Backpropagation in the Simply Typed Lambda-Calculus with Linear Negation - Archive ouverte HAL
Article Dans Une Revue Proceedings of the ACM on Programming Languages Année : 2020

Backpropagation in the Simply Typed Lambda-Calculus with Linear Negation

Aloïs Brunel
  • Fonction : Auteur
Damiano Mazza
Michele Pagani

Résumé

Backpropagation is a classic automatic differentiation algorithm computing the gradient of functions specified by a certain class of simple, first-order programs, called computational graphs. It is a fundamental tool in several fields, most notably machine learning, where it is the key for efficiently training (deep) neural networks. Recent years have witnessed the quick growth of a research field called differentiable programming, the aim of which is to express computational graphs more synthetically and modularly by resorting to actual programming languages endowed with control flow operators and higher-order combinators, such as map and fold. In this paper, we extend the backpropagation algorithm to a paradigmatic example of such a programming language: we define a compositional program transformation from the simply-typed lambda-calculus to itself augmented with a notion of linear negation, and prove that this computes the gradient of the source program with the same efficiency as first-order backpropagation. The transformation is completely effect-free and thus provides a purely logical understanding of the dynamics of backpropagation.
Fichier principal
Vignette du fichier
RevDiffLambda.pdf (1.02 Mo) Télécharger le fichier
Arxiv.zip (1.69 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02400927 , version 1 (09-12-2019)

Identifiants

  • HAL Id : hal-02400927 , version 1

Citer

Aloïs Brunel, Damiano Mazza, Michele Pagani. Backpropagation in the Simply Typed Lambda-Calculus with Linear Negation. Proceedings of the ACM on Programming Languages, 2020. ⟨hal-02400927⟩

Collections

CNRS
101 Consultations
218 Téléchargements

Partager

More