation of M?

4 obtained from M using the
rules of Figure 37, i.e., applying the rule of Figure 34 to obtain a 1

0 -Z-orientation of M2,
then doubling the weights to get to an even 2

0 -Z-orientation of M2, then applying the
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rule of Figure 34 to get to a 2
1 -Z-orientation of M4, and finally applying the mapping

σ−1 to get to a transferable 2-regular orientation of M?
4 . Note that Z is in O1

1 if and
only if τ(Z) is in O1

4. Note that τ is injective but not a bijection since when doubling
the weights to obtain a 2

0 -orientation of M2 we have only even weights.

We first prove the analogue of Lemma 40:

Lemma 43 Let M be a map in H1, let Z be a 1
−1 -Z-orientation of M in O1

1, let X =
τ(Z) be the associated 2-regular orientation of M?

4 , and let T be the associated mobile
(by Φ+) in V1. Then X is γ̂-balanced if and only if T is balanced.

Proof. Let C be a non-contractible cycle of T given with a traversal direction. We call
canonical lift of C the (non-contractible) cycle C ′ of M?

4 obtained by keeping the bolder
edges as shown in the bottom-row of Figure 37.

Let e be a black-black edge on C, where the half-edge of weight −1 is traversed
before the half-edge of weight 0. Looking at the left part of Figure 37 it is clear that
e has contribution 5 to sXL (C ′), contribution 1 to sXR (C ′), contribution 1 to wXL (C ′),
contribution 1 to wXR (C ′), contribution 2 to ιXL (C ′), and contribution 0 to ιXR (C ′). Hence
e has contribution 3 to γXL (C ′) = 2(wXL (C ′) − ιXL (C ′)) + sXL (C ′), and contribution 3 to
γXR (C ′) = 2(wXR (C ′)−ιXR (C ′))+sXR (C ′), hence has zero contribution to γX(C ′). Similarly
a black-black edge where the half-edge of weight −1 is traversed after the half-edge of
weight 0 has zero contribution to γX(C ′).

Now let e be a black-white edge on C where the black extremity is traversed before
the white extremity. Then it is easy to see (again looking at Figure 37) that e has
contribution 3 to sXL (C ′), contribution 0 to sXR (C ′), contribution 1 to wXL (C ′), contri-
bution 0 to wXR (C ′), contribution 3 to ιXL (C ′), and contribution 0 to ιXR (C ′). Hence it
has contribution −1 to γXL (C ′) and contribution 0 to γXR (C ′), hence contribution −1 to
γX(C ′). Symmetrically a black-white edge whose black extremity is traversed after the
white extremity has contribution 1 to γX(C ′). Now the numbers of black-white edges
of both types on C are clearly equal, so that the total contribution of black-white edges
on C to γX(C ′) is zero.

On the other hand, let h be a half-edge of T not on C but incident to a vertex on C,
and let δ be the weight of h (by convention δ = 0 if h is a bud). Then it is easy to see
(still looking at Figure 37) that if h is on the left (resp. right) side of C and incident to
a black vertex, then it has contribution 4 to sXL (C ′) (resp. to sXR (C ′)) and contribution
2δ to −ιXL (C ′). And if h is on the left (resp. right) side of C and incident to a white
vertex, then it has contribution 2δ to wXL (C ′) (resp. to wXR (C ′)). From what precedes we
conclude that γX(C ′) = 4γT (C), and in particular γX(C ′) = 0 if and only if γT (C) = 0.

From there, very similarly to the end of the proof of Lemma 38, we conclude that X
is balanced if and only if T is balanced, which concludes the proof. 2

We are now able to prove Proposition 42:

Proof of Proposition 42. Suppose that M admits a 1
−1 -Z-orientation Z in O1

1 whose
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associated mobile by Φ+ is in VBal1 . By Lemma 43, we have X = τ(Z) is a γ̂-balanced
2-regular orientation of M?

4 . Since X is in O1
4, by Lemma 17, we have that X is minimal.

By Lemma 35, we haveM4 ∈ M̂4. Then, by Lemma 37, we haveM4 ∈ L̂4, henceM ∈ L1.
In addition we have uniqueness of the orientation Z, since Z has to be preimage under
the injective mapping τ of the unique minimal γ̂-balanced 2-regular orientation of M?

4 .

Conversely we prove the existence part, for M ∈ L1. Then M4 ∈ L̂4 and by
Lemma 37, M?

4 admits a transferable γ̂-balanced 2-regular orientation X in O1
4. Consider

Y4 the 2
1 -Z-orientation of M4 in O1

4 such that Y = σ(X).

Consider Z ′ the 2
0 -Z-orientation of M2 in O1

2 such that Z ′ = ι−1(Y ) = ι−1(σ(X)). By

Lemma 40, the mobile T ′ associated to Z ′ is in VBal2 . Since M ∈ L1, we have M2 ∈ L̂2,
hence all the weights of T ′ are even according to Lemma 41. So all the weights of Z ′ are
even. Let Y ′ be the 1

0 -Z-orientation of M2 in O1
2 obtained by dividing all the weights of

Z ′ by two. Consider Z the 1
−1 -Z-orientation of M in O1

1 such that Z = ι−1(Y ′). Note
that X = τ(Z). Let T ∈ V1 be the mobile associated to Z. Lemma 43 then ensures that
T is in VBal1 . 2
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