
Backpropagation in the Simply Typed Lambda-calculus with Linear Negation

ALOÏS BRUNEL, Deepomatic, France

DAMIANO MAZZA, CNRS, UMR 7030, LIPN, Université Sorbonne Paris Nord, France

MICHELE PAGANI, IRIF UMR 8243, Université de Paris, CNRS, France

Backpropagation is a classic automatic differentiation algorithm computing the gradient of functions specified by a certain class of

simple, first-order programs, called computational graphs. It is a fundamental tool in several fields, most notably machine learning,

where it is the key for efficiently training (deep) neural networks. Recent years have witnessed the quick growth of a research field

called differentiable programming, the aim of which is to express computational graphs more synthetically and modularly by resorting

to actual programming languages endowed with control flow operators and higher-order combinators, such as map and fold. In this

paper, we extend the backpropagation algorithm to a paradigmatic example of such a programming language: we define a compositional

program transformation from the simply-typed lambda-calculus to itself augmented with a notion of linear negation, and prove that

this computes the gradient of the source program with the same efficiency as first-order backpropagation. The transformation is

completely effect-free and thus provides a purely logical understanding of the dynamics of backpropagation.

CCS Concepts: • Theory of computation → Program semantics; Theory and algorithms for application domains;

Additional Key Words and Phrases: Differentiable Programming, Lambda-calculus, Linear Logic

1 INTRODUCTION

In the past decade there has been a surge of interest in so-called deep learning, a class of machine learning methods based

on multi-layer neural networks. The term “deep” has no formal meaning, it is essentially a synonym of “multi-layer”,

which refers to the fact that the networks have, together with their input and output layers, at least one internal (or

“hidden”) layer of artificial neurons. These are the basic building blocks of neural networks: technically, they are just

functions Rm → R of the form (x1, . . . ,xm ) → σ
(∑m

i=1wi · xi
)
, where σ : R → R is some activation function and

w1, . . . ,wm ∈ R are the weights of the neuron. A layer consists of several unconnected artificial neurons, in parallel.

The simplest way of arranging layers is to connect them in cascade, every output of each layer feeding into every

neuron of the next layer, forming a so-called feed-forward architecture. Feed-forward, multi-layer neural networks are

known to be universal approximators: any continuous function f : K → R with K ⊆ Rk compact may be approximated

to an arbitrary degree of precision by a feed-forward neural network with one hidden layer, as long as the weights are

set properly [Cybenko 1989; Hornik 1991]. This leads us to the question of how to efficiently train a neural network, i.e.,

how to find the right weights as quickly as possible.

Albeit in theory the simplest architecture suffices for all purposes, in practice more complex architectures may

perform better, and different architectures may be better suited for different purposes. We thus get to another basic

question of deep learning: how to select and, if necessary, modify or design network architectures adapted to a given task.

Since the quality of an architecture is also judged in terms of training efficiency, this problem is actually interlaced with

the previous one.

The first question is generally answered in terms of the gradient descent algorithm (or some variant thereof). This

finds local minima of a function G : Rn → R using its gradient ∇G, i.e., the vector of the partial derivatives of G

(Equation 1). The algorithm starts by choosing a point w0 ∈ R
n
. Under certain assumptions, if ∇G(w0) is close to zero

Authors’ addresses: Aloïs Brunel, Deepomatic, France, alois.brunel@gmail.com; Damiano Mazza, CNRS, UMR 7030, LIPN, Université Sorbonne Paris

Nord, France, Damiano.Mazza@lipn.univ-paris13.fr; Michele Pagani, IRIF UMR 8243, Université de Paris, CNRS, France, pagani@irif.fr.

Manuscript submitted to ACM 1



x1

x2

z1 z2 y− · sin

let z1 = x1 - x2 in let z2 = z1 · z1 in sin z2

Fig. 1. A computational graph with inputs x1, x2 and output y , and its corresponding term. Nodes are drawn as circles, hyperedges
as triangles. The output y does not appear in the term: it corresponds to its root.

then w0 is within a sufficiently small neighborhood of a local minimum. Otherwise, we know that G decreases most

sharply in the opposite direction of ∇G(w0), and so the algorithm sets w1 := w0 − ρ∇G(w0) for a suitable step rate

ρ > 0, and repeats the procedure from w1. In the case of deep learning, a neural network (with one output) induces

a function h(w, x) : Rn+k → R, where k is the number of inputs and n the number of weights of all the neurons in

the network. By fixing w ∈ Rn and making x vary over a set of training inputs, we may measure how much h differs

from the target function f : Rk → R when the weights are set to w. This defines an error function G : Rn → R, the

minimization of which gives a way of finding the desired value for the weights. The training process thus becomes the

iteration, over and over, of a gradient computation, starting from some initial set of weights w0.

So, regardless of the architecture, efficiently training a neural network involves efficiently computing gradients.

The interest of gradient descent, however, goes well beyond deep learning, into fields such as physical modeling and

engineering design optimization, each with numerous applications. It is thus no wonder that a whole research field,

known as automatic differentiation (AD for short), developed around the computation of gradients and, more generally,

Jacobians
1
[Baydin et al. 2017]. In AD, the setting of neural networks is generalized to computational graphs, which

are arbitrarily complex compositions of nodes computing basic functions and in which the output of a node may be

shared as the input of an unbounded number of nodes. Fig. 1 gives a pictorial representation of a simple computational

graph made of only three basic functions (subtraction, multiplication and sine), with inputs x1 and x2. Notice that

the computation of x1 − x2 is shared by the two factors of the multiplication. Neural networks are special cases of

computational graphs.

The key idea of AD is to compute the gradient of a computational graph by accumulating in a suitable way the

partial derivatives of the basic functions composing the graph. This rests on the mathematical principle known as chain

rule, giving the derivative of a composition f ◦ д from the derivatives of its components f and д (Equation 3). There

are two main “modes” of applying this rule in AD, either forward, propagating derivatives from inputs to outputs, or

backwards, propagating derivatives from outputs to inputs. As will be explained in Sect. 2, ifG is a computational graph

with n inputs andm outputs invoking |G | operations (i.e., nodes), forward mode computes the Jacobian ofG in O(n |G |)

operations, while reverse mode requires O(m |G |) operations. In deep learning, as the number of layers increases, n

becomes astronomical (millions, or even billions) whilem = 1, hence the reverse mode is the method of choice and

specializes in what is called the backpropagation algorithm (Sect. 2.4), which has been a staple of deep learning for

decades [LeCun et al. 1989]. Today, AD techniques are routinely used in the industry through deep learning frameworks

such as TensorFlow [Abadi et al. 2016] and PyTorch [Paszke et al. 2017].

The interest of the programming languages (PL) community in AD stems from the second deep learning question

mentioned above, namely the design and manipulation of (complex) neural network architectures. As it turns out,

1
The generalization of the gradient to the case of functions Rn → Rm withm > 1.

2



these are being expressed more and more commonly in terms of actual programs, with branching, recursive calls

or even higher-order primitives, like list combinators such as map or fold, to the point of yielding what some call a

generalization of deep learning, branded differentiable programming [LeCun 2018]. Although these programs always

reduce, in the end, to computational graphs, these latter are inherently static and therefore inadequate to properly

describe something which is, in reality, a dynamically-generated neural network. Similarly, traditional AD falls short

of providing a fully general foundation for differentiable programming because, in order to compute the gradient of

an a priori arbitrary (higher order) program, it forces us to reduce it to a computational graph first. In PL-theoretic

terms, this amounts to fixing a reduction strategy, which cannot always be optimal in terms of efficiency. There is also

a question of modularity: if gradients may only be computed by running programs, then we are implicitly rejecting the

possibility of computing gradients modularly, because a minor change in the code might result in having to recompute

everything from scratch, which is clearly unsatisfactory.

This paper is a contribution to the theoretical foundations of differentiable programming. We define a compositional

program transformation

←−
D (Table 3) extending the backpropagation algorithm from computational graphs to general

simply typed λ-terms. Our framework is purely logical and therefore offers the possibility of importing tools from

semantics, type systems and rewriting theory. The benefit is at least twofold, in the form of

(1) a soundness proof (Theorem 5.6 and Corollary 5.7), which relies on the logical/compositional definition of

←−
D

and the semantics;

(2) a complexity analysis, which hinges on rewriting in the form of the linear substitution calculus [Accattoli 2012]

and which guarantees that generalized backpropagation is at least as efficient as the standard algorithm on

computational graphs.

Although the soundness proof is based on a fixed strategy (reducing to a computational graph first and then computing

the gradient), the confluence of our calculus guarantees us that the gradient may be computed using any other reduction

strategy, thus allowing arbitrary evaluation mechanisms for executing backpropagation in a purely functional setting,

without necessarily passing through computational graphs. Sect. 6 discusses the benefits of this in terms of efficiency.

On a similar note, compositionality ensures modularity: for instance, if p = tu, i.e., program p is composed of

subprograms t and u, then
←−
D (p) =

←−
D (t)
←−
D (u) and

←−
D (t) and

←−
D (u) may be computed independently, so that if p is

modified into tu ′, the computation of

←−
D (t) may be reused. Modularity also opens the way to parallelization, another

potential avenue to efficiency.

Finally, let us stress that the transformation

←−
D is remarkably simple: on “pure” λ-terms, i.e., not containing any

function symbol corresponding to the basic nodes of computational graphs,

←−
D is the identity, modulo a change in

the types. In particular,

←−
D maps a datatype constructor/destructor (cons, head, tail, etc.) or a typical higher order

combinator (map, fold, etc.) to itself, which makes the transformation particularly easy to compute and analyze. We see

this as a theoretical counterpart to the use of operator overloading in implementations of AD.

From a more abstract perspective, all these properties (including compositionality) may be succinctly summarized in

the fact that

←−
D is a cartesian closed 2-functor or, better, a morphism of cartesian 2-multicategories, obtained by freely

lifting to λ-terms a morphism defined on computational graphs. However, such a viewpoint will not be developed in this

paper.

Related work. Our main source of inspiration is [Wang et al. 2019], where a program transformation

←−
D is proposed

as a compositional extension of symbolic backpropagation to functional programs. We summarize their approach in

Sect. 3, let us concentrate on the main differences here:

3



(1) the transformation

←−
D uses references and delimited continuations, while our transformation

←−
D is purely

functional and only relies on a linear negation primitive on the ground type. Albeit [Wang et al. 2019] do mention

that a purely functional version of their transformation may be obtained by encoding the memory inside the

type of the continuation, this encoding adds a sequentialization (introduced by the order of the memory updates)

which is absent in

←−
D and which makes our transformation more amenable to parallelization.

(2) The transformation

←−
D applies to a Turing-complete programming language, while we focus on the much more

restrictive simply-typed λ-calculus. However, no soundness proof for

←−
D is given, only testing on examples. This

brings to light a difference in the general spirit of the two approaches: the paper [Wang et al. 2019] is mainly

experimental, it comes with a deep learning framework (Lantern) and with a case study showing the relevance

of this line of research. Our approach is complementary because it is mainly theoretical: we focus on proving

the soundness and complexity bound of a non-trivial differentiable programming framework, “non-trivial” in

the sense that it is the simplest exhibiting the difficulty of the task at hand. To the best of our knowledge, such

foundational questions have been completely neglected, even for “toy” languages, and our paper is the first to

address them.

The earliest work performing AD in a functional setting is [Pearlmutter and Siskind 2008]. Their motivations are

broader than ours: they want to define a programming language with the ability to perform AD on its own programs.

To this end, they endow Scheme with a combinator

←−
J computing the Jacobian of its argument, and whose execution

implements reverse mode AD. In order to do this,

←−
J must reflectively access, at runtime, the program in which it is

contained, and it must also be possible to apply it to itself. While this offers the possibility of computing higher-order

derivatives (in the sense of derivative of the derivative, which we do not consider), it lacks a type-theoretic treatment:

the combinator

←−
J is defined in an untyped language. Although [Pearlmutter and Siskind 2008] do mention, for first-

order code, a transformation essentially identical to our

←−
D (using so-called backpropagators), the observations that

backpropagators may be typed linearly and that

←−
D may be directly lifted to higher-order code (as we do in Tab. 3)

are original to our work. Finally, let us mention that in this case as well the correctness of

←−
J is not illustrated by a

mathematical proof of soundness, but by testing an implementation of it (Stalin∇).

At a more theoretical level, [Elliott 2018] gives a Haskell implementation of backpropagation extracted from a functor

D over cartesian categories, with the benefit of disclosing the compositional nature of the algorithm. However, Elliot’s

approach is still restricted to first-order programs (i.e., computational graphs): as far as we understand, the functor D is

cartesian but not cartesian closed, so the higher-order primitives (λ-abstraction and application) lack a satisfactory

treatment. This is implicit in Sect. 4.4 of [Elliott 2018], where the author states that he only uses biproduct categories: it

is well-known that non-trivial cartesian closed biproduct categories do not exist.
2

We already mentioned TensorFlow and PyTorch. It is difficult at present to make a fair comparison with such

large-scale differentiable programming frameworks since we are still focused on the conceptual level. Nevertheless,

in the perspective of a future implementation, our work is interesting because it would offer a way of combining the

benefits of hitherto diverging approaches: the ability to generate modular, optimizable code (TensorFlow) with the

possibility of using an expressive language for dynamically-generated computational graphs (PyTorch).

Contents of the paper. Sect. 2 gives a (very subjective) introduction to the notions of AD used in this paper. Sect. 3

informally introduces our main contributions, which will then be detailed in the more technical Sect. 5. Sect. 4 formally

2
If a category C has biproducts, then 1 � 0 (the terminal object is also initial). If C is cartesian closed, then its product × is a left adjoint and therefore

preserves colimits (initial objects in particular), so A � A × 1 � A × 0 � 0 for every object A of C.

4



specifies the programming language we work with, introducing a simply-typed λ-calculus and a rewriting reduction

(Tab. 2) necessary to define and to evaluate our backpropagation transformation

←−
D . Sect. 6 applies

←−
D to a couple of

examples, in particular to a (very simple) recurrent neural network. Sect. 7 concludes with some perspectives.

2 A CRASH COURSE IN AUTOMATIC DIFFERENTIATION

What follows is an introduction to automatic differentiation for those who are not familiar with the topic. It is extremely

partial (the field is too vast to be summarized here) and heavily biased not just towards programming languages

but towards the very subject of our work. It will hopefully facilitate the reader in understanding the context and

achievements of the paper.

2.1 What is automatic differentiation?

Automatic differentiation (or AD) is the science of efficiently computing the derivative of (a restricted class of)

programs [Baydin et al. 2017]. Such programs may be represented as directed acyclic hypergraphs, called computational

graphs, whose nodes are variables of type R (the set of real numbers) and whose hyperedges are labelled by functions

drawn from some finite set of interest (for example, in the context of neural networks, sum, product and some activation

function), with the restriction that hyperedges have exactly one target node and that each node is the target of at most

one hyperedge. The basic idea is that nodes that are not target of any hyperedge represent input variables, nodes which

are not source of any hyperedge represent outputs, and a hyperedge

x1, . . . ,xk
f
−→ y

represents an assignment y := f (x1, . . . ,xk ), so that a computational graph with n inputs andm outputs represents a

function of type Rn → Rm . An example is depicted in Fig. 1; it represents the function (x1,x2) 7→ sin((x1 − x2)
2).

In terms of programming languages, we may define computational graphs as generated by

F, G ::= x | f (x1,. . .,xk) | let x = G in F | (F,G)

where x ranges over ground variables and f over a set of real function symbols. The let binders are necessary to

represent sharing, a fundamental feature of hypergraphs: e.g., in Fig. 1, node z1 is shared. The set of real function symbols

consists of one nullary symbol for every real number plus finitely many non-nullary symbols for actual functions.

We may write f (G1,. . .,Gn) as syntactic sugar for let x1 = G1 in. . . let xn = Gn in f (x1,. . .,xn). Within this

introduction (Sect. 2 and 3) we adopt the same notation for a function and the symbol associated with it in the language,

so for example r may refer to both a real number and its associated numeral. Also, we use an OCaml-like syntax in the

hope that it will help the unacquainted reader parse the examples. From Sect. 4 onward we will adopt a more succinct

syntax.

Typing is as expected: types are of the form Rk and every computational graph in context x1:R,. . .,xn:R ⊢ G : Rm

denotes a function JGK : Rn → Rm (this will be defined formally in Sect. 5.1). Restricting for simplicity to the one-output

case, we may say that, as far as we are concerned, the central question of AD is computing the gradient of JGK at any
point r ∈ Rn , as efficiently as possible. We remind that the gradient of a differentiable function f : Rn → R is defined to

be the function ∇f : Rn → Rn such that, for all r ∈ R,

∇f (r) = (∂1 f (r), . . . , ∂n f (r)) , (1)

5



where by ∂i f we denote the partial derivative of f with respect to its i-th argument. Of course, the above question

makes sense only if JGK is differentiable, which is the case if every function symbol represents a differentiable function.

In practice this is not always guaranteed (notoriously, modern neural networks use activation functions which are not

differentiable) but this is not actually an issue, as it will be explained momentarily.

Before delving into the main AD algorithms, let us pause a moment on the question of evaluating a computational

graph. In terms of hypergraphs, we are given a computational graph G with input nodes x1, . . . ,xn together with an

assignment xi := ri with ri ∈ R for all 1 ≤ i ≤ n. The value JGK (r1, . . . , rn ) is found by progressively computing the

assignmentsw := f (s1, . . . , sm ) for each hyperedge z1, . . . , zm
f
−→ w such that the values of all zi are already known.

This is known as forward evaluation and has cost |G | (the number of nodes of G).

In terms of programming languages, forward evaluation corresponds to a standard call-by-value strategy, with values

being defined as tuples of numbers. For instance, for G in Fig. 1

let x1 = 5 in

let x2 = 2 in

G

−→∗

let x1 = 5 in

let x2 = 2 in

let x1 = 3 in

let z2 = z1 · z1 in

sin z2

−→∗

let x1 = 5 in

let x2 = 2 in

let x1 = 3 in

let z2 = 9 in

sin z2

−→∗

let x1 = 5 in

let x2 = 2 in

let x1 = 3 in

let z2 = 9 in

0.412

The operational semantics realizing the above computation will be introduced later. For now, let us mention that the

value of a closed computational graph G may be found in O(|G |) reduction steps, where |G | is the size of G as a term,

consistently with the cost of forward evaluation.

2.2 Forward mode AD

The simplest AD algorithm is known as forward mode differentiation. Suppose that we are given a computational graph

(in the sense of a hypergraph) G with input nodes x1, . . . ,xn and one output node y, and suppose that we want to

compute its j-th partial derivative in r = (r1, . . . , rn ) ∈ Rn . The algorithm maintains a memory consisting of a set of

assignments of the form x := (s, t), where x is a node of G and s, t ∈ R (know as primal and tangent), and proceeds as

follows:

• we initialize the memory with xi := (ri , 0) for all 0 ≤ i ≤ n, i , j, and x j := (r j , 1).

• At each step, we look for a node z1, . . . , zk
f
−→ w such that zi = (si , ti ) is in memory for all 1 ≤ i ≤ k (there is

at least one by acyclicity) andw is unknown, and we add to memory

w :=

(
f (s) ,

k∑
i=1
∂i f (s) · ti

)
(2)

where we used the abbreviation s := s1, . . . , sm .

This procedure terminates in a number of steps equal to |G | and one may show, using the chain rule for derivatives

(which we will recall in a moment), that at the end the memory will contain the assignment y := (JGK(r), ∂j JGK(r)).
Since the arity k of function symbols is bounded, the cost of computing one partial derivative is O(|G |). Computing

the gradient requires computing all n partial derivatives, giving of a total cost of O(n |G |), which is not very efficient

since n may be huge (typically, it is the number of weights of a deep neural network, which may well be in the millions).

6



For example, if G is the computational graph of Fig. 1 and we start with x1 := (5, 1),x2 := (2, 0), we obtain z1 :=

(x1−x2, 1 ·1−1 ·0) = (3, 1), then z2 := (z1 ·z1 , z1 ·1+z1 ·1) = (9, 6) and finallyy := (sin(z2), cos(z2) ·6) = (0.412,−5.467),

which is what we expect since ∂1 JGK (x1,x2) = cos((x1 − x2)
2) · 2(x1 − x2).

2.3 Symbolic AD

The AD algorithm presented above is purely numerical, but there is also a symbolic approach. The basic idea of (forward

mode) symbolic AD is to generate, starting from a computational graph G with n input nodes and 1 output node, a

computational graph

−→
D (G) with 2n input nodes and 2 output nodes such that forward evaluation of

−→
D (G) corresponds

to executing forward mode AD on G, i.e., for all r = r1, . . . , rn ∈ R, the output of
−→
D (G)(r1, 0, . . . , r j , 1, . . . , rn , 0) is

(JGK (r), ∂j JGK (r)).
From the programming languages standpoint, symbolic AD is interesting because:

(1) it allows one to perform optimizations on

−→
D (G) which would be inaccessible when simply running the algorithm

on G (a typical benefit of frameworks like TensorFlow);

(2) it opens the way to compositionality, with the advantages mentioned in the introduction;

(3) being a (compositional) program transformation rather than an algorithm, it offers a viewpoint from which AD

may possibly be extended beyond computational graphs.

Recently, [Elliott 2018] pointed out how symbolic forward mode AD may be understood in terms of compositionality,

thus intrinsically addressing point (2) above. The very same fundamental remark is implicitly used also by [Wang

et al. 2019]. Recall that the derivative of a differentiable function f : R→ R is the (continuous) function f ′ : R→ R

such that, for all r ∈ R, the map a 7→ f ′(r ) · a is the best linear approximation of f around r . Now, differentiable (resp.

continuous) functions are closed under composition, so one may wonder whether the operation (−)′ is compositional,

i.e., whether (д ◦ f )′ = д′ ◦ f ′. This is notoriously not the case: the so-called chain rule states that

∀r ∈ R, (д ◦ f )′(r ) = д′(f (r )) · f ′(r ). (3)

Nevertheless, there is a slightly more complex construction from which the derivative may be recovered and which

has the good taste of being compositional. Namely, define, for f as above,

Df : R × R −→ R × R

(r ,a) 7→ (f (r ), f ′(r ) · a)).

We obviously have π2Df (x , 1) = f ′(x) for all x ∈ R (where π2 is projection on the second component) and we invite

the reader to check, using the chain rule itself, that D(д ◦ f ) = Dд ◦ Df .

The similarity with forward mode AD is not accidental. Indeed, as observed by [Elliott 2018], forward mode symbolic

AD may be understood as a compositional implementation of partial derivatives, along the lines illustrated above.

Formally, we may consider two term calculi for computational graphs, let us call them C and C′, defined just as above

but based on two different sets of function symbols F ⊆ F ′, respectively, with F ′ containing at least sum and product,

and equipped with partial functions

∂i : F −→ F
′

for each positive integer i such that, for all f ∈ F of arity k and for all 1 ≤ i ≤ k , ∂i f is defined and its arity is equal to

k . Then, we define a program transformation

−→
D from C to C′ which, on types, is given by

−→
D (R) := R × R

−→
D (A × B) :=

−→
D (A) ×

−→
D (B),

7



and, on computational graphs,

−→
D(x) := x

−→
D(let x = G in F ) := let x =

−→
D(G) in

−→
D(F )

−→
D((F,G)) := (

−→
D(F ),

−→
D(G))

−→
D (f (x)) := let x = (z, a) in (f (z),

∑k
i=1 ∂i f (z) · ai)

In the last case, f is of arity k and let x = (z, a) in . . . stands for let x1 = (z1,a1) in . . . let xk = (zk,ak) in . . ..

Notice how the case

−→
D (f (x)) is the definition of the operator D mutatis mutandis, considering that now the arity k is

arbitrary. More importantly, we invite the reader to compare it to the assignment (2) in the description of the forward

mode AD algorithm: they are essentially identical. The following is therefore not so surprising:

Proposition 2.1. Suppose that every f ∈ F of arity k corresponds to a differentiable function f : Rk → R and that,

for all 1 ≤ i ≤ k , ∂i f is the symbol corresponding to its partial derivative with respect to the i-th input. Then, for every

computational graph x : R ⊢ G : R with n inputs, for all 1 ≤ j ≤ n and for all r = r1, . . . , rn ∈ R, we have the call-by-value
evaluation

let x1 = (r1,0) in. . . let xj = (r j,1) in. . . let xn = (rn,0) in
−→
D (G) −→∗ (JGK (r),∂j JGK (r))

So we obtained what we wanted: evaluating

−→
D (G) in call-by-value is the same as executing the forward mode AD

algorithm onG . Moreover, the definition of

−→
D is fully compositional.

3
Indeed, wemerely reformulated the transformation

−−→
Dx introduced in [Wang et al. 2019]: the computation of the proposition corresponds to that of

−−−→
Dx j (G).

Symbolic AD also provides us with an alternative analysis of the complexity of the forward mode AD algorithm.

Recall that the length of call-by-value evaluation of computational graphs is linear in the size, so the computation of

Proposition 2.1 takesO(
���−→D (G)���) steps. Now, by inspecting the definition of

−→
D , it is immediate to see that every syntactic

construct ofG is mapped to a term of bounded size (remember that the arity k is bounded). Therefore,

���−→D (G)��� = O(|G |),
which is exactly the cost of computing one partial derivative in forward mode. In other words, the cost becomes simply

the size of the output of the program transformation.

Notice how Proposition 2.1 rests on a differentiability hypothesis. As mentioned above, this is not truly fundamental.

Indeed, observe that

−→
D (G) is always defined, independently of whether the function symbols it uses are differentiable.

This is because, in principle, the maps ∂i : F → F
′
are arbitrary and the symbol ∂i f may have nothing to do with

the i-th partial derivative of the function that the symbol f represents! Less unreasonably, we may consider “mildly”

non-differentiable symbols and associate with them “approximate” derivatives: for example, the rectified linear unit

ReLU(x) defined as if x<0 then 0 else x may be mapped by ∂1 to Step(x) defined as if x<0 then 0 else 1, even

though technically the latter is not its derivative because the former is not differentiable in 0. Formally, Step is called

a subderivative of ReLU. Proposition 2.1 easily extends to subderivatives and, therefore, AD works just as well on

non-differentiable functions, computing subgradients instead of gradients, which is perfectly acceptable in practice.

This remark applies also to backpropagation and to all the results of our paper, although for simplicity we prefer to

stick to the more conventional notion of gradient, and thus work under a differentiability hypothesis.

2.4 Reverse mode AD, or backpropagation

A more efficient way of computing gradients in the many inputs/one output case is provided by reverse mode automatic

differentiation, from which the backpropagation (often abbreviated as backprop) algorithm derives. As usual, we are

3
Technically, one may consider the calculi C and C′ as cartesian 2-multicategories: types are objects, computational graphs with n inputs and one output

are n-ary multimorphisms and evaluation paths are 2-arrows. Then,

−→
D is readily seen to be a morphism of cartesian 2-multicategories. We will not

develop such categorical considerations in this paper, we will content ourselves with mentioning them in footnotes.

8



given a computational graph (seen as a hypergraph) G with input nodes x1, . . . ,xn and output node y, as well as

r = r1, . . . , rn ∈ R, which is the point where we wish to compute the gradient. The backprop algorithm maintains a

memory consisting of assignments of the form x := (r ,α), where x is a node of G and r ,α ∈ R (the primal and the

adjoint), plus a boolean flag with values “marked/unmarked” for each hyperedge of G, and proceeds thus:

initialization: the memory is initialized with xi := (ri , 0) for all 1 ≤ i ≤ n, and the forward phase starts;

forward phase: at each step, a new assignment z := (s, 0) is produced, with s being computed exactly as during

forward evaluation, ignoring the second component of pairs in memory (i.e., s is the value of node z); once every

node of G has a corresponding assignment in memory, the assignment y := (t , 0) is updated to y := (t , 1), every

hyperedge is flagged as unmarked and the backward phase begins (we actually know that t = JGK (r), but this is
unimportant);

backward phase: at each step, we look for an unmarked hyperedge z1, . . . , zk
f
−→ w such that all hyperedges

havingw among their sources are marked. If no such hyperedge exists, we terminate. Otherwise, assuming that

the memory containsw := (u,α) and zi := (si , βi ) for all 1 ≤ i ≤ k , we update the memory with the assignments

zi := (si , βi + ∂i f (s) · α) (where s := s1, . . . , sk ) for all 1 ≤ i ≤ k and flag the hyperedge as marked.

One may prove that, when the backprop algorithm terminates, the memory contains assignments of the form

xi := (ri , ∂i JGK (r)) for all 1 ≤ i ≤ n, i.e., the value of each partial derivative of JGK in r is computed at the corresponding

input node, and thus the gradient may be obtained by just collecting such values. Let us test it on an example. Let G be

the computational graph of Fig. 1 and let r1 = 5, r2 = 2. The forward phase terminates with x1 := (5, 0),x2 := (2, 0), z1 :=

(3, 0), z2 := (9, 0),y := (0.412, 1). From here, the backward phase updates z2 := (9, cos(z2) · 1) = (9,−0.911), then

z1 := (3, z1 · −0.911+z1 · −0.911) = (3,−5.467) and finally x1 := (5, 1 · −5.467) = (5,−5.467) and x2 := (2,−1 · −5.467) =

(2, 5.467), as expected since ∂2 JGK = −∂1 JGK.
Compared to forward mode AD, the backprop algorithm may seem a bit contrived (it is certainly harder to understand

why it works) but the gain in terms of complexity is considerable: the forward phase is just a forward evaluation; and,

by construction, the backward phase scans each hyperedge exactly once performing each time a constant number of

operations. So both phases are linear in |G |, giving a total cost ofO(|G |), like forward mode. Except that, unlike forward

mode, a single evaluation now already gives us the whole gradient, independently of the number of inputs!

2.5 Symbolic backpropagation and the compositionality issue

The symbolic methodology we saw for forward mode ADmay be applied to the reverse mode too: given a computational

graphG with n inputs and one output, one may produce a computational graph bp(G)with n+1 inputs and 1+n outputs

such that, for all r = r1, . . . , rn ∈ R, the forward evaluation of bp(G)(r, 1) has output (JGK (r),∇ JGK (r)). Moreover,��bp(G)
�� = O(|G |).

A formal definition of the bp transformation will be given in Sect. 5.1. Let us look at an example, shown in Fig. 2.

First of all, observe that bpx1,x2,a (G) contains a copy of G , marked in blue. This corresponds to the forward phase. The

nodes marked in red correspond to the backward phase. Indeed, we invite to reader to check that the forward evaluation

of bpx1,x2,a (G) with x1 := 5, x2 := 2 and a := 1 matches exactly the steps of the backprop algorithm as exemplified in

Sect. 2.4, with node b (resp. c , x ′
1
, x ′

2
) corresponding to the second component of the value of node z2 (resp. z1, x1, x2).

(The nodes v , c ′ and c ′′ are just intermediate steps in the computation of b and c which are implicit in the numerical

description of the algorithm and are hidden in syntactic sugar).

9



x1

x2

z1 z2 y− · sin

a

b

v

c ′

c ′′

c

x ′
1

x ′
2

cos

·

·

·

+

1

·

−1
·

let z1=x1-x2 in let z2=z1 ·z1 in let b=(cos z2)·a in let c=z1 ·b+z1 ·b in (sin z2,(1·c,-1·c))

Fig. 2. The computational graph bpx1,x2,a (G) where G is in Fig. 1, and its corresponding term.

Rather than examining the details of the definition of bp, let us observe at once that, from the standpoint of

programming languages, it suffers from a serious defect: unlike

−→
D , it is not compositional. Indeed, in order to define

bp(let x = G in F), we need to know and exploit the inner structure of bp(F ) and bp(G), whereas from the definition

of

−→
D given above it is clear that no such knowledge is required in that case, i.e.,

−→
D (F ) and

−→
D (G) are treated as “black

boxes”. Our way of understanding previous work on the subject [Elliott 2018; Wang et al. 2019] is that it was all about

making symbolic backprop compositional. This is the topic of the next Section.

3 OUR APPROACH TO COMPOSITIONAL BACKPROPAGATION

As mentioned above, the key to modular and efficient differentiable programming is making symbolic backprop (the bp
transformation) compositional. We will show that this may be achieved by considering a programming language with a

notion of linear negation. The goal of this section is to explain why negation and why linear.

Let us start with by looking at an extremely simple example, which is just the composition of two unary functions:

G := let z = f x in д z (4)

As a hypergraph, G has three nodes x ,y, z, of which x is the input and y the output (corresponding to the root of G)

and two edges x
f
−→ z and z

д
−→ y. Note that, since G has only one input, its gradient is equal to its derivative and

forward and reverse mode AD have the same complexity. This is why the example is interesting: it shows the difference

between the two algorithms by putting them in a context where they must perform essentially the same operations. In

the sequel, we set h := JGK and we denote by f ′, д′ and h′ the derivatives of f , д and h, respectively.

For what concerns forward mode, we invite the reader to check that

−→
D (G) = let z = let (v,a)= x in (f v, (f ′ v) · a) in let (w, b) = z in (д w, (д′ w) · b)

We may simplify this a bit by observing that (renamingw as z)

−→
D (G){(x,a)/x} −→∗ let z = f x in let b = (f ′ x)·a in (д z, (д′ z)·b)

On the other hand, applying the definition of Sect. 5.1, we get

bpx,a(G) = let z = f x in let b = (д′ z)·a in (д z,(f ′ x)·b)

10



Note that, if we substitute r ∈ R for x and 1 for a, in both cases we obtain (h(r ),h′(r )) in the same number of steps, as

expected. However, the order in which the derivatives are computed relative to the order of the composition д ◦ f is

different: it is covariant in forward mode, contravariant in reverse mode. This corresponds precisely to the behavior of

the two algorithms:

• in forward mode, we start with x := (r , 1), from which we infer z := (f (r ), f ′(r )), from which we infer

y := (д(f (r )),д′(f (r )) · f ′(r ));

• in reverse mode, the forward phase leaves us with x := (r , 0), z := (f (r ), 0), y := (д(f (r )), 1), at which point the

backward phase proceeds back from the output towards the input, inferring first z := (f (r ),д′(f (r ))) and then

x := (r , f ′(r ) · д′(f (r ))).

A lesson we learn from this example, in the perspective of compositionality, is that both algorithms may be seen as

mapping the subprograms f and д, which have one input and one output, to two subprograms

−→
f and

−→д (or

←−
f and

←−д )

having two inputs and two outputs, but then assembling them rather differently:

forward mode reverse mode

−→
f

−→д
r h(r )

1 h′(r )

←−
f

←−д
r h(r )

h′(r ) 1

The picture on the right suggested to [Wang et al. 2019] the idea of solving the compositionality issue via continuations:

drawing inspiration from “There and Back Again” [Danvy and Goldberg 2005], the blocks

←−
f and

←−д are seen as function

calls in the CPS transform of G, so that the forward phase takes place along the call path, while the backward phase

takes place along the return path. However, in order for their approach to work, [Wang et al. 2019] must use references,

i.e., the memory maintained by the backprop algorithm is explicitly present and is manipulated as described in Sect. 2.4.

Moreover, since the memory is updated after the return from each function call, they must actually resort to delimited

continuations. On the whole, although they do succeed in presenting reverse mode AD as a compositional program

transformation, the work of [Wang et al. 2019] is closer to an (elegant!) implementation of the backprop algorithm in a

functional language with references than to an abstract, purely compositional description of its dynamics.

Let us focus, instead, on the idea of contravariance. The archetypal contravariant operation is negation. For a (real)

vector space A, negation corresponds to the dual space A ⊸ R, which may be generalized to A⊥E := A ⊸ E for an

arbitrary space E, although in fact we will always take E = Rd for some d ∈ N. For brevity, let us keep E implicit and

simply write A⊥. There is a canonical way, resembling CPS, of transforming a differentiable function f : R→ R with

derivative f ′ into a function Dr f : R ×R⊥ → R ×R⊥ from which the derivative of f may be extracted. Namely, let, for

all x ∈ R and x∗ ∈ R⊥,

Dr f (x ,x
∗) :=

(
f (x), λa.x∗(f ′(x) · a)

)
, (5)

where we are using λ-notation with the standard meaning. We let the reader verify that, if we suppose E = R, then

for all x ∈ R, (π2Dr f (x , I ))1 = f ′(x), where π2 is projection of the second component and I : R → R is the identity

11



function (which is obviously linear). More importantly, Dr is compositional: for all x ∈ R and x∗ ∈ R⊸ R, we have4

Drд(Dr f (x ,x
∗)) = Drд(f (x), λa.x

∗(f ′(x) · a)) = (д(f (x)), λb .(λa.x∗(f ′(x) · a))(д′(f (x)) · b))

= (д(f (x)), λb .x∗(f ′(x) · (д′(f (x)) · b)) = (д(f (x)), λb .x∗((д′(f (x)) · f ′(x)) · b))

= ((д ◦ f )(x), λb .x∗((д ◦ f )′(x) · b)) = Dr(д ◦ f )(x ,x
∗).

This observation may be generalized to maps f : Rn → R: for all x ∈ Rn and x∗ = x∗
1
, . . . ,x∗n ∈ R

⊥
,

←−
D(f )(x; x∗) :=

(
f (x), λa.

n∑
i=1

x∗i (∂i f (x) · a)

)
.

In the AD literature, the x∗i are called backpropagators [Pearlmutter and Siskind 2008]. Obviously

←−
D(f ) : (R × R⊥)n →

R × R⊥ and we invite the reader to check that, if we take E = Rn , we have

(π2
←−
D(f )(x; ι1, . . . , ιn ))1 = ∇f (x),

where, for all 1 ≤ i ≤ n, ιi : R→ R
n
is the injection into the i-th component, i.e., ιi (x) = (0, . . . ,x , . . . , 0) with zeros

everywhere except at position i , which is a linear function. Moreover,

←−
D is compositional.

5
This leads to the definition

of a compositional program transformation

←−
D (Tab. 3) which verifies

←−
D(R) = R×R⊥ and which, applied to our example

(4), gives

←−
D(G) =

let z =

let (v,v∗) = x in

(f v, fun b -> v∗ ((f ′ v) · b)) in

let (w, w∗) = z in

(д w, fun a -> w∗ (д′(w) · a))

where w∗, v∗ : R⊥ so that both fun b -> v∗ ((f ′ v) · b)) and fun a -> w∗ ((д′ w) · a) have also type R⊥ . Notice the

resemblance of

←−
D(G) and

−→
D(G): this is not an accident, both are defined in a purely compositional way (in particular,

←−
D(let x = H in F ) = let x =

←−
D(H ) in

←−
D(F )), abiding by the “black box” principle) and the only non trivial case is

when they are applied to function symbols. Moreover, we have

←−
D(G){(x,x∗)/x} −→∗ let z = f x in (д z, fun a -> let b = (д′ z)·a in x∗((f ′ x)·b))

which, albeit of different type, is essentially identical to bpx,a (G). More precisely, if we write let b = (д′ z)·a in (f ′

x)·b as F , then we have

bpx,a (G) =let z=f x in (д z,F) and
←−
D(G) {(x,x∗)/x} −→∗ let z=f x in (д z, fun a -> x∗ F)

Let us now explain why negation must be linear. The above example is too simple for illustrating this point, so from

now on letG be the computational graph of Fig. 1. Applying the definition of Tab. 3 and simplifying, we obtain that

←−
D (G) is equal to:
4
The equation in the second line uses both commutativity and associativity of product, but only the latter is really necessary: by replacing f ′(x ) · a with

a · f ′(x ) in Eq. 5 one can check that commutativity is not needed. The former notation reflects that this is actually a linear application: in general, if

f : A → B , then f ′(x ) : A ⊸ B and a : A. When A = B = k with k a ring (commutative or not), k ⊸ k � k and linear application becomes the

product of k , so the notation a · f ′(x ) makes sense and backprop has in fact been applied to non-commutative rings [Isokawa et al. 2003; Pearson and

Bisset 1992]. In the general case, it makes no sense to swap function and argument and it is unclear how backprop would extend.

5
Technically, functions of type Rn → R for varying n form what is known as a cartesian operad, or clone, and

←−
D is a morphism of such structures. A bit

more explicitly, one may compose f : Rn → R with д : Rm+1 → R by “plugging” f into the i-th coordinate of д, forming д ◦i f : Rn+m → R, for any

1 ≤ i ≤ m + 1; the operation
←−
D preserves such compositions.

12



let z2 =

let z1 =

let (v2, v∗
2
) = x2 in

let (v1, v∗
1
) = x1 in

(v1-v2, fun c -> v∗
1
(1·c)+v∗

2
(−1·c)) in

let (w1,w
∗
1
) = z1 in

(w1 ·w1, fun b -> w∗
1
(w1 ·b)+w

∗
1
(w1 ·b)) in

let (w2, w∗
2
) = z2 in

(sin w2, fun a -> w∗
2
((cos w2)·a))

−→∗

let (v2, v∗
2
) = x2 in

let (v1, v∗
1
) = x1 in

let (z1,z
∗
1
) =

(v1-v2, fun c -> v∗
1
(1·c)+v∗

2
(−1·c)) in

let (z2, z∗
2
) =

(z1 ·z1, fun b -> z∗
1
(z1 ·b)+z

∗
1
(z1 ·b)) in

(sin z2, fun a -> z∗
2
((cos z2)·a))

There is a potential issue here, due to the presence of two occurrences of z∗
1
(highlighted in brown) which are matched

against the function corresponding to the derivative of x1-x2 (also highlighted in brown, let us denote it by F ). Notice

that such a derivative is present only once in bpx1,x2,a (G): it corresponds to the rightmost nodes of Fig. 2 (more precisely,

the abstracted variable c corresponds to node c itself, whereas v∗
1
and v∗

2
correspond to nodes x ′

1
and x ′

2
, respectively).

Therefore, duplicating F would be a mistake in terms of efficiency.

The key observation here is that z∗
1
is of type R⊥ , i.e., it is a linear function (and indeed, F is linear: by distributivity of

product over sum, cmorally appears only once in its body). This means that, for all t ,u : R, we have z∗
1
t +z∗

1
u = z∗

1
(t +u).

In the λ-calculus we consider (Sect. 4), this becomes an evaluation step oriented from left to right, called linear factoring

(18), allowing us to evaluate

←−
D (G) with the same efficiency as bpx1,x2,a (G). The linear factoring f t + f u −→ f (t + u)

would be semantically unsound in general if f : ¬R = R→ R, which is why we must explicitly track the linearity of

negations.

So we have a compositional transformation

←−
D which takes a computational graphG with n inputs x1, . . . ,xn and

returns a program x1 : R × R⊥ , . . . ,xn : R × R⊥ ⊢
←−
D (G) : R × R⊥ in the simply-typed λ-calculus augmented with linear

negation, such that

←−
D (G) evaluates to (essentially) bpx1, ...,xn,a (G). Actually, thanks to another nice observation of

[Wang et al. 2019], we can do much more: we can extend

←−
D for free to the whole simply-typed λ-calculus, just letting

←−
D (fun x ->t) := fun x ->

←−
D (t) and

←−
D (tu) :=

←−
D (t)
←−
D (u), and, whenever x1 : R, . . . , xn : R ⊢ t : R, we have that

←−
D (t)

still computes ∇ JtK with the same efficiency as the evaluation of t ! Indeed, the definition of

←−
D immediately gives us

that if t −→∗ u in p steps, then

←−
D (t) −→∗

←−
D (u) in O(p) steps (point 2 of Lemma 5.4).

6
But since t has ground type and

ground free variables, eliminating all higher-order redexes gives t −→∗ G for some computational graph G, hence
←−
D (t)

evaluates to (essentially) bp(G). So
←−
D (t) computes the gradient of JtK = JGK (remember that the semantics is invariant

under evaluation) with a cost equal to O(|G |) plus the cost of the evaluation t −→∗ G , which is the best we can expect in

general.

To conclude, we should add that in the technical development we actually use Accattoli’s linear substitution calculus

[Accattoli 2012], which is a bit more sophisticated than the standard simply-typed λ-calculus. This is due to the presence

of linear negation, but it is also motivated by efficiency, which is the whole point of backpropagation. To be taken

seriously, a proposal of using functional programming as the foundation of (generalized) AD ought to come with a

thorough complexity analysis ensuring that we are not losing efficiency in moving from computational graphs to

λ-terms. Thanks to its tight connection with abstract machines and reasonable cost models [Accattoli et al. 2014],

6
Morally, the simply-typed λ-calculus augmented with a set F of function symbols is the free cartesian semi-closed 2-multicategory on F (semi-closed in

the sense of [Hyland 2017]). Therefore, once

←−
D is defined on F, it automatically extends to a morphism of such structures. In particular, it functorially

maps evaluations (which are 2-arrows) to evaluations.

13



ultimately owed to its relationship with Girard’s proof nets [Accattoli 2018] (a graphical representation of linear logic

proofs which may be seen as a higher order version of computational graphs), the linear substitution calculus is an

ideal compromise between the abstractness of the standard λ-calculus and the concreteness of implementations, and

provides a solid basis for such an analysis.

4 THE LINEAR SUBSTITUTION CALCULUS

Terms and Types. Since the linear factoring rule (18) is type-sensitive (as mentioned above, it is unsound in general),

it is convenient to adopt a Church-style presentation of our calculus, i.e., with explicit type annotations on variables.

The set of types is generated by the following grammar:

A,B,C ::= R | A × B | A→ B | R⊥d (simple types)

where R is the ground type of real numbers. The negation R⊥d corresponds to the linear implication (in the sense of

linear logic [Girard 1987]) R ⊸ Rd . However, in order to keep the calculus as simple as possible, we avoid introducing

a fully-fledged bilinear application (as for example in the bang-calculus [Ehrhard and Guerrieri 2016]) and opt instead

for just a negation operator and dedicated typing rules. We may omit the subscript d in R⊥d if clear from the context or

unimportant.

An annotated variable is either x !A (called exponential variable) with A any type, or xR (called linear variable): the

writing x (!)A stands for one of the two annotations (in the linear case A = R). The grammar of values and terms is given

by mutual induction as follows, with x (!)A varying over the set of annotated variables, r over the set of real numbers R

and f over a finite set F of function symbols over real numbers containing at least multiplication (noted in infix form

t · u):

v ::= x (!)A | r | λx (!)A .t | ⟨v1,v2⟩ (values) (6)

t ,u ::= v | tu | ⟨t ,u⟩ | t[
〈
x !A,y!B

〉
:= u] | t[x (!)A := u] | t + u | f (t1, . . . , tk ) (terms) (7)

Since binders contain type annotations, bound variables will never be annotated in the sequel. In fact, we will entirely

omit type annotations if irrelevant or clear from the context. Terms of the form r are called numerals. The term t[x := u]

(and its binary version t[⟨x ,y⟩ := u]) may be understood as the more familiar let x = u in t used in the previous

informal sections.

We denote by Λ⊥(F ) the set of terms generated by the above grammar. We consider also the subset Λ(F ) of terms

obtained by discarding linear negation and linear variables.

We denote by |t | the size of a term t , i.e., the number of symbols appearing in t . We denote by fv(t) the set of free

variables of t , abstractions and explicit substitutions being the binding operators. As usual, α-equivalent terms are

treated as equal. A term t is closed if fv(t) = ∅. In the following, we will use boldface metavariables to denote sequences:

x will stand for a sequence of variables x1, . . . ,xn , t for a sequence of terms t1, . . . , tn , etc. The length of the sequences

will be left implicit, because either clear from the context or irrelevant.

We use n-ary products ⟨t1, . . . , tn−1, tn⟩ as syntactic sugar for ⟨t1, . . . ⟨tn−1, tn⟩ . . . ⟩, and we define Euclidean types

by Rd := R × (. . . R × R . . .). It will be useful to denote a bunch of sums without specifying the way these sums are

associated. The notation ∑
i ∈I

ti ,

14



Γ ⊢z z : R Γ, x !A ⊢ x : A

Γ ⊢(z) t : A Γ ⊢(z) u : B

Γ ⊢(z) ⟨t, u ⟩ : A × B

Γ ⊢ u : A × B Γ, x !A, y !B ⊢(z) t : C

Γ ⊢(z) t [
〈
x !A, y !B 〉

:= u] : C

Γ, x !A ⊢ t : B

Γ ⊢ λx !A .t : A→ B
Γ ⊢ t : A→ B Γ ⊢ u : A

Γ ⊢ tu : B

Γ ⊢z t : Rd

Γ ⊢ λzR .t : R⊥d

Γ ⊢ t : R⊥d Γ ⊢(z) u : R

Γ ⊢(z) tu : Rd

Γ ⊢ u : A Γ, x !A ⊢(z) t : C

Γ ⊢(z) t [x !A
:= u] : C

Γ ⊢(z′) u : R Γ ⊢z t : Rd

Γ ⊢(z′) t [zR := u] : Rd
Γ ⊢ t1 : R . . . Γ ⊢ tk : R

Γ ⊢ f (t1, . . . , tk ) : R
r ∈ R

Γ ⊢ r : R

Γ ⊢(z) t : R Γ ⊢ u : R

Γ ⊢(z) t · u : R

Γ ⊢ t : R Γ ⊢(z) u : R

Γ ⊢(z) t · u : R Γ ⊢z 0 : Rd
Γ ⊢(z) t : Rd Γ ⊢(z) u : Rd

Γ ⊢(z) t + u : Rd

Table 1. The typing rules. In the pairing and sum rules, either all three sequents have z , or none does.

will denote such a bunch for I a finite set. In case I is a singleton, the sum denotes its unique element. An empty sum

of type Rd stands for

〈
0, . . . , 0

〉
, which we denote by 0. Of course this notation would denote a unique term modulo

associativity and commutativity of + and neutrality of 0, but we do not need to introduce these equations in the calculus.

The typing rules are in Tab. 1. The meta-variables Γ,∆ vary over the set of typing contexts, which are finite sequences

of exponential type annotated variables without repetitions. There are two kind of sequents: Γ ⊢ t : A and Γ ⊢z t : Rd .

In this latter d ∈ N and z is linear type annotated variable which occurs free linearly in t . The typing rules define

what “occurring linearly” means, following the standard rules of linear logic.
7
The writing Γ ⊢(z) t : A stands for either

Γ ⊢ t : A or Γ ⊢z t : A, and in the latter case A = Rd for some d .

Contexts. We consider one-hole contexts, or simply contexts, which are defined by the above grammar (6) restricted

to the terms having exactly one occurrence of a specific variable {·}, called the hole. Meta-variables C,D will range

over the set of one-hole contexts. Given a context C and a term t we denote by C{t} the substitution of the hole in C by

t allowing the possible capture of free variables of t . A particular class of contexts are the substitution contexts which

have the form of a hole followed by a stack (possibly empty) of explicit substitutions: {·}[p1 := t1] . . . [pn := tn ] with

each pi a variable or a pair of variables. Meta-variables α , β will range over substitution contexts. If α is a substitution

context, we will use the notation tα instead of α {t}.

Rewriting rules. The reduction relation is given in Tab. 2 divided in three sub-groups:

β := {(8), (9), (10), (11), (12), (13), (14), (15)} evaluation rules,

η := {(16), (17)} extensional rules,

ℓ := {(18)} linear factoring.

In case one wants to consider numeric computations (other than sum and products), then of course one must also

include suitable reduction rules associated with the function symbols:

f (r
1
α1, . . . , rnαn ) −→ Jf K (r1, . . . , rn )α1 . . . αn (24)

7
In this paper we focus on exactly what is required to express the backpropagation algorithm in the λ-calculus, avoiding a full linear logic typing

assignment and just tracking the linearity of a single variable of type R in judgments typing a term with a Euclidean type Rd .

15



(λx .t)αu −→ t[x := u]α (8)

s[⟨x ,y⟩ := ⟨t ,u⟩ α] −→ s[x := t][y := u]α (9)

C{x}[x !A := vα] −→ C{v}[x !A := v]α (10)

t[x !A := vα] −→ tα if x < fv(t) (11)

t[xR := vα] −→ t{v/x} α (12)

rα + qβ −→ r + qαβ (13)

⟨t1, t2⟩ α + ⟨u1,u2⟩ β −→ ⟨t1 + u1, t2 + u2⟩ αβ (14)

rα · qβ −→ rqαβ (15)

(a) β -rules. In (10), (11) and (12), v is a value. In (10), C is an arbitrary context not binding x . We write (10)n to refer to the instance of
(10) in which v is a numeral.

t −→ λy.ty (16)

t[x :=
〈
u,u ′

〉
] −→ t[x :=

〈
y,y′

〉
][
〈
y,y′

〉
:=

〈
u,u ′

〉
] (17)

(b) η-rules. In (16) t has an arrow type or R⊥ . The new variables on the right-hand side of both rules are fresh.

(xR
⊥

αt)β + (xR
⊥

α ′t ′)β ′ −→ xR
⊥

(t + t ′)αβα ′β ′ (18)

(c) linear factoring (ℓ-rule for short), where we suppose that none of α, β, α ′, β ′ binds x .

t[x := u][y := w] ≡ t[y := w][x := u] if y < fv(u) and x < fv(w) (19)

t[x := u][y := w] ≡ t[x := u[y := w]] if y < fv(t) (20)

t[x !A := u] ≡ t {y/x }[x
!A

:= u][y!A := u] (21)

(s□t)[x := u] ≡ s[x := u]□t if x < fv(t) (22)

(s□t)[x := u] ≡ s□(t[x := u]) if x < fv(s) (23)

(d) Structural equivalence. In (21), t{y/x } denotes t in which some (possibly none) occurrences of x are renamed to a fresh variable y .
In (22), (23) the writing s□t stands for either st or s + t or s · t or ⟨s, t ⟩.

Table 2. The reduction and the structural equivalence relations, where we suppose the usual convention that no free variable in one
term can be captured in the other term of a relation.

The rule (8) transforms a λ-calculus application into an explicit substitution. The difference between the two is that

the latter commutes over terms by the structural equivalence defined in Tab. 2d, while the former does not. Rule (9)

deconstructs a pair, while rule (10) implements a “micro-step” substitution, closer to abstract machines [Accattoli et al.

2014]. The special case in which v is a numeral is referred to as (10)
n
. Rule (11) implements garbage collection, and rule

(12) linear substitution. The rules (16) and (17) are standard instances of η-expansion rules. They are useful in the proof

of Theorem 5.6. Rule (18) has already been discussed.

Notice that Λ(F ) is a standard linear explicit substitution calculus encompassing both call-by-need and call-by-

value [Accattoli et al. 2014]. For instance, the usual by-value β-rule (λx .t)v −→ t{v/x} is derivable. In this respect,

the reader may think of Λ(F ) as nothing but the plain simply-typed λ-calculus, and consider explicit substitutions as

needed merely to represent computational graphs (which are obtained by restricting to the ground type R only). The

situation is different in Λ⊥(F ), in which linearity plays a key role for expressing backpropagation.

16



Given any X ⊆ β ∪ η ∪ ℓ, we denote by
X
−−→ the context closure of the union of the reduction relations in X , for any

context C:

C{t}
X
−−→ C{u}, whenever t

X
−−→ u .

This means that we do not consider a specific evaluation strategy (call-by-value, call-by-name etc. . . ), in order to be as

general as possible and to allow a future analysis concerning a more efficient operational semantics.

A term t is a X -normal form if there is no term u with t
X
−−→ u. If the set X is a singleton {ι}, we simply write

ι
−→. If

X = β ∪ η ∪ ℓ, we write just −→. If k ∈ N,
X
−−→k

denotes a sequence of length k of

X
−−→, whereas

X
−−→∗ denotes a sequence

arbitrary length (including null), i.e.,

X
−−→∗ is the reflexive-transitive closure of

X
−−→. Juxtaposition of labels means their

union, so that, for example,

βη
−−→ denotes the context closure of all reduction relations except (18).

Structural equivalence ≡ is the smallest equivalence relation containing the context closure of the rules (19)–(23) in

Tab. 2d. Morally, structural equivalence relates terms which would correspond to the same state of an abstract machine

implementing the calculus, in which explicit substitutions represent pointers to memory. We refer to [Accattoli et al.

2014; Accattoli and Barras 2017] for more details. The crucial property of ≡ is that it is a (strong) bisimulation with

respect to −→, which means in particular that it may always be postponed to the end of an evaluation (Proposition 4.3).

The following properties are standard and we give them without proof.

Proposition 4.1 (Subject reduction). If t −→ u or t ≡ u and Γ ⊢(z) t : A, then Γ ⊢(z) u : A.

Lemma 4.2 (≡ is a strong bisimulation). Let ι be any reduction rule and let t ′ ≡ t
ι
−→ u, then there exists t ′

ι
−→ u ′

such that u ′ ≡ u.

Proposition 4.3 (postponement of ≡). Let X be any subset of the reduction rules in Tab. 2 (including the variant

(10)
n
) and let t (

X
−−→ ∪ ≡)∗ u with k X -steps, then there exists u ′ such that t

X
−−→k u ′ ≡ u.

Proposition 4.4 (values). Given a closed term t of type A, if t is a β-normal form, then it is a value.

Proposition 4.5 (Weak normalization). For every term t , and every set X ⊆ βℓ, there exists a X -normal form u

such that t
X
−−→∗ u.

The βℓ-rewriting enjoys also strong normalization, even modulo ≡, but the proof is more involved and uninteresting

for our purposes, so we omit it. The strong normalization is however immediate if we restrict the contraction rule (10)

to numerals, a property which will be useful in the sequel.

Lemma 4.6. For any t
(10)

n
(11)(14)(13)(15)

−−−−−−−−−−−−−−−−→∗ u, the number of steps in the sequence is O(|t |).

Denotational semantics. The cartesian closed category of sets and functions gives a denotational model for this

calculus. Types are interpreted as sets, as follows:

JRK := R JA→ BK := set of functions from JAK to JBK

JA × BK := JAK × JBK
q
R⊥d

y
:= set of linear maps from R to Rd

Notice that the restriction to linear functions in

q
R⊥d

y
is such that rule (18) is sound. The interpretation of a judgment

Γ ⊢ t : A is a function JtKΓ from the cartesian product JΓK of the denotations of the types in Γ to JAK. The interpretation
of a judgment Γ ⊢z t : Rd , is given as a function JtKΓ;z associating with every g ∈ JΓK a linear map from R to Rd . The

17



definition is by induction on t and completely standard (explicit substitution is functional composition). We omit the

superscript Γ (or Γ; z) if irrelevant. This interpretation supposes to have associated each function symbol in F with a

suitable map over real numbers. By a standard reasoning, one can prove that:

Proposition 4.7 (Semantic soundness). Let Γ ⊢(z) t : A, then t −→ u or t ≡ u, gives JtK = JuK.

The semantic soundness gives as a by-product a light form of confluence on Euclidean types
8
.

Corollary 4.8. Let ⊢ t : Rd and v and v ′ be β-normal forms s.t. t −→∗ v and t −→∗ v ′. Then v = v ′.

Proof. It is not hard to show that the interpretation is injective on tuples of numerals, i.e., for v,v ′ : Rd values,

JvK = Jv ′K implies v = v ′. The statement then follows from Props. 4.4 and 4.7. □

From now on, we will suppose that:

(⋆) all function symbols in F are associated by J−K with differentiable maps on real numbers.

As mentioned at the end of Sect. 2.3, this hypothesis is essentially cosmetic, in that it allows us to use actual gradients

and to avoid the more technical notion of subgradient (see also Sect. 7).

Any term x !R
1
, . . . ,x !Rn ⊢ t : R is denoted by an n-ary map JtK over R. Since differentiable functions compose, then (⋆)

implies that JtK is also differentiable, if t contains only variables of type R. In the general case, one can use Prop. 4.5 in

order to β-reduce t into a β-normal form u containing only variables of type R. Then by Prop. 4.7 JtK = JuK and so JtK
is differentiable. This justifies the following notation, given x !R

1
, . . . ,x !Rn ⊢ t : R and a vector r ∈ Rn :

∇t(r) :=
〈
∂1 JtK (r), . . . , ∂n JtK (r)

〉
. (25)

Section 5 gives an efficient way of computing ∇t(r) based on the syntactic structure of t .

5 THE BACKPROPAGATION TRANSFORMATION

Let us fix two sets of function symbols F ,F ′ such that F ⊆ F ′, together with partial functions ∂i : F −→ F ′, for

each positive integer i such that, for all f ∈ F of arity k and for all 1 ≤ i ≤ k , ∂i f is defined and its arity is equal to k .

In addition to the hypothesis (⋆) in Sect. 4, we also suppose:

(⋆⋆) J∂i f K := ∂i Jf K

For any d ∈ N, Tab. 3 defines a program transformation

←−
Dd from Λ(F ) to Λ⊥(F

′), called the reverse gradient relative

to Rd . Given a term x!R ⊢ t : R, Cor. 5.7 proves that
←−
Dd (t) computes the gradient of t in at mostO(m + |G |) steps, where

m is the cost of evaluating t to a computational graph G. Moreover, Cor. 5.7 is a consequence of Th. 5.6, proving that

actually one can reduce

←−
Dd (t) to a term expressing the backpropagation algorithm applied to any computational graph

G β-equivalent to t (indeed, to a single λ-term t one can associate different computational graphs, with different sizes

and with different degrees of sharing). Sect. 5.1 sets the framework needed to state and prove our results. Grammar (26)

defines the notion of ground term corresponding to a computational graph and Def. 5.1 gives the computational graph

associated with the backpropagation applied to ground terms. Prop. 5.3 formally proves the soundness of this algorithm.

Sect. 5.2 then moves to the more general case of λ-terms, giving the soundness of our reverse gradient transformation

←−
Dd .

8
More sophisticated notions of confluence modulo an extension of ≡ hold for the reductions in Tab. 2, but we avoid to discuss this point here because

inessential for our purposes.

18



←−
Dd (R) := R × R⊥d

←−
Dd (A→ B) :=

←−
Dd (A) →

←−
Dd (B)

←−
Dd (A × B) :=

←−
Dd (A) ×

←−
Dd (B)

(a) The action of the transformation on types.

←−
Dd (x

!A) := x !
←−
Dd (A)

←−
Dd (λx

!A .t) := λx !
←−
Dd (A).

←−
Dd (t)

←−
Dd (tu) :=

←−
Dd (t)

←−
Dd (u)

←−
Dd (⟨t ,u⟩) :=

〈
←−
Dd (t),

←−
Dd (u)

〉
←−
Dd (t[

〈
x !A,y!B

〉
:= u]) :=

←−
Dd (t)[

〈
x !
←−
Dd (A),y!

←−
Dd (B)

〉
:=
←−
Dd (u)]

←−
Dd (t[x

!A
:= u]) :=

←−
Dd (t)[x

!

←−
Dd (A)

:=
←−
Dd (u)]

←−
Dd (r ) :=

〈
r , λaR.0

〉
←−
Dd (t + u) :=

〈
x + y, λaR.(x∗a + y∗a)

〉
[

〈
x !R,x∗!R

⊥d
〉
:=
←−
Dd (t)][

〈
y!R,y∗!R

⊥d
〉
:=
←−
Dd (u)]

←−
Dd (f (t)) :=

〈
f (x) , λaR.

k∑
i=1

x∗i (∂i f (x) · a)

〉
[

〈
x!R, x∗!R

⊥d
〉
:=
←−
Dd (t)]

(b) The action of the transformation on terms. In the definition of
←−
D (f (t)), the sequences t, x, x∗ have all length k equal to the arity

of f and the notation [
〈
x!R, x∗!R

⊥d
〉
:=
←−
D (t)] stands for [

〈
x !R
1
, x ∗

1

!R⊥d
〉
:=
←−
D (t1)] · · · [

〈
x !R
k , x ∗k

!R⊥d
〉
:=
←−
D (tk )]. As mentioned in

Sect. 3, the variables with superscript ∗ correspond to backpropagators in AD terminology [Pearlmutter and Siskind 2008].

Table 3. The reverse gradient
←−
Dd relative to Rd , for an arbitrary natural number d .

Let us underline that, in the last line of Tab. 3b, the index d of

←−
Dd is totally independent from the arity k of the

function symbol f and from the indexes i ≤ k of the variables x∗i tagging the sum introduced by

←−
Dd . The fact that d

may be arbitrary (it plays a role only in the last remark of Sect. 5.2) is a crucial feature allowing its compositionality,

in contrast with the definition of bpx,a (G) which has to refer to x containing the free variables in G (see the case

bpx,a (f (y)) in Def. 5.1). This being said, we henceforth omit the index d .

5.1 Backpropagation on Computational Graphs

We restrict Λ(F ) to terms of type R not containing higher types, deemed ground terms, as follows:

F ,G ::= x !R | F [x !R := G] | f (x !R
1
, . . . ,x !Rk ) | r | F +G (26)

A term f (G1, . . . ,Gk ) is considered as syntactic sugar for f (x1, . . . ,xk )[x1 := G1] . . . [xk := Gk ]. Fig. 1 and 2 give

examples of ground terms with the associated computational graph. Notice that the type system of Tab. 1 assigns to

any ground termG a type judgment x !R
1
, . . . ,x !Rn ⊢ G : R for a suitable set of variables, so ∇G(r) is defined by (25) and

the hypothesis (⋆) and (⋆⋆).

We now define the transformation bp implementing symbolic backpropagation, as described on hypergraphs e.g. in

[Van Iwaarden 1993, Sect. 3]. We first introduce the following notation, evaluating some trivial sums on the fly: given

19



two ground terms F0, F1,

F0 ⊕ F1 :=


Fi if Fi−1 = 0,

F0 + F1 otherwise

Definition 5.1. Let Γ = x !R
1
, . . . ,x !Rn . Given a ground term of type Γ ⊢ G : R and a fresh variable aR, we define the term

Γ,a!R ⊢ bpx,a (G) : R × R
n

by induction on G, as follows. The definition is based on the inductive invariant that

bpx,a (G) = ⟨G0, ⟨G1, . . . ,Gn⟩ α⟩ β

where α and β are substitution contexts and a does not appear free in G0 or in β .

• bpx,a (xi ) :=
〈
xi ,

〈
0, . . . ,a, . . . , 0

〉〉
, where a appears at the i-th position in the tuple.

• bpx,a (r ) :=
〈
r ,

〈
0, . . . , 0

〉〉
.

• Let f be of arity k and y a subsequence of length k of x. Then,

bpx,a (f (y)) :=
〈
f (y),

〈
0, . . . , 0, ∂1 f (y) · a, 0, . . . , 0, ∂k f (y) · a, 0, . . . , 0

〉〉
,

where the non-zero terms in the tuple are at the positions determined by y within x.
• Let G = F ′[z!R := F ′′] and suppose that (with b!R a new variable distinct from a!R)

bpx,z,a (F
′) =

〈
F ′
0
,
〈
F ′
1
, . . . , F ′n ,H

〉
α ′

〉
β ′, bpx,b (F

′′) =
〈
F ′′
0
,
〈
F ′′
1
, . . . , F ′′n

〉
α ′′

〉
β ′′.

Notice that for every i ≤ n we can suppose by renaming that the set of variables of F ′i bound by α ′, β ′ is disjoint

from the set of variables of F ′′i bound by α ′′, β ′′. Also, notice that F ′′
0
has type x!R ⊢ F ′′

0
: R. So we can define:

bpx,a (F
′[z!R := F ′′]) := 

〈
F ′
0
,
〈
F ′
1
, . . . , F ′n

〉
α ′

〉
β ′[z!R := F ′′

0
]β ′′ if H = 0,〈

F ′
0
,
〈
F ′
1
⊕ F ′′

1
, . . . , F ′n ⊕ F ′′n

〉
α ′′[b!R := H ]α ′

〉
β ′[z!R := F ′′

0
]β ′′ otherwise.

• Let G = F ′ + F ′′ and suppose that

bpx,a (F
′) =

〈
F ′
0
,
〈
F ′
1
, . . . , F ′n

〉
α ′

〉
β ′, bpx,a (F

′′) =
〈
F ′′
0
,
〈
F ′′
1
, . . . , F ′′n

〉
α ′′

〉
β ′′,

then, bpx,a (F
′ + F ′′) :=

〈
F ′
0
+ F ′′

0
,
〈
F ′
1
⊕ F ′′

1
, . . . , F ′n ⊕ F ′′n

〉
α ′α ′′

〉
β ′β ′′.

Lemma 5.2. Let G be a ground term with fv(G) = x, then
��bpx,a (G)

�� = O(|G |).
Proposition 5.3 (Soundness of bp). Let G be a ground term whose free variables are given by a sequence x of length

n. Then for every r ∈ Rn , we have:

bpx,a (G)[a := 1][x := r]
(10)

n
(11)(13)(15)

−−−−−−−−−−−−−→O ( |G |)≡
〈
JGK (r),∇G(r)

〉
.

Proof. Let R = {(10)n(11)(13)(15)}. By induction on G we prove that, supposing bpx,a (G) = ⟨G0, ⟨G1, . . . ,Gn⟩ α⟩ β ,

for every vector of real numbers r, we have: (i) G0β[x := r]
R
−→∗≡ JGK (r); (ii) for all 1 ≤ i ≤ n, for all real number q,

20



Giαβ[a := q][x := r]
R
−→∗≡ ∂xi JGK (r) · q. From (i) and (ii):

bpx,a (G)[a := 1][x := r ] ≡〈
G0β[x := r],

〈
G1αβ[a := 1][x := r], . . . ,Gnαβ[a := 1][x := r]

〉〉 R
−→∗ ≡

〈
JGK (r),∇r JGK

〉
.

Prop. 4.3 allows to postpone all structural equivalences at the end. From Lem. 4.6 and

��bpx,a (G)
�� = O(|G |) (Lem. 5.2) the

length of the reduction is O(|G |).

We give only the proof of (ii) for G = F ′[z := F ′′], the other cases being similar or trivial. Using the notations from

Def. 5.1 we have that the i-th component of the gradient tuple of bpx,a (G) together with the associated substitutions is

equal to (we suppose F ′i ⊕ F ′′i = F ′i + F
′′
i , the other cases being simpler):

(F ′i + F
′′
i )α

′′[b := H ]α ′β ′[z := F ′′
0
]β ′′[a := q][x := r]

≡ (F ′i + F
′′
i )α

′′[b := H ]α ′β ′β ′′[a := q][x := r][z := F ′′
0
β ′′[x := r]]

R
−→∗ (F ′i + F

′′
i )α

′′[b := H ]α ′β ′β ′′[a := q][x := r][z := JF ′′K (r)] by (i)

≡ (F ′i + F
′′
i )α

′′α ′β ′β ′′[a := q][x := r][z := JF ′′K (r)][b := Hα ′β ′β ′′[a := q][x := r][z := JF ′′K (r)]]

R
−→O ( |F ′ |) (F ′i + F

′′
i )α

′′α ′β ′β ′′[a := q][x := r][z := JF ′′K (r)][b := ∂z JF ′K (r) · q] by IH

≡ F ′i α
′β ′[a := q][x := r][z := JF ′′K (r)] + F ′′i α

′′β ′′[b := ∂z JF ′K (r) · q][x := r]

R
−→∗ ∂xi JF ′K (r) · q + ∂xi JF ′′K (r) ·

(
∂z JF ′K (r) · q

)
by IH

(13)

−−−→
(
∂xi JF ′K (r) + ∂z JF ′K (r) · ∂xi JF ′′K (r)

)
· q = ∂xi JGK (r) · q

Notice that in order to move to the last line we use the associativity, commutativity and distributivity of + and ·

over real numbers, not on the corresponding syntactic symbols. In the base cases (variables, functional symbols and

numerals), one performs linear substitutions (10) as well as garbage collection (11). In the case of bpx,a (f (xi1 , . . . ,xik ))

one instance of rule (15) is needed. □

Notice that the result of the evaluation of bpx,a (G)[a := 1][x := r] is independent from the chosen reduction sequence

by Corollary 4.8.

5.2 Backpropagation on Higher-Order Programs

Let us now consider the soundness of our transformation

←−
D (t) applied to any λ-term of type x !R

1
, . . . ,x !Rn ⊢ t : R. The

proof uses two essential ingredients: first, we remark that the transformation

←−
D (t) commutes with any reduction step

(Lem. 5.4); second, we prove that

←−
D applied to a computational graph G encodes actually all the relevant information

of bpx,a (G) (Lem. 5.5). Notice that Lem. 5.5 introduces fresh variables x ′i (i ≤ n) annotated !R⊥ , tagging the different

components of the gradient of G in a sum. We can then conclude with Th. 5.6 and its Cor. 5.7.

Lemma 5.4. Let t be a term of Λ(F ). Then:

(1) if t ≡ t ′, then
←−
D (t) ≡

←−
D (t ′),

(2) if t
ι
−→ t ′, for ι any reduction step in Tab. 2, then

←−
D (t)

X
−−→O (1) ←−D (t ′), where X = {ι} for any ι but (13), (15), in these

latter cases X = {ι, (8), (10), (11)}.

21



Lemma 5.5. LetG be a ground term with fv(G) = x = x !R
1
, . . . ,x !Rn and suppose that bpx,a (G) = ⟨G0, ⟨G1, . . . ,Gn⟩ α⟩ β .

Then, there exists J ⊆ {1, . . . ,n} such that i < J implies Gi = 0 and such that

←−
D (G)[x!

←−
D (R)

:=
〈
x!R, λaR.x∗!R

⊥

a
〉
] −→O ( |G |)≡

〈
G0, λa.(

∑
j ∈J

x∗jG j )α

〉
β .

Proof. By induction on G. We only consider G = F [z := F ′], the other cases being simpler. Let bpx,z,a (F ) =

⟨F0, ⟨F1, . . . , Fn ,H ⟩ α⟩ β and bpx,b (F
′) =

〈
F ′
0
,
〈
F ′
1
, . . . , F ′n

〉
α ′

〉
β ′. Let us also consider H , 0 (the other case being

simpler). The term

←−
D (G)[x := ⟨x, λa.x∗a⟩] is structural equivalent to:

(
←−
D (F )[x :=

〈
x, λa.x∗a

〉
])[z := (

←−
D (F ′)[x :=

〈
x, λb .x∗b

〉
])]

−→O ( |F ′ |)≡ (
←−
D (F )[x :=

〈
x, λa.x∗a

〉
])[z :=

〈
F ′
0
, λb .(

∑
j ∈J ′

x∗j F
′
j )α
′

〉
β ′] by IH

≡ (
←−
D (F )[x :=

〈
x, λa.x∗a

〉
])[z :=

〈
F ′
0
, λb .(

∑
j ∈J ′

x∗j F
′
j )α
′

〉
]β ′

(17)

−−−→
(9)

−−→ (
←−
D (F )[x :=

〈
x, λa.x∗a

〉
][z :=

〈
z, z∗

〉
])[z := F ′

0
][z∗ := λb .(

∑
j ∈J ′

x∗j F
′
j )α
′]β ′

(16)

−−−→ (
←−
D (F )[x :=

〈
x, λa.x∗a

〉
][z :=

〈
z, λa.z∗a

〉
])[z := F ′

0
][z∗ := λb .(

∑
j ∈J ′

x∗j F
′
j )α
′]β ′

−→O ( |F |)≡

〈
F0, λa.(

∑
j ∈J

x∗j Fj + z
∗H )α

〉
β[z := F ′

0
][z∗ := λb .(

∑
j ∈J ′

x∗j F
′
j )α
′]β ′ by IH

(10)

−−−→
(11)

−−−→

〈
F0, λa.(

∑
j ∈J

x∗j Fj + (λb .(
∑
j ∈J ′

x∗j F
′
j )α
′)H )α

〉
β[z := F ′

0
]β ′

(8)

−−→

〈
F0, λa.(

∑
j ∈J

x∗j Fj + (
∑
j ∈J ′

x∗j F
′
j )α
′[b := H ])α

〉
β[z := F ′

0
]β ′

(18)

−−−→#J∩#J ′
〈
F0, λa.(

∑
j ∈J∪J ′

x∗j (Fj ⊕ F ′j ))α
′[b := H ]α

〉
β[z := F ′

0
]β ′

□

By composing the reductions in Lemma 5.4 and Lemma 5.5, we get:

Theorem 5.6. Let t be a term of Λ(F ) of type R with fv(t) = x = x !R
1
, . . . ,x !Rn . For any ground term G such that

t (
β
−→ ∪ ≡)∗G inm β-steps, we have, for a suitable J ⊆ {1, . . . ,n}:

←−
D (t)[x!

←−
D (R)

:=
〈
x!R, λaR.x∗!R

⊥

a
〉
] −→O (m+ |G |) ≡

〈
G0, λa.(

∑
j ∈J

x∗jG j )α

〉
β

where bpx,a (G) = ⟨G0, ⟨G1, . . . ,Gn⟩ α⟩ β and ∀i < J , Gi = 0.

Corollary 5.7. Let t be a term of Λ(F ) of type x!R ⊢ t : R, with x = x !R
1
, . . . ,x !Rn the free variables of t . Letm be the

number of β-steps needed to reduce t to a ground term G. For any vector r ∈ Rn , let ∇t(r) =
〈
д1, . . . ,дn

〉
. Then, for a

22



suitable J ⊆ {1, . . . ,n}, with i < J , дi = 0, we have:

z∗1[
〈
z, z∗

〉
:=
←−
D (t)[x :=

〈
x, λa.x∗a

〉
]][x := r] −→O (m+ |G |) ≡

∑
j ∈J

x∗j дj .

One can go further and obtain the tuple of numerals ∇t(r) from
∑
j ∈J x

∗
j дj just by: (i) considering

←−
Dd (t) with

d = n (here is the only point where we require a specific choice of d); (ii) replacing each x∗i (i ≤ n), morally of type

R ⊸ Rn , with the corresponding injection λa. ⟨0 . . . , 0,a, 0, . . . , 0⟩; (iii) adding all tuples resulting from the reductions

(8),(10),(11):

∑
j ∈J

〈
0, . . . , 0,дj , 0 . . . , 0

〉
−→∗

〈
д
1

, . . . ,д
n

〉
. However, this last reduction is quadratic in n, as it performs

#J = O(n) sums of vectors of size n without considering that these latter are null but on one coordinate. It would then

be preferable to add an ad hoc read-back operation allowing to decode the tuple ∇t(r) out of the tagged sum

∑
j ∈J x

∗
j дj

more parsimoniously.

Notice that the proof of Cor. 5.7 considers a specific reduction sequence for getting ∇t(r). However, Cor. 4.8 guarantees
that the result is independent from the chosen sequence.

9
This suggests considering more efficient strategies than that

of Cor. 5.7, or even more modular by decomposing the computation along the different components of t . We discuss

this last point in the next Section.

6 AN EXAMPLE: RECURRENT NEURAL NETWORKS

6.1 Derivative of a dynamically generated polynomial

Let Nat := (R→ R) → R→ R be the type of Church natural numbers and consider

G := w · y + x t := λn!Nat.λx .n(λy.G)x .

We have x !R,y!R,w !R ⊢ G : R andw !R ⊢ t : Nat→ R→ R. If n encodes n ∈ N, the term t n dynamically generates the

function λx . fn (w,x) with fn (w,x) := (w
n +wn−1 + · · · +w + 1) · x (we take some liberty in simplifying arithmetic

expressions for the sake of readability). Notice that the free variable x of λy.G, a term to be iterated at will, is captured

later in t . We have

←−
D (λy.G) −→∗ λ

〈
y,y∗

〉
.
〈
G, λa.w∗(y · a) + y∗(w · a) + x∗a

〉
=: G ′,

where we used the shorthand λ⟨y,y∗⟩.u := λp.u[⟨y,y∗⟩ := p]. Hence, when e.g. n = 2,

←−
D (t 2) = (λn.λx .n

←−
D (λy.G)x) 2 −→∗ (λn.λx .nG ′ x) 2 −→ λx .2G ′ x −→ λx .G ′(G ′x)

−→ λ
〈
x ,x∗

〉
.G ′(G ′

〈
x ,x∗

〉
) −→∗ λ

〈
x ,x∗

〉
.G ′ ⟨wx + x ,H ⟩ ,

where H := λa.w∗(x · a) + x∗(w · a) + x∗a. The computation continues with

−→∗ λ
〈
x ,x∗

〉
.
〈
(w2 +w + 1)x , λa.w∗((wx + x) · a) + H (w · a) + x∗a

〉
−→∗ λ

〈
x ,x∗

〉
.
〈
(w2 +w + 1)x , λa.w∗((wx + x) · a) +w∗(wx · a) + x∗(w2 · a) + x∗(w · a) + x∗a

〉
−→∗ λ

〈
x ,x∗

〉
.
〈
(w2 +w + 1)x , λa.w∗((2wx + x) · a) + x∗((w2 +w + 1) · a)

〉
We see that the argument ofw∗ (resp. x∗) is the derivative of f2 with respect tow (resp. x ). This shows how locally free

variables are handled correctly. Also observe that G ′, which is trivial here but could in principle be a very complex

function, may be pre-computed independently of n.

9
This is in fact the case if one admits the injections λa . ⟨0 . . . , 0, a, 0, . . . , 0⟩ of type R⊥ , as discussed in the previous note.

23



6.2 Recurrent neural networks

Recurrent neural networks (RNNs) are meant to process inputs that are arbitrary sequences of vectors in Rd . They are

heavily used for natural language processing: sequences could for instance stand for a word or a sentence, where each

vector is a representation of a letter. Such networks iterate over the input to recursively build a desired output. One

example is encoding recurrent neural networks, which are used to encode a sequence of vectors xi ∈ R
d
into an output

vector h ∈ Rm . For instance, in sentiment analysis [dos Santos and Gatti 2014; Glorot et al. 2011; Severyn and Moschitti

2015], it is used to predict if the expressed opinion in a sentence is positive, negative or neutral.

Given a sequence x1, ...,xn ∈ R
d
, the encoding RNN produces intermediate outputs h1, ...,hn ∈ R

m
recursively, by

applying a single layer L : Rd × Rm → Rm to both the last output value hi and the next input vector xi+1:

hi+1 = L(xi+1,hi ) L(x ,h) = σ (E · x + R · h)

where σ is the sigmoid activation function, E is a d ×m-matrix called the token embedding matrix, and R is am ×m

matrix whose coefficients are called the recurrent weights. h0 can be initialized to 0. In practice, a RNN ends with a

loss function that we are looking to minimize (and which models the problem we want to solve). To keep the example

simple, we will not consider it. For the same reason, we suppose that d =m = 1, the general encoding being a direct

generalization.

Lists. We represent lists in our language using the Church encoding, which defines a list by its right fold function.

Given A and X be types, the type of lists List(A,X ) is defined as follows:

List(A,X ) := (A→ X → X ) → (X → X )

Given a1 : A, . . . ,an : A, we define the list [a1; ...;an ]X of type List(A,X ) as:

[a1; ...;an ]X := λf !(A→X→X ).λx !X . f a1(f a2 . . . (f anx) . . . )

In what follows we will omit the X annotation if it is clear from context or if it does not matter. Finally, it can be noted

that the reverse gradient of the list datatype is given by:

←−
D (List(A,X )) = List(

←−
D (A),

←−
D (X ))

←−
D ([a1; ...;an ]X ) = [

←−
D (a1), . . . ,

←−
D (an )]←−D (X )

Encoding a RNN. Let σ be the function symbol corresponding to the sigmoid function R → R. In dimension 1,

the token embedding matrix and the recurrent matrix may be represented as two terms λx !R.(ϵ · x) and λh!R.(ρ · h)

respectively, where ϵ !R and ρ!R are two variables. The recurring layer L and the recurring network N is then defined

and typed as follows:

L := λx !R.λh!R.σ (ϵ · x + ρ · h) ϵ !R, ρ!R ⊢ L : R→ R→ R

N := λl !List (R,R).lL0 ϵ !R, ρ!R ⊢ N : List(R,R) → R

The free variables ϵ and ρ are the parameters that we wish to learn via gradient descent.

Backpropagation. For RNNs, the gradient is usually computed using a technique called backpropagation through

time [Pearlmutter 1995; Rumelhart et al. 1987]. The method consists in unfolding the RNN (by applying it to an input

sequence) and then applying the usual backpropagation over plain vanilla feedforward neural networks. We will now

apply our reverse gradient transformation to an example of RNN, and show that backpropagation through time is

naturally implemented by the reduction strategy of Theorem 5.6.

24



Given l = [a1; . . . ;an ]R, we compute the gradient ofNl with respect to ϵ and ρ. The following proposition exposes the

recursive equations expressing the gradient computed thanks to our transformation. They are similar to the equations

of backpropagation through time.

Proposition 6.1. We have ∇(Nl)(e, r ) =
〈
дnϵ ,д

n
ρ

〉
where дnϵ and дnρ are given by the following recurrent equations:

д0ϵ = 0 дi+1ϵ = σ ′i+1 · (ai+1 + r · д
i
ϵ ) σ ′i+1 := ∂1σ (e · ai+1 + r · ui )

д0ρ = 0 дi+1ρ = σ ′i+1 · (ui+1 + r · д
i
ρ )

u0 = 0 ui+1 = σ (e · ai+1 + r · ui )

Proof. By Corollary 5.7, this amounts to computing D = ϵ∗дϵ + ρ
∗дρ such that

z∗1[
〈
z, z∗

〉
:=
←−
D (Nl)[ϵ :=

〈
ϵ, λa.ϵ∗a

〉
][ρ :=

〈
ρ, λa.ρ∗a

〉
]][ϵ := e][ρ := r ] −→∗ D

This is done by induction over the size of the list l . □

The strategy from Theorem 5.6 first computes

←−
D (Nl), then reduces it to

←−
D (G) such that Nl −→∗ G, with G a ground

term, i.e., only containing subterms of ground type. Here:

G = F (a1, F (a2, . . . , F (an , 0) . . . ))

where L = λx .λh.F with F = ϵ · x + ρ · h. Notice thatG is exactly the unfolding of the RNN, which should convince the

reader that this strategy implements the backpropagation through time.

We now turn our attention to the effectiveness of the reduction strategy. During the reduction of Nl to G, the

λ-abstractions of L must be eliminated. Each of these λ is applied exactly to n different arguments, requiring L to be

duplicated n times. In other words, we satisfy the following reduction:

Nl −→∗ La1(La2 . . . (Lan0) . . . ) −→
∗ G

By point 2 of Lemma 5.4, the exact same reasoning may be applied to

←−
D (Nl), in which

←−
D (L)must be duplicated n times:

←−
D (Nl) −→∗

←−
D (L)
←−
D (a1)(

←−
D (L)
←−
D (a2) . . . (

←−
D (L)
←−
D (an )

←−
D (0)) . . . ) −→∗

←−
D (G)

A simple observation shows that

←−
D (L) is not in β-normal form:

←−
D (L) = λx .λh.

〈
σ (µ), λa.µ∗(∂1σ (µ) · a)

〉
[
〈
µ, µ∗

〉
:=
←−
D (ϵ · x + ρ · h)]

←−
D (ϵ · x + ρ · h) being a pair, we have

←−
D (L)

β
−→k u for some β-normal M . Moreover, it can be shown that when the

dimensions d andm are > 1, k = O((d +m) ×m). In our case, we see that each component of the sum in

←−
D (ϵ · x + ρ · h)

will be responsible for at least one substitution. Finally, since

←−
D (L) is duplicated n times in the original backpropagation

through time strategy, by using the strategy where

←−
D (L) is reduced toM before being substituted, we obtain a gain of

O((d +m)mn) reduction steps. This is significant as the number of learning parameters (here (d +m)m) can be very large

in typical neural networks. For instance, a recent model called GPT-2 [Radford et al. 2019] has 1.5 billion parameters.

7 CONCLUSION AND PERSPECTIVES

On expressiveness. The simply-typed λ-calculus is certainly too restrictive as a programming language, but it does

present the main obstacle in defining higher-order backpropagation, namely the native use of higher-order without

necessarily going through computational graphs. It also has a minimum of expressiveness for interesting examples

25



to exist, such as inductive types with very basic operations on them (map, fold), as shown in Sect. 6. In fact, our

results apply seamlessly to any total language with set-theoretic semantics (e.g. Gödel’s System T with arbitrary

inductive types), with no need of additional technical ideas. This is already quite broad: no state-of-the-art deep learning

architecture we are aware of (convolutional NNs, RNNs, Tree-RNNs, attention-based NNs, transformers. . . ) requires

going beyond System T in order to be expressed.

We wish to stress that our current proof does support, unchanged, non-differentiable functions like ReLU. As

mentioned at the end of Sect. 2.3, the differentiability hypothesis (⋆) (end of Sect. 4) is essentially cosmetic, in that

it allows us to use actual gradients and to avoid the more technical notion of subgradient. In the absence of (⋆),

Corollary 5.7 holds for all vectors in the domain of definition of Eq. 25, i.e., wherever the gradient makes sense.

Still in relation with partiality, we argue that our framework can accommodate full recursion (like [Wang et al.

2019]), by adding the definition

←−
D (YA) := Y←−

D (A)
to Tab. 3, where YA : (A → A) → A is the fixpoint operator. As

for denotational semantics, one has to consider the cartesian closed category of pointed complete partial order sets

and Scott-continuous functions. The type R is interpreted as the flat domain having a bottom element (representing

non-termination) and all real numbers as maximal elements. Corollary 5.7 then holds for all vectors on which the

program converges and is differentiable. However, this still falls short of being a full programming language like PCF

because it lacks conditionals (on R). The issues related to the presence of branchings are mentioned in [Plotkin 2018],

where a proposal is suggested for first-order languages.

On complexity. In computational graphs, complexity analysis assumes that computing the value of a single node

from its local inputs has unitary cost. In terms of low-level complexity models (e.g. random access machines), this rests

on the assumption that searching for the next node to evaluate is a constant-time operation, which is fair because we may

suppose the nodes to be linearly ordered compatibly with the dependencies of the graph.

Our analysis shows that, as soon as the programming language is suitably fine-grained, it is consistent to attribute a

unitary cost to a single evaluation step (i.e., a rewriting rule from Tab. 2). However, in general programming languages,

it is unclear whether the search for the next redex has constant cost. Albeit recent work [Accattoli and Barras 2017,

Corollary 9.2] shows that this is the case in call-by-name evaluation of closed programs, a detailed analysis for our

language is currently missing and we defer it to future work.

On higher-type derivatives. A major endeavor relating functional primitives with differential operators is differential

linear logic [Ehrhard 2018] and its associated differential λ-calculus [Ehrhard and Regnier 2003]. Indeed, the initial

motivation of our work was to express the backpropagation algorithm in the differential λ-calculus. Although this

is possible, we realized that it required discarding the most important programming primitive of the differential

λ-calculus, namely the derivative operator D on higher-order types. This is probably a good place to point out a

crucial feature of our program transformation

←−
D . Take a term λx .t(ux) of type R → R and such that ⊢ t : A → R

and ⊢ u : R→ A. We have two different ways of computing the derivative of t(ux) with respect to xR: either by our

transformation

←−
D (λx .t(ux)) or by Ehrhard’s derivative operator D(λx .t(ux)). Both ways are purely functional, but

our operator decomposes as

←−
D (λx .t(ux)) =β λ ⟨x ,a⟩ .

←−
D (t)(

←−
D (u) ⟨x ,a⟩), while Ehrhard’s follows the chain rule (see

Sect. 2.3), giving D(λx .t(ux)) =β λ ⟨x ,a⟩ .D(t) ⟨ux ,D(u) ⟨x ,a⟩⟩.10 It is clear that this latter expression is inefficient with

respect to backpropagation because of the duplication of the term u (see also Sect. 2).

10
Here we use some syntactic sugar in order to avoid notational bureaucracy. For example, λ ⟨x, a ⟩ . . . stands for λy . . . . [⟨x, a ⟩ := y] in our language.

Also, the differential λ-calculus of [Ehrhard and Regnier 2003] does not have pairs and so λ ⟨x, a ⟩ is curried into λx .λa.

26



So our

←−
D and the operator D of the differential λ-calculus are extensionally different. This is immediately seen on

“pure” λ-terms (with no function symbols): when A is higher order, there are pure terms t : A→ R with non-trivial

derivative, which is always computed by D(t), whereas
←−
D (t) = t (modulo a type change), which cannot compute the

derivative.
11

Indeed, observe that our soundness statements (Theorem 5.6, Corollary 5.7) only hold for terms of ground

type. At present, we seem to have no use for the extra generality provided by the differential λ-calculus, but it is a

natural and intriguing question to understand whether the ability to compute derivatives at higher types (rather than

just over R) can play a role in developing new machine learning models.

ACKNOWLEDGMENTS

We would like to thank T. Ehrhard, C. Fouqueré, M. Gaboardi, B.A. Pearlmutter, Y. Regis-Gianas, J.M. Siskind, C. Tasson

and the anonymous reviewers for useful comments and discussions.

REFERENCES
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,

Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden,

Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of OSDI. USENIX

Association, 265–283.

Beniamino Accattoli. 2012. An Abstract Factorization Theorem for Explicit Substitutions. In Proceedings of RTA (LIPIcs), Vol. 15. 6–21.

Beniamino Accattoli. 2018. Proof Nets and the Linear Substitution Calculus. In Proceedings of ICTAC (Lecture Notes in Computer Science), Vol. 11187.

Springer, 37–61.

Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. 2014. Distilling Abstract Machines. In Proceedings of ICFP. ACM, 363–376.

Beniamino Accattoli and Bruno Barras. 2017. Environments and the complexity of abstract machines. In In Proceedings of PPDP. ACM, 4–16.

Atılım Güneş Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. 2017. Automatic Differentiation in Machine Learning: a

Survey. Journal of Machine Learning Research 18 (2017), 153:1–153:43.

George Cybenko. 1989. Approximation by superpositions of a sigmoidal function. MCSS 2, 4 (1989), 303–314.

Olivier Danvy and Mayer Goldberg. 2005. There and Back Again. Fundam. Inform. 66, 4 (2005), 397–413.

Cicero dos Santos and Maira Gatti. 2014. Deep convolutional neural networks for sentiment analysis of short texts. In Proceedings of COLING: Technical

Papers. 69–78.

Thomas Ehrhard. 2018. An introduction to differential linear logic: proof-nets, models and antiderivatives. Mathematical Structures in Computer Science

28, 7 (2018), 995–1060.

Thomas Ehrhard and Giulio Guerrieri. 2016. The Bang Calculus: an untyped lambda-calculus generalizing call-by-name and call-by-value. In Proceedings

PPDP. ACM, 174–187.

Thomas Ehrhard and Laurent Regnier. 2003. The differential lambda-calculus. Theor. Comput. Sci. 309, 1-3 (2003), 1–41.

Conal Elliott. 2018. The simple essence of automatic differentiation. PACMPL 2, ICFP (2018), 70:1–70:29.

Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci. 50, 1 (Jan. 1987), 1–102.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Domain adaptation for large-scale sentiment classification: A deep learning approach. In

Proceedings of ICML. 513–520.

Kurt Hornik. 1991. Approximation capabilities of multilayer feedforward networks. Neural Networks 4, 2 (1991), 251–257.

J. M. E. Hyland. 2017. Classical lambda calculus in modern dress. Math. Structures Comput. Sci. 27, 5 (2017), 762–781.

Teijiro Isokawa, Tomoaki Kusakabe, Nobuyuki Matsui, and Ferdinand Peper. 2003. Quaternion Neural Network and Its Application. In Proceedings of KES,

Part II. 318–324.

Yann LeCun. 2018. Deep Learning est mort. Vive Differentiable Programming! (2018).

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard, Wayne E. Hubbard, and Lawrence D. Jackel. 1989. Backpropagation

Applied to Handwritten Zip Code Recognition. Neural Computation 1, 4 (1989), 541–551.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam

Lerer. 2017. Automatic differentiation in PyTorch. (2017).

Barak A. Pearlmutter. 1995. Gradient calculations for dynamic recurrent neural networks: a survey. IEEE Trans. Neural Networks 6, 5 (1995), 1212–1228.

Barak A. Pearlmutter and Jeffrey Mark Siskind. 2008. Reverse-mode AD in a Functional Framework: Lambda the Ultimate Backpropagator. ACM Trans.

Program. Lang. Syst. 30, 2, Article 7 (March 2008), 36 pages.

11
This does not contradict Corollary 5.7 because, when A is of order zero (i.e., A = Rn ), any pure t must be a projection and the above equality is correct.

27



J.K. Pearson and David L. Bisset. 1992. Back Propagation in a Clifford Algebra. In Proceedings of ICANN, Vol. 2. 413–416.

Gordon Plotkin. 2018. Some Principles of Differential Programming Languages. (2018). https://popl18.sigplan.org/details/POPL-2018-papers/76/

Some-Principles-of-Differential-Programming-Languages Invited talk at POPL 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners.

OpenAI Blog 1, 8 (2019).

David E. Rumelhart, James L. McClelland, and PDP Research Group. 1987. Parallel Distributed Processing, Volumes 1 and 2. MIT Press.

Aliaksei Severyn and Alessandro Moschitti. 2015. Twitter sentiment analysis with deep convolutional neural networks. In Proceedings of the 38th

International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 959–962.

Ronald Van Iwaarden. 1993. Automatic Differentiation Applied to Unconstrained Nonlinear Optimization with Result Verification. Interval Computations

3 (1993), 41–60.

Fei Wang, Daniel Zheng, James M. Decker, Xilun Wu, Grégory M. Essertel, and Tiark Rompf. 2019. Demystifying differentiable programming: shift/reset

the penultimate backpropagator. PACMPL 3, ICFP (2019), 96:1–96:31.

28

https://popl18.sigplan.org/details/POPL-2018-papers/76/Some-Principles-of-Differential-Programming-Languages
https://popl18.sigplan.org/details/POPL-2018-papers/76/Some-Principles-of-Differential-Programming-Languages


A APPENDIX

A.1 Proofs of Section 4

Proposition 4.1 If t −→ u or t ≡ u and Γ ⊢ t : A, then Γ ⊢ u : A.

Proof (Sketch). Let C{t}−→ C{u}(resp. C{t}≡ C{u}), where t −→ u (resp. t ≡ u) is a reduction step (resp. a structural

equivalence) in Tab. 2. The proof is a standard induction on the evaluation context C. The base case is by inspection of

all cases in Tab. 2, using the following properties:

• (substitution) if Γ,xA ⊢ t : B and Γ ⊢ u : A then Γ ⊢ t{u/x} : B;

• (splitting) if Γ,xA ⊢ t : B then for any term t {y/x } obtained from t by renaming some (possibly none) occurrences

of x to a fresh variable y, we have Γ,xA,yA ⊢ t {y/x } : B.

The two properties are achieved by induction on t . Notice that the splitting property implies the so-called “weakening”

lemma: Γ ⊢ t : B implies Γ,xA ⊢ t : B for a fresh variable x . □

Lemma 4.2 Let ι be any reduction rule and let t ′ ≡ t
ι
−→ u, then there exists t ′

ι
−→ u ′ such that u ′ ≡ u.

Proof (Sketch). The proof goes along the same lines as [Accattoli et al. 2014]. We denote by ≡1 the symmetric and

context closure of the relation induced by the rules (19)–(23), i.e., ≡ is the reflexive-transitive closure of ≡1. We then

prove the following lemmata.

(1) If v ≡1 t and v is a value, then t is also a value.

(Remark that no structural equivalence rule allows for commuting an explicit substitution with a λ-abstraction.

In the case v = ⟨v1,v2⟩, then the only possibility is u = ⟨u1,u2⟩ α (rules (22), (23)), but in this case we would

have vi = uiα , for i = 1 or i = 2, contradicting the hypothesis of vi to be a value).

(2) If C{x}≡1 u, then u = C′{xα }, for some context C′ and explicit substitution α .

(By induction on C and case inspection).

(3) If t ≡1 t
′
and t

ι
−→ u, for some reduction step applied to the root of t , then there exists u ′ ≡ u such that t ′

ι
−→ u ′.

(By case inspection. Notice that in case t[x := v]
(11)

−−−→ t and t[x := v] ≡1 t[x := u], with v ≡1 u, one should use

(1) to assure that u is a value, in particular no explicit substitution has been lifted from inside v).

(4) If t ≡1 t
′
and t

ι
−→ u, then there exists u ′ ≡ u such that t ′

ι
−→ u ′.

(By 2 and 3).

The general statement then follows by induction on the length of a sequence t ≡1 · · · ≡1 t
′
giving t ≡ t ′, using (4)

for the induction step. □

Proposition 4.3 Let X be any subset of the reduction rules in Tab. 2 (including the variant (10)
n
) and let t (

X
−−→ ∪ ≡)∗ u

with k X -steps, then there exists u ′ such that t
X
−−→k u ′ ≡ u.

Proof. By induction on k , using Lemma 4.2. □

Proposition 4.4. Given a closed term t of type A, if t is a β-normal form, then it is a value.

Proof. By induction on a derivation ⊢ t : A. If the last rule is an→ introduction, then t is a value. If it is an→

elimination, then t = u1u2 and ⊢ u1 : B → A or ⊢ u1 : R⊥ . By IH u1 is then a value, hence of the form λx .u ′ and

therefore u1u2 is a redex (8). If the last rule is a × introduction, we apply trivially the IH. If it is a × elimination, then

t = t ′[⟨x ,y⟩ := u] and ⊢ u : A × B. By IH u is a value, and hence it is of the form u = ⟨v1,v2⟩, therefore t is a (9) redex.

29



The explicit substitution rule is similar to the previous one, using (10) or (11). If t = f (t1, . . . , tn ), then we have by IH

that each ti is a closed value, so a numeral, so we can apply the numerical rule associated with f . If t is a numeral, then

it is a value. If t = t1 + t2, then by IH each ti is a value so we may apply either (14) or (13). □

Proposition 4.5 For every term t , and every set X ⊆ βℓ, there exists a X -normal form u such that t
X
−−→∗ u.

Proof (Sketch). In case (10) < X , it is trivial to find a notion of weight w(t) ∈ N such that t
X
−−→ t ′ implies

w(t) > w(t ′). Otherwise, let k be the greatest size of the type of a subterm of t , and let W (t) be the sequence

(n1, . . . ,nk ,nk+1) where nk+1 = w(t) and for every 1 ≤ i ≤ k , ni is the number of redexes of type (8), (9), (10) in t such

that the term in the explicit substitution has a type of size k + 1 − i (so that, as i grows bigger, ni accounts for smaller

and smaller types). It is not hard to show that, if t is not X -normal, then t
X
−−→ t ′ for some t ′ such thatW (t) >W (t ′) in

the lexicographical order. □

Lemma 4.6 For any t
(10)

n
(11)(13)(15)

−−−−−−−−−−−−−→∗ u, the number of reduction steps in the sequence is O(|t |).

Proof. Let ∥t ∥ be the number of symbols in t where each variable is counted twice. The claim then follows by

remarking that any rule (11), (13), (15) makes ∥t ∥ strictly decrease, and the same for (10) whenever the substituted term

is a numeral. □

Table 4 recalls the denotational model induced by the cartesian closed structure of the category of sets and functions.

The proof of the soundness property is completely standard.

A.2 Proofs of Section 5

Lemma 5.2. Let G be a ground term whose free variables are given by a sequence x of length n. Then,��bpx,a (G)
�� = O(|G |).

Proof. We actually prove a slight stronger claim: letG be a ground term whose free variables are in a sequence x of

length n. Then, ��bpx,a (G)
�� = O(n + |G |).

Notice that then whenever x contains exactly the free variables of G, n ≤ |G | and so O(n + |G |) = O(|G |).

By induction on the definition of bpx,a (G) = ⟨G0, ⟨G1, . . . ,Gn⟩ α⟩ β , one proves that:

(i) |G0β | = O(|G |);

(ii) for all 0 < i ≤ n, |Gi | = O(k(#xiG + 1)), with #xiG is the number of occurrences of xi in G;

(iii) for all 0 < i ≤ n, |Giα | = O(|G |).

Notice that the items (i)-(iii) give that

��bpx,a (G)
�� = ∑n

i=1 |Gi | + |G0β | + |α | = O(#x1G + · · · + #xnG) + 2 |G |) = O(|G |)).

We detail only the caseG = F [z := F ′], taking the notation of the definition of bp( ). Item (i) follows trivially from the

induction hypothesis. Item (ii) is a consequence of the induction hypothesis and the fact that #xi (G) = #xi (F ) + #xi (F
′).

Concerning item (iii), we have that:

��(Fi ⊕ F ′i )α
′[b := H ]α

�� = |Fiα | + ��F ′i α ′�� + 1 + |H | = O(|F | + |F ′ |) = O(|G |).
The factor k in (ii) is due to the case G = f (xi1 , . . . ,xi′k

). □

30



JRK := R

JA × BK := JAK × JBK

JA→ BK := set of functions from JAK to JBK
q
R⊥d

y
:= set of linear maps from R to

r
Rd

z

r
x !A1

1
, . . . ,x !Ann

z
:= JA1K × · · · × JAnK

(a) interpretation of types

JΓ ⊢ t : AK : function from JΓK to JAK
r
Γ ⊢z t : Rd

z
: function from JΓK to

q
R⊥d

y

JΓ ⊢ x : AK (g) := дx (27)

JΓ ⊢z z : RK (g) := r 7→ r (28)

JΓ ⊢ f (t) : RK (g) := f (JΓ ⊢ t : RK (g)) (29)

JΓ ⊢ r : RK (g) := r (30)

r
Γ ⊢ λx !A .t : A→ B

z
(g) := d 7→

r
Γ,x !A ⊢ t : B

z
(g,d) (31)

JΓ ⊢ tu : BKΓ (g) := JΓ ⊢ t : A→ BK (g)(JΓ ⊢ u : AK (g)) (32)

r
Γ ⊢ λzR.t : R⊥d

z
(g) :=

r
Γ ⊢z t : Rd

z
(g) (33)

r
Γ ⊢z tu : Rd

z
(g) := a 7→

r
Γ ⊢ t : Rd

z
(g)(JΓ ⊢z u : RK (g)(a)) (34)

r
Γ ⊢z ⟨t ,u⟩ : Rd × Rd

′
zΓ
(g) := a 7→ (

r
Γ ⊢z t : Rd

z
(g)(a),

r
Γ ⊢z u : Rd

′
z
(g)(a)) (35)

r
Γ ⊢z t[x !A := u] : Rd

z
(g) := a 7→

r
Γ,x !A ⊢ t : Rd

z
(g, JΓ ⊢ u :: RK (g))(a) (36)

r
Γ ⊢z1 t[z

R
2
:= u] : Rd

z
(g) := a 7→

r
Γ ⊢z2 t : R

d
z
(g)(JΓ ⊢z2 u : RK (g)(a)) (37)

r
Γ ⊢z t[

〈
x !A,y!B

〉
:= u] : Rd

z
(g) := a 7→

r
Γ,x !A,y!B ⊢z t : Rd

z
(g, JΓ ⊢ u : A × BK (g))(a) (38)

JΓ ⊢z t · u : RK (g) := a 7→ JΓ ⊢z t : RK (g)(a) · JΓ ⊢ u : RK (g) (39)

JΓ ⊢z 0 : RK (g) := a 7→ 0 (40)

r
Γ ⊢z t + u : Rd

z
(g) := a 7→

r
Γ ⊢z t : Rd

z
(g)(a) +

r
Γ ⊢z u : Rd

z
(g)(a) (41)

(b) interpretation of terms. In the cases admitting two version (with or without linear variables), we considered only the case with
linear variables, the other being simpler. The reader may check that the linearity (i.e. commutation with sums and scalar products) of
the parameter a associated with a linear variable is respected.

Table 4. The denotational model induced by the category of sets and functions.

Notice that the above lemma would fail if we replace the meta-operator ⊕ with the sum constructor + in the definition

of bpx,a (G). In that case we would have the size of bpx,a (x1 + · · ·+xn ) to be quadratic in n because bpx,a (x1 + · · ·+xn )

copies the n − 1 sums for every component of the gradient tuple.

31



Proposition 5.3. LetG be a ground term whose free variables are given by a sequence x of length n. Then for every r ∈ Rn ,
we have:

bpx,a (G)[a := 1][x := r]
(10)

n
(11)(13)(15)

−−−−−−−−−−−−−→O ( |G |)≡
〈
JGK (r),∇G(r)

〉
.

Proof. By induction onG we prove that, if bpx,a (G) = ⟨G0, ⟨G1, . . . ,Gn⟩ α⟩ β , then, for every vector of real numbers

r, we have:

(i) G0β[x := r]
(10)

n
(11)(13)(15)

−−−−−−−−−−−−−→∗≡ JGK (r);

(ii) for all 1 ≤ i ≤ n, for all real number q, Giαβ[a := q][x := r]
(10)

n
(11)(13)(15)

−−−−−−−−−−−−−→∗≡ ∂xi JGK (r) · q;

From (i) and (ii) then follows:

bpx,a (G)[a := 1][x := r ] ≡〈
G0β[x := r],

〈
G1αβ[a := 1][x := r], . . . ,Gnαβ[a := 1][x := r]

〉〉 (10)
n
(11)(13)(15)

−−−−−−−−−−−−−→∗≡

〈
JGK (r),∇G(r)

〉
.

Proposition 4.3 allows to postpone all structural equivalences at the end. From Lemma 4.6 and the fact that

��bpx,a (G)
�� =

O(|G |) (Lemma 5.2) the length of the reduction is O(|G |)

The non-trivial case for (i) and (ii) is G = F ′[z := F ′′]. Using the notations from the definition:

G0β[x := r] = F ′
0
β ′[z := F ′′

0
]β ′′[x := r]

≡ F ′
0
β ′[x := r][z := F ′′

0
β ′′[x := r]]

(10)
n
(11)(13)(15)

−−−−−−−−−−−−−→∗ F ′
0
β ′[x := r][z := JF ′′K (r)] by IH

(10)
n
(11)(13)(15)

−−−−−−−−−−−−−→∗ JF ′K (r, JF ′′K (r)) = JGK (r) by IH

As for (ii), we have that the i-th component of the gradient tuple of bpx,a (G) together with the associated substitutions

is equal to (we suppose F ′i ⊕ F ′′i = F ′i + F
′′
i , the other cases being simpler):

(F ′i + F
′′
i )α

′′[b := H ]α ′β ′[z := F ′′
0
]β ′′[a := q][x := r]

≡ (F ′i + F
′′
i )α

′′[b := H ]α ′β ′β ′′[a := q][x := r][z := F ′′
0
β ′′[x := r]]

(10)
n
(11)(13)(15)

−−−−−−−−−−−−−→∗ (F ′i + F
′′
i )α

′′[b := H ]α ′β ′β ′′[a := q][x := r][z := JF ′′K (r)] by (i)

≡ (F ′i + F
′′
i )α

′′α ′β ′β ′′[a := q][x := r][z := JF ′′K (r)][b := Hα ′β ′β ′′[a := q][x := r][z := JF ′′K (r)]]

(10)
n
(11)(13)(15)

−−−−−−−−−−−−−→O ( |F |) (F ′i + F
′′
i )α

′′α ′β ′β ′′[a := q][x := r][z := JF ′′K (r)][b := ∂z JF ′K (r) · q] by IH

≡ F ′i α
′β ′[a := q][x := r][z := JF ′′K (r)] + F ′′i α

′′β ′′[b := ∂z JF ′K (r) · q][x := r]

(10)
n
(11)(13)(15)

−−−−−−−−−−−−−→∗ ∂xi JF ′K (r) · q + ∂xi JF ′′K (r) ·
(
∂z JF ′K (r) · q

)
by IH

(13)

−−−→ ∂xi JF ′K (r) · q + ∂xi JF ′′K (r) ·
(
∂z JF ′K (r) · q

)
=

(
∂xi JF ′K(r) + ∂z JF ′K (r) · ∂xi JF ′′K (r)

)
· q = ∂xi JGK (r) · q

32



Notice that in order to move to the last line we use the associativity, commutativity and distributivity of + and · over

real numbers, not on the corresponding syntactic symbols.

Let us consider also the case G = ⟨F ′, F ′′⟩. Using the notations from the definition:

G0β[x := r] =
〈
F ′
0
, F ′′

0

〉
β ′β ′′[x := r]

≡
〈
F ′
0
β ′[x := r], F ′′

0
β ′′[x := r]

〉
(10)

n
(11)(13)(15)

−−−−−−−−−−−−−→∗ ≡

〈
JF ′K (r), JF ′′K (r)

〉
by IH

= JGK (r)

The case (ii) is similar (just a sum instead of a pair).

In the base cases (variables, functional symbols and numerals), one performs linear substitutions (10) as well as

garbage collection (11). In the case of bpx,a (f (xi1 , . . . ,xik )) one instance of the rule (15) is needed. □

Lemma A.1. Let t be a term of Λ(F ). We have:

���←−D (t)��� = O(|t |).
Proof. By just inspecting the definition in Table 3. □

Lemma 5.4. Let t be a term of Λ(F ). Then:

(1) if t ≡ t ′, then
←−
D (t) ≡

←−
D (t ′),

(2) if t
ι
−→ t ′, for ι any reduction step in Tab. 2, then

←−
D (t)

X
−−→O (1) ←−D (t ′), where X = {ι} for any ι but (13), (15), in these

latter cases X = {ι, (8), (10), (11)}.

Proof. Item 1 is immediate by case inspection. Concerning item 2, one proves by induction on t that:

(•) for every term u of Λ(F ),
←−
D (t{u/x}) =

←−
D (t)

{
←−
D (u)/x

}
.

Then, suppose t
ι
−→ t ′, notice that ι , (18) since t has no R⊥ -variable. If ι = (10), then the statement follows from (•). All

other cases are immediate. We detail just the case of an instance of a numerical rule (13), (15), e.g. r + q −→ r + q. We

have that

←−
D (r + q) is:〈

x + y, λa.(x ′a + y′a)
〉
[
〈
x ,x ′

〉
:=

〈
r , λa.0

〉
][
〈
y,y′

〉
:=

〈
q, λa.0

〉
]

(8)(10)(11)

−−−−−−−−→O (1)
〈
r + q, λa.(0 + 0)

〉
(13)

−−−→2

〈
r + q, λa.0

〉
□

Lemma 5.5. Let G be a ground term of type x!R ⊢ G : R with x = x !R
1
, . . . ,x !Rn the free variables of G and let bpx,a (G) =

⟨G0, ⟨G1, . . . ,Gn⟩ α⟩ β . For a suitable J ⊆ {1, . . . ,n}, such that if i < J , then Gi = 0, we have:

←−
D (G)[x!

←−
D (R)

:=
〈
x!R, λaR.x′!R

⊥

a
〉
] −→O ( |G |)≡

〈
G0, λa.(

∑
j ∈J

x ′jG j )α

〉
β .

Proof. By induction on G . We will freely use structural equivalence where necessary, knowing that Proposition 4.3

allows us to postpone all structural equivalences to the end without affecting the number of reduction steps. The

non-trivial cases are detailed below. Remark that the length of each reduction is O(
���←−D (G)���) which is equal to O(|G |) by

Lemma A.1.

33



Let G = F [z := F ′] and suppose that

bpx,z,a (F ) = ⟨F0, ⟨F1, . . . , Fn ,H ⟩ α⟩ β, bpx,b (F
′) =

〈
F ′
0
,
〈
F ′
1
, . . . , F ′n

〉
α ′

〉
β ′.

We have that

←−
D (G)[x := ⟨x, λa.x′a⟩] is structural equivalent to :

(
←−
D (F )[x :=

〈
x, λa.x′a

〉
])[z := (

←−
D (F ′)[x :=

〈
x, λb .x′b

〉
])]

−→O ( |F ′ |)≡ (
←−
D (F )[x :=

〈
x, λa.x′a

〉
])[z :=

〈
F ′
0
, λb .(

∑
j ∈J ′

x ′jF
′
j )α
′

〉
β ′] by IH

≡ (
←−
D (F )[x :=

〈
x, λa.x′a

〉
])[z :=

〈
F ′
0
, λb .(

∑
j ∈J ′

x ′jF
′
j )α
′

〉
]β ′

(17)

−−−→
(9)

−−→ (
←−
D (F )[x :=

〈
x, λa.x′a

〉
][z :=

〈
z, z′

〉
])[z := F ′

0
][z′ := λb .(

∑
j ∈J ′

x ′jF
′
j )α
′]β ′

(16)

−−−→ (
←−
D (F )[x :=

〈
x, λa.x′a

〉
][z :=

〈
z, λa.z′a

〉
])[z := F ′

0
][z′ := λb .(

∑
j ∈J ′

x ′jF
′
j )α
′]β ′

Now we can apply the induction hypothesis on

←−
D (F ) and we split in two sub-cases, depending whether the variable

z′ appears in the tuple associated with

←−
D (F ) or not. In the first case, we have that the above term reduces by IH to:

−→O ( |F |)≡

〈
F0, λa.(

∑
j ∈J

x ′jFj + z
′H )α

〉
β[z := F ′

0
][z′ := λb .(

∑
j ∈J ′

x ′jF
′
j )α
′]β ′ by IH

(10)

−−−→
(11)

−−−→

〈
F0, λa.(

∑
j ∈J

x ′jFj + (λb .(
∑
j ∈J ′

x ′jF
′
j )α
′)H )α

〉
β[z := F ′

0
]β ′

(8)

−−→

〈
F0, λa.(

∑
j ∈J

x ′jFj + (
∑
j ∈J ′

x ′jF
′
j )α
′[b := H ])α

〉
β[z := F ′

0
]β ′

(18)

−−−→#J∩#J ′
〈
F0, λa.(

∑
j ∈J∪J ′

x ′j (Fj ⊕ F ′j ))α
′[b := H ]α

〉
β[z := F ′

0
]β ′

Notice that the above instance of (10) replaces exactly one occurrence of z′. The last term satisfies the statement of the

lemma.

In the case the variable z′ does not appear in the tuple associated with

←−
D (F ), this means that H = 0. We then have:

βηℓ
−−−→O ( |F |)≡

〈
F0, λa.(

∑
j ∈J

x ′jFj )α

〉
β[z := F ′

0
][z′ := λb .(

∑
j ∈J ′

x ′jF
′
j )α
′]β ′ by IH

−→

〈
F0, λa.(

∑
j ∈J

x ′jFj )α

〉
β[z := F ′

0
]β ′ by (11)

The last term satisfies the statement of the lemma.

34



Let G = f (xi1 , . . . ,xik ) for a suitable subset xi1 , . . . ,xik ⊆ x. In this case we have:

←−
D (G)[x :=

〈
x, λa.x′a

〉
] =

〈
f (y) , λa.

k∑
j=1

y′j
(
∂j f (y) · a

)〉
[
〈
y, y′

〉
:= x][x :=

〈
x, λa.x′a

〉
]

(9)(10)

−−−−−→O (n)

〈
f (y) , λa.

k∑
j=1

y′j
(
∂j f (y) · a

)〉
[y := x][y′ := λa.x′a]

≡

〈
f (y) , λa.

k∑
j=1

y′j
(
∂j f (y) · a

)〉
[y := x][y := x][y′ := λa.x′a]

(8)(10)

−−−−−→O (k ) (11)−−−→O (n)

〈
f (xi1 , . . . ,xik ) , λa.

k∑
j=1

x ′i j
(
∂j f (xi1 , . . . ,xik ) · a

)〉
Let G = F + F ′ and suppose that

bpx,a (F ) = ⟨F0, ⟨F1, . . . , Fn⟩ α⟩ β , bpx,a (F
′) =

〈
F ′
0
,
〈
F ′
1
, . . . , F ′n

〉
α ′

〉
β ′.

We have that

←−
D (G)[x := ⟨x, λa.x′a⟩] is equal to:〈

y1 + y2, λa.(y
′
1
a + y′

2
a)

〉
[
〈
y1,y

′
1

〉
:=
←−
D (F )][

〈
y2,y

′
2

〉
:=
←−
D (F ′)][x :=

〈
x, λa.x′a

〉
]

βηℓ
−−−→O ( |G |)≡

〈
F0 + F

′
0
, λa.(y′

1
a + y′

2
a)

〉
[y′
1
:= λa.(

∑
j ∈J

x ′jFj )α]β[y
′
2
:= λa.(

∑
j′∈J ′

x ′j′F
′
j′)α
′]β ′ by IH

(10)(8)(11)

−−−−−−−−→O (1)

〈
F0 + F

′
0
, λa.((

∑
j ∈J

x ′jFj )α + (
∑
j′∈J ′

x ′j′F
′
j′)α
′)

〉
ββ ′

≡

〈
F0 + F

′
0
, λa.((

∑
j ∈J

x ′jFj ) + (
∑
j′∈J ′

x ′j′F
′
j′))αα

′

〉
ββ ′

(18)

−−−→#J∩#J ′
〈
F0 + F

′
0
, λa.(

∑
j ∈J∪J ′

x ′jFj ⊕ F ′j′)αα
′

〉
ββ ′

Notice that all the above instances of (10) replaces exactly one occurrence of a variable. The last term satisfies the

statement of the lemma. □

Theorem 5.6. Let t be a term of Λ(F ) of type x!R ⊢ t : R, with x = x !R
1
, . . . ,x !Rn the free variables of t . For any ground term

G such that t (
β
−→ ∪ ≡)∗G inm β-steps, we have, for a suitable J ⊆ {1, . . . ,n}:

←−
D (t)[x :=

〈
x, λa.x′a

〉
] −→O (m+ |G |) ≡

〈
G0, λa.(

∑
j ∈J

x ′jG j )α

〉
β

where bpx,a (G) = ⟨G0, ⟨G1, . . . ,Gn⟩ α⟩ β and ∀i < J , Gi = 0.

Proof. Let us suppose t (
β
−→ ∪ ≡)∗ G inm steps. By Lemma 5.4, we have that:

←−
D (t)[x :=

〈
x, λa.x′a

〉
] (

β
−→ ∪ ≡)∗

←−
D (G)[x :=

〈
x, λa.x′a

〉
]

35



in O(m) steps. By Lemma 5.5, we have that:

←−
D (G)[x :=

〈
x, λa.x′a

〉
] −→O ( |G |))≡

〈
G0, λa.(

∑
j ∈J

x ′jG j )α

〉
β

this latter term satisfying the statement of the theorem. We compose the reductions and apply Proposition 4.3 to

conclude. □

Corollary 5.7. Let t be a term of Λ(F ) of type x!R ⊢ t : R, with x = x !R
1
, . . . ,x !Rn the free variables of t . Letm be the

number of β-steps needed to reduce t to a ground term G. For any vector r ∈ Rn , let ∇t(r) =
〈
д1, . . . ,дn

〉
. Then, for a

suitable J ⊆ {1, . . . ,n}, with i < J , дi = 0, we have:

z′1[
〈
z, z′

〉
:=
←−
D (t)[x :=

〈
x, λa.x′a

〉
]][x := r] −→O (m+ |G |) ≡

∑
j ∈J

x ′jдj .

Proof. Apply Theorem 5.6 to

←−
D (t)[x := ⟨x, λa.x′a⟩] and then Proposition 5.3. □

A.3 Proofs of Section 6

Lemma A.2. Let r ∈ R and u,u ′ ∈ Λ(F ).
←−
D (L)
←−
D (r ) ⟨u,u ′⟩ reduces to〈

σ (z1.r + z2.u), λa.(z
′
1
(r .σ ′.a) + z′

2
(u .σ ′.a) + u ′(z2.σ

′.a))
〉
[
〈
z1, z

′
1

〉
:= ϵ][

〈
z2, z

′
2

〉
:= ρ]

where σ ′ = ∂1σ (z1.r + z2.u).

Proof. The proof follows from the following observations:

←−
D (ϵ .x) =

〈
z1.e, λa(z

′
1
(e .a) + e ′(z1.a))

〉
[
〈
z1, z

′
1

〉
:= ϵ][

〈
e, e ′

〉
:= x]

←−
D (ρ.h) =

〈
z2.e, λa(z

′
2
(e .a) + e ′(z2.a))

〉
[
〈
z2, z

′
2

〉
:= ρ][

〈
e, e ′

〉
:= h]

←−
D (ϵ .x + ρ.h) =

〈
γ1 + γ2, λa.(γ

′
1
a + γ ′

2
a)

〉
[
〈
γ1,γ

′
1

〉
:=
←−
D (ϵ .x)][

〈
γ2,γ

′
2

〉
:=
←−
D (ρ.h)]

←−
D (L) = λx .λh.

〈
σ (µ), λa.µ ′(∂1σ (µ).a)

〉
[
〈
µ, µ ′

〉
:=
←−
D (ϵ .x + ρ.h)]

□

Lemma A.3. Let a1, . . . ,an : R, e, r ∈ R and 1 ≤ i ≤ n. We pose

α = [ϵ :=
〈
e, λa.ϵ ′a

〉
][ρ :=

〈
r , λρ ′a

〉
]

l0 := []

li+1 := [an−i , . . . ,an ]

Then

←−
D (Nli )α reduces to

〈
ui ,u

′
i
〉
where:〈

u0,u
′
0

〉
=

〈
0, λa.0

〉〈
ui+1,u

′
i+1

〉
=

〈
σ (e .ai+1 + r .ui ), λa.(ϵ

′(ai+1.σ
′
i+1.a) + ρ

′(ui .σ
′
i+1.a) + u

′
i (r .σ

′
i+1.a))

〉
with σ ′i+1 = ∂1σ (e .ai+1 + r .ui ).

36



Proof. We have:

←−
D (N [an−i ; . . . ;an ]) −→∗

←−
D (L)
←−
D (an−i )(

←−
D (L)
←−
D (an−i+1)(. . . (

←−
D (L)
←−
D (an )

〈
0, λa.0

〉
) . . . ))

Then the result follows by applying recursively Lemma A.2. □

Proposition 6.1. We have ∇(Nl)(e, r ) =
〈
дnϵ ,д

n
ρ

〉
where дnϵ and дnρ are given by the following recurrent equations:

д0ϵ = 0 дi+1ϵ = σ ′i+1.(ai+1 + r .д
i
ϵ ) σ ′i+1 := ∂1σ (e .ai+1 + r .ui )

д0ρ = 0 дi+1ρ = σ ′i+1.(ui+1 + r .д
i
ρ )

u0 = 0 ui+1 = σ (e .ai+1 + r .ui )

Proof. By Corollary 5.7, this amounts to computing D = ϵ ′.дϵ + ρ
′.дρ such that

z′1[
〈
z, z′

〉
:=
←−
D (Nl)[ϵ :=

〈
ϵ, λa.ϵ ′a

〉
][ρ :=

〈
ρ, λa.ρ ′a

〉
]][ϵ := e][ρ := r ] −→∗ D

We get the result by direct application of Lemma A.3. □

37


	Abstract
	1 Introduction
	2 A Crash Course in Automatic Differentiation
	2.1 What is automatic differentiation?
	2.2 Forward mode AD
	2.3 Symbolic AD
	2.4 Reverse mode AD, or backpropagation
	2.5 Symbolic backpropagation and the compositionality issue

	3 Our Approach to Compositional Backpropagation
	4 The Linear Substitution Calculus
	5 The Backpropagation Transformation
	5.1 Backpropagation on Computational Graphs
	5.2 Backpropagation on Higher-Order Programs

	6 An Example: Recurrent Neural Networks
	6.1 Derivative of a dynamically generated polynomial
	6.2 Recurrent neural networks

	7 Conclusion and Perspectives
	Acknowledgments
	References
	A Appendix
	A.1 Proofs of Section 4
	A.2 Proofs of Section 5
	A.3 Proofs of Section 6


